
Zowe Version 2.2 Documentation

Table of contents:
Zowe overview

Zowe overview

Zowe demo video

Component overview

Zowe Application Framework

API Mediation Layer

Zowe CLI

Zowe Explorer

Zowe Client Software Development Kits (SDKs)

Zowe Launcher

Zowe Mobile - Incubator

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Zowe Workflow wiZard - Incubator

Zowe Third-Party Software Requirements and Bill of Materials

Zowe architecture

Zowe architecture

Zowe architecture with high availability enablement on Sysplex

Zowe architecture when running in Kubernetes cluster

App Server

ZSS

API Gateway

API Catalog

API Discovery

Caching service

Desktop Apps

File API and JES API

Cross Memory server

FAQ: Zowe and components

FAQ: Zowe and components

Zowe FAQ

What is Zowe?

Who is the target audience for using Zowe?

What language is Zowe written in?

What is the licensing for Zowe?

Why is Zowe licensed using EPL2.0?

What are some examples of how Zowe technology might be used by z/OS products and

applications?

What is the best way to get started with Zowe?

What are the prerequisites for Zowe?

What's the difference between using Zowe with or without Docker?

Is the Zowe CLI packaged within the Zowe Docker download?

Does ZOWE support z/OS ZIIP processors?

How is access security managed on z/OS?

How is access to the Zowe open source managed?

How do I get involved in the open source development?

When will Zowe be completed?

Can I try Zowe without a z/OS instance?

Zowe CLI FAQ

Why might I use Zowe CLI versus a traditional ISPF interface to perform mainframe tasks?

With what tools is Zowe CLI compatible?

Where can I use the CLI?

Which method should I use to install Zowe CLI?

How can I get Zowe CLI to run faster?

How can I manage profiles for my projects and teams?

How can I get help with using Zowe CLI?

How can I use Zowe CLI to automate mainframe actions?

How can I contribute to Zowe CLI?

Zowe Explorer FAQ

Why might I use Zowe Explorer versus a traditional ISPF interface to perform mainframe tasks?

How can I get started with Zowe Explorer?

Where can I use Zowe Explorer?

How do I get help with using Zowe Explorer?

How can I use Secure Credential Storage for Zowe Explorer?

What types of profiles can I create for Zowe Explorer?

How can I use FTP as my back-end service for Zowe Explorer?

How can I contribute to Zowe Explorer?

FAQ: Zowe V2

FAQ: Zowe V2

Where can I find the V1 and V2 LTS conformance criteria?

Whats the difference between "server.json" and "example-zowe.yaml"?

What are the new default ports?

How do I access Zowe through the API Mediation Layer in V2?

What new frameworks are supported in V2?

Why aren't the explorers appearing on my desktop anymore?

Version 2.2.0 (July 2022)

Version 2.2.0 (July 2022)

New features and enhancements

Zowe installation and packaging

Zowe Application Framework

Zowe API Mediation Layer

Zowe CLI

Zowe Explorer

Zowe Explorer

Bug fixes

Zowe API Mediation Layer

Zowe CLI

Zowe Explorer

Version 2.1.0 (June 2022)

Version 2.1.0 (June 2022)

New features and enhancements

Zowe API Mediation Layer

Zowe Application Framework

Zowe CLI

Bug fixes

Zowe API Mediation Layer

Zowe CLI

Zowe Application Framework

Zowe Explorer

Version 2.0.0 (April 2022)

Version 2.0.0 (April 2022)

Breaking changes

Zowe installation

API Mediation Layer

Zowe Application Framework

Zowe CLI

New features and enhancements

Zowe installation

Zowe API Mediation Layer

Zowe Application Framework

Zowe CLI

Zowe Explorer

Bug fixes

Zowe API Mediation Layer

Zowe Application Framework

Conformance and release compatibility

Backward compatibility

Forward compatibility

Conformance compatibility

Zowe V2 office hours videos

Zowe V2 office hours videos

Office hours for Zowe extenders

General information

Zowe component updates

Installation and V2 conformance

Office hours for Zowe consumers

Zowe CLI quick start

Zowe CLI quick start

Installing

Software Requirements

Installing Zowe CLI core from public npm

Installing CLI plug-ins

Issuing your first commands

Listing all data sets under a high-level qualifier (HLQ)

Downloading a partitioned data-set (PDS) member to local file

Team profiles

Using profiles

Profile types

Creating zosmf profiles

Using zosmf profiles

Writing scripts

Example:

Next steps

Migrating Zowe server component from V1 to V2

Migrating Zowe server component from V1 to V2

Component manifest

Lifecycle scripts

Environment variables

Packaging one component deliverable for both Zowe v1 and v2

Zowe learning resources

Zowe learning resources

Blogs

Videos

Webinars

Community

Training

Overview

Overview

Installation roadmap

Installation roadmap

Stage 1: Plan and prepare

Stage 2: Install the Zowe z/OS runtime

Stage 3: Configure the Zowe z/OS runtime

Looking for troubleshooting help?

Planning the installation

Planning the installation

Topology of the Zowe z/OS launch process

Runtime directory

z/OS Data sets used by Zowe

Zowe configuration file

Workspace directory

Log directory

Keystore directory

Extension directory

UNIX System Services considerations for Zowe

UNIX System Services considerations for Zowe

What is USS?

Setting up USS for the first time

Language environment

OMVS segment

Address space region size

System requirements

System requirements

z/OS system requirements

z/OS

Node.js

Java

z/OSMF (Optional)

User ID requirements

ZWESVUSR

ZWESIUSR

ZWEADMIN

zowe_user

Network requirements

Zowe Containers requirements

Zowe Desktop requirements (client PC)

Feature requirements

Multi-Factor Authentication (MFA)

Single Sign-On (SSO)

Memory requirements

Installing Node.js on z/OS

Installing Node.js on z/OS

Supported Node.js versions

How to obtain IBM SDK for Node.js - z/OS

Hardware and software prerequisites

Installing the PAX edition of Node.js - z/OS

Installing the SMP/E edition of Node.js - z/OS

Configuring z/OSMF

Configuring z/OSMF

z/OS requirements for z/OSMF configuration

Configuring z/OSMF

z/OSMF REST services for the Zowe CLI

Configuration of z/OSMF to properly work with API ML

Configuring z/OSMF Lite (for non-production use)

Configuring z/OSMF Lite (for non-production use)

Introduction

Assumptions

Software Requirements

Minimum Java level

WebSphere® Liberty profile (z/OSMF V2R3 and later)

System settings

Web browser

Creating a z/OSMF nucleus on your system

Running job IZUNUSEC to create security

Running job IZUMKFS to create the z/OSMF user file system

Copying the IBM procedures into JES PROCLIB

Starting the z/OSMF server

Accessing the z/OSMF Welcome page

Mounting the z/OSMF user file system at IPL time

Adding the required REST services

Enabling the z/OSMF JOB REST services

Enabling the TSO REST services

Enabling the z/OSMF data set and file REST services

Enabling the z/OSMF Workflow REST services and Workflows task UI

Troubleshooting problems

Common problems and scenarios

Tools and techniques for troubleshooting

Appendix A. Creating an IZUPRMxx parmlib member

Appendix B. Modifying IZUSVR1 settings

Appendix C. Adding more users to z/OSMF

Before you Begin

Procedure

Results

Installing Zowe runtime from a convenience build

Installing Zowe runtime from a convenience build

Introduction

Step 1: Obtain the convenience build

Step 2: Transfer the convenience build to USS and expand it

Step 3: (Optional) Add the zwe command to your PATH

Step 4: Copy the zowe.yaml configuration file to preferred location

Step 5: Install the MVS data sets

About the MVS data sets

Procedure

Next steps

Installing Zowe SMP/E

Installing Zowe SMP/E

Introduction

Zowe description

Zowe FMIDs

Program materials

Basic machine-readable material

Program source materials

Publications useful during installation

Program support

Statement of support procedures

Program and service level information

Program level information

Service level information

Installation requirements and considerations

Driving system requirements

Target system requirements

FMIDs deleted

Installation instructions

SMP/E considerations for installing Zowe

SMP/E options subentry values

Overview of the installation steps

Download the Zowe SMP/E package>P>

Allocate file system to hold the download package

Upload the download package to the host

Extract and expand the compressed SMPMCS and RELFILEs

Sample installation jobs

Create SMP/E environment (Optional)

Perform SMP/E RECEIVE

Allocate SMP/E target and distributions libraries

Allocate, create and mount ZSF files (Optional)

Allocate z/OS UNIX paths

Create DDDEF entries

Perform SMP/E APPLY

Perform SMP/E ACCEPT

Run REPORT CROSSZONE

Cleaning up obsolete data sets, paths, and DDDEFs

Activating Zowe

File system execution

Zowe customization

Installing Zowe SMP/E build with z/OSMF workflow

Installing Zowe SMP/E build with z/OSMF workflow

Activating Zowe

File system execution

Zowe customization

Installing Zowe from a Portable Software Instance

Installing Zowe from a Portable Software Instance

Prerequisites

Procedure

Address z/OSMF Requirements

Address z/OSMF Requirements

Acquire a z/OSMF Portable Software Instance

Acquire a z/OSMF Portable Software Instance

Download the Portable Software Instance from Zowe Downloads

Register Portable Software Instance in z/OSMF

Install Product Software Using z/OSMF Deployments

Install Product Software Using z/OSMF Deployments

Initializing the z/OS system

Initializing the z/OS system

About the zwe init command

Procedure

Next steps

Initializing Zowe custom data sets

Initializing Zowe custom data sets

Introduction

Procedure

Results

Initialize Zowe security configurations

Initialize Zowe security configurations

Configuring with zwe init security command

Configuring with ZWESECUR JCL

Undo security configurations

Next steps

Configuring the z/OS system for Zowe

Configuring the z/OS system for Zowe

Configure an ICSF cryptographic services environment

Configure security environment switching

Configure address space job naming

Configure multi-user address space (for TSS only)

Configure user IDs and groups for the Zowe started tasks

Configure ZWESLSTC to run Zowe high availability instances under ZWESVUSR user ID

Configure the cross memory server for SAF

Configure main Zowe server to use identity mapping

Using RACF

Using ACF2

Using TSS

Configure signed SAF Identity tokens (IDT)

Granting users permission to access z/OSMF

Granting users permission to access z/OSMF

APF authorize load libraries

APF authorize load libraries

Configuring PKCS12 certificates

Configuring PKCS12 certificates

Use a PKCS12 certificate

Create a self signed PKCS12 certificate

Manually import a certificate authority into a web browser

Configuring JCERACFS certificates in a key ring

Configuring JCERACFS certificates in a key ring

Create a certificate authority and use it to self sign a certificate

Create a self signed JCERACFKS certificate

Set up Zowe certificates using workflows

Set up Zowe certificates using workflows

Creating VSAM caching service datasets

Creating VSAM caching service datasets

Using zwe init vsam command

Installing Zowe main started tasks

Installing Zowe main started tasks

Installing and configuring the Zowe cross memory server (ZWESISTC)

Installing and configuring the Zowe cross memory server (ZWESISTC)

PDS sample library and PDSE load library

Load module

APF authorize

Key 4 non-swappable

PARMLIB

PROCLIB

SAF configuration

Summary of cross memory server installation

Starting and stopping the cross memory server on z/OS

Zowe auxiliary service

When to configure the auxiliary service

Installing the auxiliary service

Zowe Auxiliary Address space

Zowe Auxiliary Address space

Configure Zowe with z/OSMF Workflows

Configure Zowe with z/OSMF Workflows

Configure the Zowe instance directory

Execute the configuration workflow

Execute workflow from PSWI

Execute workflow from software instance

Register and execute workflow in the z/OSMF web interface

Overview

Overview

Enable high availability when Zowe runs in Sysplex

Known limitations

Enable high availability when Zowe runs in Kubernetes

Configuring Sysplex for high availability

Configuring Sysplex for high availability

Sysplex environment requirements

Configuring Sysplex Distributor

Configuring z/OSMF for high availability in Sysplex

Configuring z/OSMF for high availability in Sysplex

Sysplex environment requirements

Setting up z/OSMF nucleus

Requirements of z/OSMF HA parmlib member in Sysplex

Configuring z/OSMF for high availability

Configuring the Caching Service for HA

Configuring the Caching Service for HA

Starting and stopping Zowe

Starting and stopping Zowe

Starting and stopping the cross memory server ZWESISTC on z/OS

Starting and stopping the cross memory auxiliary server ZWESASTC on z/OS

Starting and stopping Zowe main server ZWESLSTC on z/OS with zwe server command

Starting and stopping Zowe main server ZWESLSTC on z/OS manually

Stopping and starting a Zowe component without restarting Zowe main server

Verifying Zowe installation on z/OS

Verifying Zowe installation on z/OS

Verifying Zowe Application Framework installation

Verifying API Mediation installation

Verifying z/OS Services installation

Introduction

Introduction

Known limitations

Prerequisites

Prerequisites

Kubernetes cluster

kubectl tool

Downloading and installing

Downloading and installing

Downloading

Downloading configuration samples

Downloading container images

Installing

Upgrading

Configuring

Configuring

1. Create namespace and service account

2. Create Persistent Volume Claim (PVC)

3. Create and modify ConfigMaps and Secrets

4. Expose API Mediation Layer components

4a. Create service

4b. Create Ingress (Bare-metal)

4c. Create Route (OpenShift)

Customizing or manually creating ConfigMaps and Secrets

PodDisruptionBudget

HorizontalPodAutoscaler

Kubernetes v1.21+

Starting, stopping, and monitoring

Starting, stopping, and monitoring

Starting Zowe containers

Port forwarding (for minikube only)

Verifying Zowe containers

Monitoring Zowe containers

Monitoring Zowe containers via UI

Monitoring Zowe containers via CLI

Stopping, pausing or removing Zowe containers

Installation checklist

Installation checklist

Addressing the prerequisites

Installing Zowe CLI

Configuring Zowe CLI

System requirements

System requirements

Client-side requirements

Host-side requirements

Free disk space

Installing Zowe CLI

Installing Zowe CLI

Installation guidelines

Installation notes

Prerequisites

Prerequisite notes

Install Zowe CLI from npm

Install Zowe CLI from a local package

Configuring Secure Credential Store on headless Linux operating systems

Configuring Secure Credential Store on headless Linux operating systems

Headless Linux requirements

Unlocking the keyring manually

Unlocking the keyring automatically

Configuring z/Linux

Configure Zowe CLI on operating systems where the Secure Credential Store is not available

Configure Zowe CLI on operating systems where the Secure Credential Store is not available

V1 profiles

Team configuration

Installing Zowe CLI with Node.js 16 on Windows

Installing Zowe CLI with Node.js 16 on Windows

Additional Considerations

Install CLI from Online Registry Via Proxy

Install CLI from Online Registry Via Proxy

Updating Zowe CLI

Updating Zowe CLI

Updating to the Zowe CLI V2 Long-term Support (v2-lts) version

Identify the currently installed version of Zowe CLI

Identify the currently installed versions of Zowe CLI plug-ins

Update Zowe CLI from the online registry

Update or revert Zowe CLI to a specific version

Update Zowe CLI from a local package

Uninstalling Zowe CLI

Uninstalling Zowe CLI

Visual Studio Code (VS Code) Extension for Zowe

Visual Studio Code (VS Code) Extension for Zowe

Software Requirements

Profile notes:

Installing

Configuration

Relevant Information

Zowe Explorer Profiles

Zowe Explorer Profiles

Configuring team profiles

Creating team configuration files

Managing profiles

Sample profile configuration

Working with Zowe Explorer profiles

Validating profiles

Using base profiles and tokens with existing profiles

Accessing services through API ML using SSO

Logging in to the Authentication Service

Configuring Zowe Application Framework

Configuring Zowe Application Framework

Accessing the App Server

Accessing the Desktop

Accessing ZSS

Configuration file

app-server configuration

zss configuration

Environment variables

Configuring the framework as a Mediation Layer client

Setting up terminal app plugins

Setting up the TN3270 mainframe terminal app plugin

Setting up the VT Terminal app plugin

Network configuration

HTTPS

HTTP

Configuration Directories

Old defaults

App plugin configuration

Logging configuration

Enabling tracing

Log files

ZSS configuration

ZSS 64 or 31 bit modes

Using AT-TLS in the App Framework

Creating AT-TLS certificates and keyring using RACF

Defining the AT-TLS rule

Using multiple ZIS instances

Controlling access to apps

Enabling RBAC

Controlling app access for all users

Controlling app access for individual users

Controlling access to dataservices

Defining the RACF ZOWE class

Creating authorization profiles

Creating generic authorization profiles

Configuring basic authorization

Endpoint URL length limitations

Multi-factor authentication configuration

Session duration and expiration

Configuration

Administering the servers and plugins using an API

Configuring Zowe CLI environment variables

Configuring Zowe CLI environment variables

Setting the CLI home directory

Setting CLI log levels

Setting CLI daemon mode properties

Configuring the Zowe APIs

Configuring the Zowe APIs

Advanced Gateway features configuration

Advanced Gateway features configuration

SAF as an Authentication provider

Enable JWT token refresh endpoint

Change password with SAF provider

Change password with z/OSMF provider

Gateway retry policy

Gateway client certificate authentication

Gateway timeouts

CORS handling

Encoded slashes

Connection limits

Routed instance header

Distributed load balancer cache

Replace or remove the Catalog with another service

API Mediation Layer as a standalone component

SAF Resource Checking

Checking providers

Discovery Service configuration parameters

Discovery Service configuration parameters

Zowe runtime configuration parameters

API ML configuration

Eureka configuration

API Gateway configuration parameters

API Gateway configuration parameters

Runtime configuration

Environment variables

Service configuration

Zuul configuration

Hystrix configuration

AT-TLS

Getting started

Getting started

Using the Zowe Desktop

Using the Zowe Desktop

Navigating the Zowe Desktop

Accessing the Zowe Desktop

Logging in and out of the Zowe Desktop

Changing user password

Updating an expired password

Pinning applications to the task bar

Open application in new tab

Personalizing the Desktop

Changing the desktop language

Zowe Desktop application plugins

Hello World Sample

IFrame Sample

Sample Angular App

Sample React App

3270 Terminal

VT Terminal

API Catalog

Editor

JES Explorer

IP Explorer

MVS Explorer

USS Explorer

Using the Editor

Using the Editor

Specifying a highlighting language

Open a dataset

Deleting a file or folder

Opening a directory

Creating a new directory

Creating a new file

Hotkeys

Using API Catalog

Using API Catalog

API Versioning

View Service Information and API Documentation in the API Catalog

Swagger "Try it out" functionality in the API Catalog

Make a request

Static APIs refresh functionality in the API Catalog

Change password via API Catalog

Using Metrics Service (Technical Preview)

Using Metrics Service (Technical Preview)

API Mediation Layer Metrics Service Demo Video

View HTTP Metrics in the Metrics Service Dashboard

Using Zowe CLI

Using Zowe CLI

Displaying help

Displaying help

Top-level help

Group, action, and object help

Launch local web help

Viewing web help

Understanding core command groups

Understanding core command groups

auth

config

daemon

plugins

profiles

provisioning

zos-console

zos-files

zos-jobs

zos-ssh

zos-workflows

zos-tso

zosmf

Issuing your first command

Issuing your first command

Using daemon mode

Using daemon mode

Preparing for installation

Enable daemon mode

Restart daemon mode

Disable daemon mode

Configure daemon mode on z/Linux operating systems

Configure daemon mode on z/Linux operating systems

Using profiles

Using profiles

Zowe CLI profile types

Tips for using Zowe CLI profiles

Important information about team profiles

Displaying profile help

Service profiles

Base profiles

Tips for using base profiles

Profile best practices

Testing connections to z/OSMF

Without a profile

Default profile

Specific profile

Using team profiles

Using team profiles

Initializing team configuration

Initializing team configuration

Create team profile configuration files

Connecting profiles to API Mediation Layer

Team configuration for application developers

Team configuration for application developers

Initializing user-specific configuration

Editing team profiles

Team configuration for team leaders

Team configuration for team leaders

Sharing team configuration files

Profile scenarios

Access to one or more LPARs that contain services that share the same credentials

Access to one or more LPARs contain services that do not share the same credentials

Access to LPARs that access services through one API Mediation Layer

Access to LPARs that access services through one API Mediation Layer using certificate

authentication

Sharing team configuration files

Sharing team configuration files

Network drive

Project repository and web server

Managing credential security

Managing credential security

Changes to secure credential storage

Storing properties automatically

Storing properties automatically

Integrating with API Mediation Layer

Integrating with API Mediation Layer

How token management works

Logging in

Logging out

Accessing a service through API ML

Specifying a base path

Accessing multiple services with SSO

Accessing services through SSO + one service not through APIML

Accessing services through SSO + one service through API ML but not SSO

Working with certificates

Working with certificates

Configure certificates signed by a Certificate Authority (CA)

Extend trusted certificates on client

Bypass certificate requirement

Completing advanced tasks

Completing advanced tasks

Using environment variables

Formatting environment variables

Setting environment variables in an automation server

Using the prompt feature

Enable prompt

Always prompt

Change the keyword for prompt

Writing scripts

Sample script library

Example: Clean up Temporary Data Sets

Example: Submit Jobs and Save Spool Output

Extending Zowe CLI

Extending Zowe CLI

Software requirements for Zowe CLI plug-ins

Software requirements for Zowe CLI plug-ins

Installing Zowe CLI plug-ins

Installing Zowe CLI plug-ins

Installing plug-ins from an online registry

Installing plug-ins from a local package

Validating plug-ins

Updating plug-ins

Update plug-ins from an online registry

Update plug-ins from a local package

Uninstall Plug-ins

IBM® CICS® Plug-in for Zowe CLI

IBM® CICS® Plug-in for Zowe CLI

Use cases

Commands

Software requirements

Installing

Creating a user profile

Create Plug-in Profiles Using a Configuration File

Create Plug-in Profiles Using a Command

IBM® Db2® Database Plug-in for Zowe CLI

IBM® Db2® Database Plug-in for Zowe CLI

Use cases

Commands

Software requirements

Installing

Installing from an online registry

Installing from a local package

Addressing the license requirement

Server-side license

Client-side license

Creating a user profile

SQL0805N: Database BIND

M1 processor installation

M1 processor installation

IBM® z/OS FTP Plug-in for Zowe CLI

IBM® z/OS FTP Plug-in for Zowe CLI

Use cases

Commands

Software requirements

Installing

Creating a user profile

IBM® IMS™ Plug-in for Zowe CLI

IBM® IMS™ Plug-in for Zowe CLI

Use cases

Commands

Software requirements

Installing

Creating user profiles

IBM® MQ Plug-in for Zowe CLI

IBM® MQ Plug-in for Zowe CLI

Use cases

Using IBM MQ plug-in commands

Software requirements

Installing

Creating a user profile

Create plug-in profiles using a configuration file

Create plug-in profiles using a command

Visual Studio Code (VS Code) Extension for Zowe

Visual Studio Code (VS Code) Extension for Zowe

Software Requirements

Profile notes:

Installing

Configuration

Relevant Information

Zowe Explorer Profiles

Zowe Explorer Profiles

Configuring team profiles

Creating team configuration files

Managing profiles

Sample profile configuration

Working with Zowe Explorer profiles

Validating profiles

Using base profiles and tokens with existing profiles

Accessing services through API ML using SSO

Logging in to the Authentication Service

Configuring Zowe Application Framework

Configuring Zowe Application Framework

Accessing the App Server

Accessing the Desktop

Accessing ZSS

Configuration file

app-server configuration

zss configuration

Environment variables

Configuring the framework as a Mediation Layer client

Setting up terminal app plugins

Setting up the TN3270 mainframe terminal app plugin

Setting up the VT Terminal app plugin

Network configuration

HTTPS

HTTP

Configuration Directories

Old defaults

App plugin configuration

Logging configuration

Enabling tracing

Log files

ZSS configuration

ZSS 64 or 31 bit modes

Using AT-TLS in the App Framework

Creating AT-TLS certificates and keyring using RACF

Defining the AT-TLS rule

Using multiple ZIS instances

Controlling access to apps

Enabling RBAC

Controlling app access for all users

Controlling app access for individual users

Controlling access to dataservices

Defining the RACF ZOWE class

Creating authorization profiles

Creating generic authorization profiles

Configuring basic authorization

Endpoint URL length limitations

Multi-factor authentication configuration

Session duration and expiration

Configuration

Administering the servers and plugins using an API

Configuring Zowe CLI environment variables

Configuring Zowe CLI environment variables

Setting the CLI home directory

Setting CLI log levels

Setting CLI daemon mode properties

Configuring the Zowe APIs

Configuring the Zowe APIs

Advanced Gateway features configuration

Advanced Gateway features configuration

SAF as an Authentication provider

Enable JWT token refresh endpoint

Change password with SAF provider

Change password with z/OSMF provider

Gateway retry policy

Gateway client certificate authentication

Gateway timeouts

CORS handling

Encoded slashes

Connection limits

Routed instance header

Distributed load balancer cache

Replace or remove the Catalog with another service

API Mediation Layer as a standalone component

SAF Resource Checking

Checking providers

Discovery Service configuration parameters

Discovery Service configuration parameters

Zowe runtime configuration parameters

API ML configuration

Eureka configuration

API Gateway configuration parameters

API Gateway configuration parameters

Runtime configuration

Environment variables

Service configuration

Zuul configuration

Hystrix configuration

AT-TLS

Extending Zowe

Extending Zowe

Extend Zowe CLI

Extend Zowe API Mediation Layer

Dynamic API registration

Static API registration

Add a plug-in to the Zowe Desktop

Extend Zowe Explorer

Sample extensions

Sample Zowe API and API Catalog extension

Sample Zowe Desktop extension

Packaging z/OS extensions

Packaging z/OS extensions

Zowe server component package format

Zowe component manifest

Sample manifests

Server component schemas

Server component schemas

Requirements

Additional information

Example

Example manifest

Example schema

Validation

Install Zowe server component

Install Zowe server component

Install component

Enable and disable component

Install and configure manually

Zowe core components

Zowe z/OS extensions

Zowe server component runtime lifecycle

Zowe server component runtime lifecycle

Zowe runtime lifecycle

Zowe component runtime lifecycle

Validate

Configure

Start

Creating and adding Zowe extension containers

Creating and adding Zowe extension containers

1. Build and publish an extension image to a registry

2. Define Deployment or Job object

3. Start your component

Zowe Containerization Conformance Criteria

Zowe Containerization Conformance Criteria

Image

Base Image

Multi-CPU Architecture

Image Label

Tag

Files and Directories

User zowe

Multi-Stage Build

Runtime

General rules

Persistent Volume(s)

Files and Directories

ConfigMap and Secrets

ompzowe/zowe-launch-scripts Image and initContainers

Command Override

Environment Variables

CI/CD

Build, Test and Release

Developing for Zowe CLI

Developing for Zowe CLI

How to contribute

Getting started

Tutorials

Plug-in development overview

Imperative CLI Framework documentation

Contribution guidelines

Setting up your development environment

Setting up your development environment

Prerequisites

Initial setup

Branches

Clone zowe-cli-sample-plugin and build from source

(Optional) Run the automated tests

Next steps

Installing the sample plug-in

Installing the sample plug-in

Overview

Installing the sample plug-in to Zowe CLI

Viewing the installed plug-in

Using the installed plug-in

Testing the installed plug-in

Next steps

Extending a plug-in

Extending a plug-in

Overview

Creating a Typescript interface for the Typicode response data

Creating a programmatic API

Checkpoint one

Creating a command definition

Creating a command handler

Checkpoint two

Using the installed plug-in

Summary

Next steps

Developing a new plug-in

Developing a new plug-in

Overview

Cloning the sample plug-in source

Changing package.json

Adjusting Imperative CLI Framework configuration

Adding third-party packages

Creating a Node.js programmatic API

Exporting your API

Checkpoint

Defining commands

Trying your command

Bringing together new tools!

Next steps

Implementing profiles in a plug-in

Implementing profiles in a plug-in

Onboarding Overview

Onboarding Overview

Prerequisites

Service Onboarding Guides

Recommended guides for services using Java

Recommended guides for services using Node.js

Guides for Static Onboarding and Direct Call Onboarding

Documentation for legacy enablers

Verify successful onboarding to the API ML

Verifying service discovery through Discovery Service

Verifying service discovery through the API Catalog

Sample REST API Service

Onboarding a REST API service with the Plain Java Enabler (PJE)

Onboarding a REST API service with the Plain Java Enabler (PJE)

Introduction

Onboarding your REST service with API ML

Prerequisites

Configuring your project

Gradle build automation system

Maven build automation system

Configuring your service

REST service identification

Administrative endpoints

API info

API routing information

API Catalog information

Authentication parameters

API Security

SAF Keyring configuration

Eureka Discovery Service

Custom Metadata

Registering your service with API ML

Validating the discoverability of your API service by the Discovery Service

Troubleshooting

API Mediation Layer onboarding configuration

API Mediation Layer onboarding configuration

Introduction

Configuring a REST service for API ML onboarding

Plain Java Enabler service onboarding API

Automatic initialization of the onboarding configuration by a single method call

Validating successful onboarding with the API Mediation Layer

Loading YAML configuration files

Loading a single YAML configuration file

Loading and merging two YAML configuration files

Onboarding a service with the Zowe API Meditation Layer without an onboarding enabler

Onboarding a service with the Zowe API Meditation Layer without an onboarding enabler

Introduction

Registering with the Discovery Service

API Mediation Layer Service onboarding metadata

Sending a heartbeat to API Mediation Layer Discovery Service

Validating successful onboarding with the API Mediation Layer

External Resources

Onboarding a Spring Boot based REST API Service

Onboarding a Spring Boot based REST API Service

Outline of onboarding a REST service using Spring Boot

Selecting a Spring Boot Enabler

Configuring your project

Gradle build automation system

Maven build automation system

Configuring your Spring Boot based service to onboard with API ML

Sample API ML Onboarding Configuration

Authentication properties

API ML Onboarding Configuration Sample

SAF Keyring configuration

Custom Metadata

Registering and unregistering your service with API ML

Unregistering your service with API ML

Basic routing

Adding API documentation

Validating the discoverability of your API service by the Discovery Service

Troubleshooting

Onboarding a Micronaut based REST API service

Onboarding a Micronaut based REST API service

Set up your build automation system

Configure the Micronaut application

Add API ML configuration

Add Micronaut configuration

(Optional) Set up logging configuration

Validate successful registration

Onboarding a Node.js based REST API service

Onboarding a Node.js based REST API service

Introduction

Onboarding your Node.js service with API ML

Prerequisites

Installing the npm dependency

Configuring your service

Registering your service with API ML

Validating the discoverability of your API service by the Discovery Service

Onboard a REST API without code changes required

Onboard a REST API without code changes required

Identify the APIs that you want to expose

Define your service and API in YAML format

Route your API

Customize configuration parameters

Add and validate the definition in the API Mediation Layer running on your machine

Add a definition in the API Mediation Layer in the Zowe runtime

(Optional) Check the log of the API Mediation Layer

(Optional) Reload the services definition after the update when the API Mediation Layer is already

started

Onboarding a REST API service with the YAML Wizard

Onboarding a REST API service with the YAML Wizard

Onboarding your REST service with the Wizard

Zowe API Mediation Layer Single-Sign-On Overview

Zowe API Mediation Layer Single-Sign-On Overview

Zowe API ML client

API service accessed via Zowe API ML

Existing services that cannot be modified

Further resources

Obtaining Information about API Services

Obtaining Information about API Services

API ID in the API Mediation Layer

Protection of Service Information

API Endpoints

Obtain Information about a Specific Service

Obtain Information about All Services

Obtain Information about All Services with a Specific API ID

Response Format

WebSocket support in API Gateway

WebSocket support in API Gateway

Security and Authentication

Subprotocols

High availability

Diagnostics

Limitations

Create an Extension for API ML

Create an Extension for API ML

Call the REST endpoint for validation

API Mediation Layer Message Service Component

API Mediation Layer Message Service Component

Message Definition

Creating a message

Mapping a message

API ML Logger

Zowe API Mediation Layer Security

Zowe API Mediation Layer Security

How API ML transport security works

Transport layer security

Authentication

Zowe API ML services

Zowe API ML TLS requirements

Authentication for API ML services

Authentication parameters

Authentication providers

Authorization

JWT Token

z/OSMF JSON Web Tokens Support

API ML truststore and keystore

API ML SAF Keyring

Discovery Service authentication

Setting ciphers for API ML services

ZAAS Client

Pre-requisites

API Documentation

Getting Started (Step by Step Instructions)

Certificate management in Zowe API Mediation Layer

Running on localhost

Zowe runtime on z/OS

API Mediation Layer routing

API Mediation Layer routing

Terminology

APIML Basic Routing (using Service ID and version)

Implementation Details

Basic Routing (using only the service ID)

Enabling PassTicket creation for API Services that Accept PassTickets

Enabling PassTicket creation for API Services that Accept PassTickets

Overview

Outline for enabling PassTicket support

Security configuration that allows the Zowe API Gateway to generate PassTickets for an API service

ACF2

Top Secret

RACF

API services that support PassTickets

API Services that register dynamically with API ML that provide authentication information

API Services that register dynamically with API ML but do not provide metadata

API services that are defined using a static YAML definition

Adding YAML configuration to API services that register dynamically with API ML

Custom Metadata

Custom Metadata

API Versioning

API Versioning

Introduction

Versioning

REST

Data Model

Service and instance

API Versioning

Implement a new SAF IDT provider

Implement a new SAF IDT provider

How to create a SAF IDT provider

How to integrate your extension with API ML

How to use the SAF IDT provider

How to use an existing SAF IDT provider

Using the Caching Service

Using the Caching Service

Architecture

Storage methods

VSAM

Redis

Infinispan

InMemory

How to start the service

Methods to use the Caching service API

Configuration properties

Authentication

Direct calls

Routed calls through API Gateway

Using VSAM as a storage solution through the Caching service

Using VSAM as a storage solution through the Caching service

Understanding VSAM

VSAM configuration

VSAM performance

Using Redis as a storage solution through the Caching service

Using Redis as a storage solution through the Caching service

Understanding Redis

Redis replica instances

Redis Sentinel

Redis SSL/TLS

Redis and Lettuce

Redis configuration

Overview

Overview

How Zowe Application Framework works

Tutorials

Samples

Sample Iframe App

Sample Angular App

Sample React App

User Browser Workshop Starter App

Plug-ins definition and structure

Plug-ins definition and structure

pluginDefinition.json

Application Plugin filesystem structure

Root files and directories

Dev and source content

Runtime content

Default user configuration

App-to-App Communication

Documentation

Location of Plugin files

pluginsDir directory

Application Dataservices

Application Configuration Data

Building plugin apps

Building plugin apps

Building web content

Building app server content

Building zss server content

Tagging plugin files on z/OS

Building Javascript content (*.js files)

Installing

Packaging

Installing Plugins

Installing Plugins

By filesystem

Adding/Installing

Removing

Upgrading

Modifying without server restart (Exercise to the reader)

By REST API

Plugin management during development

Embedding plugins

Embedding plugins

How to interact with embedded plugin

How to destroy embedded plugin

How to style a container for the embedded plugin

Applications that use embedding

Dataservices

Dataservices

Defining dataservices

Schema

Defining Java dataservices

Prerequisites

Defining Java dataservices

Defining Java Application Server libraries

Java dataservice logging

Java dataservice limitations

Using dataservices with RBAC

Dataservice APIs

Router-based dataservices

ZSS based dataservices

Documenting dataservices

Authentication API

Authentication API

Handlers

Handler installation

Handler configuration

Handler context

Handler capabilities

Examples

High availability (HA)

REST API

Check status

Authenticate

User not authenticated or not authorized

Not authenticated

Not authorized

Refresh status

Logout

Password changes

Internationalizing applications

Internationalizing applications

Internationalizing Angular applications

Internationalizing React applications

Internationalizing application desktop titles

Zowe Desktop and window management

Zowe Desktop and window management

Loading and presenting application plug-ins

Plug-in management

Application management

Windows and Viewports

Viewport Manager

Injection Manager

Plug-in definition

Logger

Launch Metadata

Viewport Events

Window Events

Window Actions

Framework API examples

Configuration Dataservice

Configuration Dataservice

Resource Scope

REST API

REST query parameters

REST HTTP methods

Administrative access and group

Application API

Internal and bootstrapping

Packaging Defaults

Plug-in definition

Aggregation policies

Examples

URI Broker

URI Broker

Accessing the URI Broker

Natively:

In an iframe:

Functions

Accessing an application plug-in's dataservices

Accessing application plug-in's configuration resources

Accessing static content

Accessing the application plug-in's root

Server queries

Application-to-application communication

Application-to-application communication

Why use application-to-application communication?

Actions

Action target modes

Action types

Loading actions

App2App via URL

Dynamically

Saved on system

Recognizers

Recognition clauses

Loading Recognizers at runtime

Recognizer example

Dispatcher

Registry

Pulling it all together in an example

Configuring IFrame communication

Configuring IFrame communication

Error reporting UI

Error reporting UI

ZluxPopupManagerService

ZluxErrorSeverity

ErrorReportStruct

Implementation

Declaration

Usage

HTML

Logging utility

Logging utility

Logging objects

Logger IDs

Accessing logger objects

Logger

Component logger

Logger API

Component Logger API

Log Levels

Logging verbosity

Configuring logging verbosity

Using log message IDs

Message ID logging examples

Using Conda to make and manage packages of Application Framework Plugins

Using Conda to make and manage packages of Application Framework Plugins

Initial Conda setup

Managing Conda channels

Searching for packages

Using Conda with Zowe

Setting environment variables temporarily:

Setting environment variables persistently

Installing a Zowe plugin

Zowe plugin configuration

Zowe package structure

Building Conda packages for Zowe

Defining package properties

Creating build step

Lifecycle scripts

Adding configuration to Conda packages

Extending Zowe Explorer

Extending Zowe Explorer

Developing for Zowe SDKs

Developing for Zowe SDKs

Zowe Conformance Program

Zowe Conformance Program

Introduction

How to participate

How to suggest updates to the Zowe conformance program

Troubleshooting

Troubleshooting

Known problems and solutions

Verifying a Zowe release's integrity

Understanding the Zowe release

Understanding the Zowe release

Understanding the Zowe release

Zowe releases

Patch

Minor release

Major release

Check the Zowe release number

Verify Zowe runtime directory

Verify Zowe runtime directory

Troubleshooting Kubernetes environments

Troubleshooting Kubernetes environments

ISSUE: Deployment and ReplicaSet failed to create pod

ISSUE: Failed to create services

Troubleshooting API ML

Troubleshooting API ML

Enable API ML Debug Mode

Change the Log Level of Individual Code Components

Known Issues

API ML stops accepting connections after z/OS TCP/IP stack is recycled

SEC0002 error when logging in to API Catalog

API ML throws I/O error on GET request and cannot connect to other services

Certificate error when using both an external certificate and Single Sign-On to deploy Zowe

Browser unable to connect due to a CIPHER error

API Components unable to handshake

Java z/OS components of Zowe unable to read certificates from keyring

Error Message Codes

Error Message Codes

API mediation utility messages

ZWEAM000I

API mediation common messages

ZWEAO102E

ZWEAO104W

ZWEAO105W

ZWEAO106W

ZWEAO401E

Common service core messages

ZWEAM100E

ZWEAM101E

ZWEAM102E

ZWEAM103E

ZWEAM104E

ZWEAM400E

ZWEAM500W

ZWEAM501W

ZWEAM502E

ZWEAM503E

ZWEAM504E

ZWEAM505E

ZWEAM506E

ZWEAM507E

ZWEAM508E

ZWEAM509E

ZWEAM510E

ZWEAM511E

ZWEAM600W

ZWEAM700E

ZWEAM701E

Security common messages

ZWEAT100E

ZWEAT103E

ZWEAT403E

ZWEAT409E

ZWEAT410E

ZWEAT411E

ZWEAT412E

ZWEAT413E

ZWEAT414E

ZWEAT415E

ZWEAT416E

ZWEAT601E

ZWEAT602E

ZWEAT603E

ZWEAT604E

ZWEAT605E

ZWEAT606E

Security client messages

ZWEAS100E

ZWEAS101E

ZWEAS103E

ZWEAS104E

ZWEAS105E

ZWEAS120E

ZWEAS121E

ZWEAS123E

ZWEAS130E

ZWEAS131E

ZAAS client messages

ZWEAS100E

ZWEAS120E

ZWEAS121E

ZWEAS122E

ZWEAS170E

ZWEAS400E

ZWEAS401E

ZWEAS404E

ZWEAS417E

ZWEAS130E

ZWEAS500E

ZWEAS501E

ZWEAS502E

ZWEAS503E

Discovery service messages

ZWEAD400E

ZWEAD401E

ZWEAD700W

ZWEAD701E

ZWEAD702W

ZWEAD703E

ZWEAD704E

Gateway service messages

ZWEAG500E

ZWEAG700E

ZWEAG701E

ZWEAG702E

ZWEAG704E

ZWEAG705E

ZWEAG706E

ZWEAG707E

ZWEAG708E

ZWEAG709E

ZWEAG710E

ZWEAG711E

ZWEAG712E

ZWEAG713E

ZWEAG714E

ZWEAG715E

ZWEAG716E

ZWEAG717E

ZWEAG100E

ZWEAG101E

ZWEAG102E

ZWEAG103E

ZWEAG104E

ZWEAG105E

ZWEAG106W

ZWEAG107W

ZWEAG108E

ZWEAG109E

ZWEAG110E

ZWEAG120E

ZWEAG121E

ZWEAS123E

ZWEAG130E

ZWEAG131E

ZWEAG140E

ZWEAG141E

ZWEAG150E

ZWEAG151E

ZWEAG160E

ZWEAG161E

ZWEAG162E

ZWEAG163E

ZWEAG164E

ZWEAG165E

ZWEAG166E

ZWEAG167E

ZWEAG168E

API Catalog messages

ZWEAC100W

ZWEAC101E

ZWEAC102E

ZWEAC103E

ZWEAC104E

ZWEAC700E

ZWEAC701W

ZWEAC702E

ZWEAC703E

ZWEAC704E

ZWEAC705W

ZWEAC706E

ZWEAC707E

ZWEAC708E

ZWEAC709E

Raising a Zowe Application Framework issue on GitHub

Raising a Zowe Application Framework issue on GitHub

Raising a bug report

Raising an enhancement report

ZSS Error Message Codes

ZSS Error Message Codes

ZSS informational messages

ZWES0013I

ZWES0014I

ZWES0035I

ZWES0039I

ZWES0061I

ZWES0063I

ZWES0064I

ZWES1100I

ZWES1101I

ZWES1102I

ZWES1600I

ZWES1601I

ZSS error messages

ZWES1006E

ZWES1034E

ZWES1036E

ZWES1037E

ZWES1065E

ZSS warning messages

ZWES1000W

ZWES1005W

ZWES1012W

ZWES1060W

ZWES1103W

ZWES1201W

ZWES1103W

ZWES1602W

ZWES1603W

ZWES1604W

ZWES1605W

ZWES1606W

Troubleshooting Zowe CLI

Troubleshooting Zowe CLI

Problem

Environment

Before reaching out for support

Resolving the problem

Gathering information to troubleshoot Zowe CLI

Gathering information to troubleshoot Zowe CLI

Identify the currently installed CLI version

Identify the currently installed versions of plug-ins

Environment variables

Log levels

CLI daemon mode

Home directory

Home directory structure

Location of logs

Profile configuration

Node.js and npm

npm configuration

npm log files

z/OSMF troubleshooting

z/OSMF troubleshooting

Alternative methods

Known Zowe CLI issues

Known Zowe CLI issues

Zowe Commands Fail with Secure Credential Errors

EACCESS error when issing npm install command

Command not found message displays when issuing npm install commands

npm install -g Command Fails Due to an EPERM Error

Sudo syntax required to complete some installations

npm install -g command fails due to npm ERR! Cannot read property 'pause' of undefined error

Node.js commands do not respond as expected

Installation fails on Oracle Linux 6

Raising a CLI issue on GitHub

Raising a CLI issue on GitHub

Raising a bug report

Raising an enhancement report

Troubleshooting Zowe Explorer

Troubleshooting Zowe Explorer

Before reaching out for support

Known Zowe Explorer issues

Known Zowe Explorer issues

Data Set Creation Error

Opening Binary Files Error

Raising a Zowe Explorer issue on GitHub

Raising a Zowe Explorer issue on GitHub

Raising a bug report

Submitting a feature request

Troubleshooting Zowe Launcher

Troubleshooting Zowe Launcher

Enable Zowe Launcher Debug Mode

Error Message Codes

Error Message Codes

Zowe Launcher informational messages

ZWEL0001I

ZWEL0002I

ZWEL0003I

ZWEL0004I

ZWEL0005I

Zowe Launcher error messages

ZWEL0030E

ZWEL0038E

ZWEL0040E

ZWEL0047E

Contribute to Zowe

Contribute to Zowe

Report bugs and enhancements

Fix issues

Send a Pull Request

Report security issues

Contribution guidelines

Promote Zowe

Helpful resources

Code categories

Code categories

Programming languages

Component-specific guidelines and tutorials

General code style guidelines

General code style guidelines

Whitespaces

Naming Conventions

Functions and methods

Variables

Pull requests guidelines

Pull requests guidelines

Documentation Guidelines

Documentation Guidelines

Contributing to external documentation

Component Categories

Server Core

Server Security

Microservices

Zowe Desktop Applications

Web Framework

CLI Plugins

Core CLI Imperative CLI Framework

Programming Languages

Typescript

Java

C

Introduction

Introduction

Clear

Consistent

Smart

Colors

Colors

Color palette

Light theme

Dark theme

Color contrast | WCAG AA standards

Typography

Typography

Typeface

Font weight

Body copy

Line scale

Line-height

Embed font

Import font

Specify in CSS

Grid

Grid

12 column grid

Gutters

Columns

Margins

Iconography

Iconography

Application icon

Application icon

General rules

Shape, size, and composition

Colors and shades

Verify the contrast

Use the Zowe palette

Layer Shadows

Use the long shadow for consistency.

Contributing to Zowe Documentation

Contributing to Zowe Documentation

Before You Get Started

Getting started checklist

The Zowe documentation repository

Sending a GitHub Pull Request

Opening an issue for Zowe documentation

Documentation style guide

Headings and titles

Technical elements

Tone

Word usage

Abbreviations

Structure and format

Word usage

Zowe CLI command reference guide

Zowe CLI command reference guide

Zowe API reference

Zowe API reference

zwe certificate keyring-jcl clean

zwe certificate keyring-jcl clean

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate keyring-jcl connect

zwe certificate keyring-jcl connect

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate keyring-jcl generate

zwe certificate keyring-jcl generate

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate keyring-jcl import-ds

zwe certificate keyring-jcl import-ds

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate keyring-jcl

zwe certificate keyring-jcl

Sub-commands

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate pkcs12 create ca

zwe certificate pkcs12 create ca

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate pkcs12 create cert

zwe certificate pkcs12 create cert

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate pkcs12 create

zwe certificate pkcs12 create

Sub-commands

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate pkcs12 export

zwe certificate pkcs12 export

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate pkcs12 import

zwe certificate pkcs12 import

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate pkcs12 lock

zwe certificate pkcs12 lock

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate pkcs12 trust-service

zwe certificate pkcs12 trust-service

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate pkcs12

zwe certificate pkcs12

Sub-commands

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate verify-service

zwe certificate verify-service

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe certificate

zwe certificate

Sub-commands

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe components install extract

zwe components install extract

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe components install process-hook

zwe components install process-hook

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe components install

zwe components install

Sub-commands

Description

Examples

Parameters only for this command

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe components disable

zwe components disable

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe components enable

zwe components enable

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe components

zwe components

Sub-commands

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe init apfauth

zwe init apfauth

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe init certificate

zwe init certificate

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe init mvs

zwe init mvs

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe init security

zwe init security

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe init stc

zwe init stc

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe init vsam

zwe init vsam

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe init

zwe init

Sub-commands

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal config get

zwe internal config get

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal config set

zwe internal config set

Description

Inherited from parent command

Examples

Parameters

Errors

Inherited from parent command

zwe internal config

zwe internal config

Sub-commands

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal container cleanup

zwe internal container cleanup

Description

Inherited from parent command

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal container init

zwe internal container init

Description

Inherited from parent command

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal container prestop

zwe internal container prestop

Description

Inherited from parent command

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal container

zwe internal container

Sub-commands

Description

Inherited from parent command

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal start component

zwe internal start component

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal start prepare

zwe internal start prepare

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal start

zwe internal start

Sub-commands

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal get-launch-components

zwe internal get-launch-components

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe internal

zwe internal

Sub-commands

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe migrate for kubernetes

zwe migrate for kubernetes

Description

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe migrate for

zwe migrate for

Sub-commands

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe migrate

zwe migrate

Sub-commands

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe sample sub deep

zwe sample sub deep

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe sample sub second

zwe sample sub second

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe sample sub

zwe sample sub

Sub-commands

Description

Inherited from parent command

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe sample test

zwe sample test

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe sample

zwe sample

Sub-commands

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe support verify-fingerprints

zwe support verify-fingerprints

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe support

zwe support

Sub-commands

Description

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe install

zwe install

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe start

zwe start

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe stop

zwe stop

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe version

zwe version

Description

Examples

Parameters

Inherited from parent command

Errors

Inherited from parent command

zwe

zwe

Sub-commands

Description

Examples

Parameters

Errors

Zowe YAML configuration file reference

Zowe YAML configuration file reference

High-level overview of YAML configuration file

Extract sharable configuration out of zowe.yaml

Configuration override

YAML configurations - certificate

YAML configurations - zowe

YAML configurations - java

YAML configurations - node

YAML configurations - zOSMF

YAML configurations - components

YAML configurations - haInstances

Auto-generated environment variables

Server component manifest file reference

Server component manifest file reference

Bill of Materials

Bill of Materials

Version: v2.2.x LTS

Zowe overview

Zowe™ is an open source software framework that allows mainframe development and operation teams to

securely manage, control, script, and develop on the mainframe. It was created to host technologies that

benefit the IBM Z platform for all members of the Z community, including Integrated Software Vendors

(ISVs), System Integrators, and z/OS consumers. Like Mac or Windows, Zowe comes with a set of APIs and

OS capabilities that applications build on and also includes some applications out of the box. Zowe offers

modern interfaces to interact with z/OS and allows you to work with z/OS in a way that is similar to what you

experience on cloud platforms today. You can use these interfaces as delivered or through plug-ins and

extensions that are created by clients or third-party vendors. Zowe is a project within the Open Mainframe

Project.

Zowe demo video

Watch this video to see a quick demo of Zowe.

Download the deck for this video | Download the script

Component overview

https://www.youtube.com/embed/NX20ZMRoTtk
https://docs.zowe.org/assets/files/Zowe_introduction_video_deck-fbb2a23bfe28dd10f5a003a305350c92.pptx
https://docs.zowe.org/assets/files/Zowe_introduction_video_script-cd119a2662821b55ad9bb5108f40f261.txt

Zowe consists of the following components:

Zowe Application Framework

API Mediation Layer

Zowe CLI

Zowe Explorer

Zowe Client Software Development Kits SDKs

Zowe Launcher

Zowe Mobile - Incubator

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Zowe Application Framework

A web user interface (UI) that provides a virtual desktop containing a number of apps allowing access to

z/OS function. Base Zowe includes apps for traditional access such as a 3270 terminal and a VT Terminal, as

well as an editor and explorers for working with JES, MVS Data Sets and Unix System Services.

📖 Learn more

The Zowe Application Framework modernizes and simplifies working on the mainframe. With the Zowe

Application Framework, you can create applications to suit your specific needs. The Zowe Application

Framework contains a web UI that has the following features:

The web UI works with the underlying REST APIs for data, jobs, and subsystem, but presents the

information in a full screen mode as compared to the command line interface.

The web UI makes use of leading-edge web presentation technology and is also extensible through

web UI plug-ins to capture and present a wide variety of information.

The web UI facilitates common z/OS developer or system programmer tasks by providing an editor

for common text-based files like REXX or JCL along with general purpose data set actions for both

Unix System Services (USS) and Partitioned Data Sets (PDS) plus Job Entry System (JES) logs.

The Zowe Application Framework consists of the following components:

Zowe Desktop

The desktop, accessed through a browser. The desktop contains a number of applications,

including a TN3270 emulator for traditional Telnet or TLS terminal access to z/OS, a VT Termnial for

SSH commands, as well as rich web GUI applications including a JES Explorer for working with jobs

and spool output, a File Editor for working with USS directories and files and MVS data sets and

members. The Zowe desktop is extensible and allows vendors to provide their own applications to

run within the desktop. See Extending the Zowe Desktop. The following screen capture of a Zowe

desktop shows some of its composition as well as the TN3270 app, the JES Explorer, and the File

Editor open and in use.

Zowe Application Server

The Zowe Application Server runs the Zowe Application Framework. It consists of the Node.js

server plus the Express.js as a webservices framework, and the proxy applications that

communicate with the z/OS services and components.

ZSS Server

The ZSS Server provides secure REST services to support the Zowe Application Server. For

services that need to run as APF authorized code, Zowe uses an angel process that the ZSS Server

calls using cross memory communication. During installation and configuration of Zowe, you will

see the steps needed to configure and launch the cross memory server.

Application plug-ins

Several application-type plug-ins are provided. For more information, see Using the Zowe

Application Framework application plug-ins.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/v2.2.x/user-guide/mvd-using#zowe-desktop-application-plug-ins

API Mediation Layer

Provides a gateway that acts as a reverse proxy for z/OS services, together with a catalog of REST APIs and

a dynamic discovery capability. Base Zowe provides core services for working with MVS Data Sets, JES, as

well as working with z/OSMF REST APIs. The API Mediation Layer also provides a framework for Single Sign

On (SSO).

📖 Learn more

The API Mediation Layer provides a single point of access for mainframe service REST APIs. The layer

offers enterprise, cloud-like features such as high-availability, scalability, dynamic API discovery,

consistent security, a single sign-on experience, and documentation. The API Mediation Layer facilitates

secure communication across loosely coupled microservices through the API Gateway. The API

Mediation Layer consists of three components: the Gateway, the Discovery Service, and the Catalog.

The Gateway provides secure communication across loosely coupled API services. The Discovery

Service enables you to determine the location and status of service instances running inside the API ML

ecosystem. The Catalog provides an easy-to-use interface to view all discovered services, their

associated APIs, and Swagger documentation in a user-friendly manner.

Key features

Consistent Access: API routing and standardization of API service URLs through the Gateway

component provides users with a consistent way to access mainframe APIs at a predefined

address.

Dynamic Discovery: The Discovery Service automatically determines the location and status of API

services.

High-Availability: API Mediation Layer is designed with high-availability of services and scalability in

mind.

Caching Service: This feature is designed for Zowe components in a high availability configuration.

It supports the High Availability of all components within Zowe, allowing components to be stateless

by providing a mechanism to offload their state to a location accessible by all instances of the

service, including those which just started.

Redundancy and Scalability: API service throughput is easily increased by starting multiple API

service instances without the need to change configuration.

Presentation of Services: The API Catalog component provides easy access to discovered API

services and their associated documentation in a user-friendly manner. Access to the contents of

the API Catalog is controlled through a z/OS security facility.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-sso

Encrypted Communication: API ML facilitates secure and trusted communication across both

internal components and discovered API services.

API Mediation Layer architecture

The following diagram illustrates the single point of access through the Gateway, and the interactions

between API ML components and services:

Components

The API Layer consists of the following key components:

API Gateway

Services that comprise the API ML service ecosystem are located behind a gateway (reverse proxy). All

end users and API client applications interact through the Gateway. Each service is assigned a unique

service ID that is used in the access URL. Based on the service ID, the Gateway forwards incoming API

requests to the appropriate service. Multiple Gateway instances can be started to achieve high-

availability. The Gateway access URL remains unchanged. The Gateway is built using Netflix Zuul and

Spring Boot technologies.

Discovery Service

The Discovery Service is the central repository of active services in the API ML ecosystem. The

Discovery Service continuously collects and aggregates service information and serves as a repository

of active services. When a service is started, it sends its metadata, such as the original URL, assigned

serviceId, and status information to the Discovery Service. Back-end microservices register with this

service either directly or by using a Eureka client. Multiple enablers are available to help with service on-

boarding of various application architectures including plain Java applications and Java applications that

use the Spring Boot framework. The Discovery Service is built on Eureka and Spring Boot technology.

Discovery Service TLS/SSL

HTTPS protocol can be enabled during API ML configuration and is highly recommended. Beyond

encrypting communication, the HTTPS configuration for the Discovery Service enables heightened

security for service registration. Without HTTPS, services provide a username and password to register

in the API ML ecosystem. When using HTTPS, only trusted services that provide HTTPS certificates

signed by a trusted certificate authority can be registered.

API Catalog

The API Catalog is the catalog of published API services and their associated documentation. The

Catalog provides both the REST APIs and a web user interface (UI) to access them. The web UI follows

the industry standard Swagger UI component to visualize API documentation in OpenAPI JSON format

for each service. A service can be implemented by one or more service instances, which provide exactly

the same service for high-availability or scalability.

Catalog Security

Access to the API Catalog can be protected with an Enterprise z/OS Security Manager such as IBM

RACF, ACF2, or Top Secret. Only users who provide proper mainframe credentials can access the

Catalog. Client authentication is implemented through the z/OSMF API.

Caching Service

It provides an API in high-availability mode which offers the possibility to store, retrieve and delete data

associated with keys. The service will be used only by internal Zowe applications and will not be

exposed to the internet.

Metrics Service (Technical Preview)

The Metrics Service provides a web user interface to visualize requests to API Mediation Layer services.

HTTP metrics such as number of requests and error rates are displayed for each API Mediation Layer

service. This service is currently in technical preview and is not ready for production.

Onboarding APIs

Essential to the API Mediation Layer ecosystem is the API services that expose their useful APIs. Use the

following topics to discover more about adding new APIs to the API Mediation Layer and using the API

Catalog:

Onboarding Overview

Onboard an existing Spring Boot REST API service using Zowe API Mediation Layer

Onboard an existing Node.js REST API service using Zowe API Mediation Layer

Using API Catalog

To learn more about the architecture of Zowe, see Zowe architecture.

Zowe CLI

Zowe CLI is a command-line interface that lets you interact with the mainframe in a familiar, off-platform

format. Zowe CLI helps to increase overall productivity, reduce the learning curve for developing mainframe

applications, and exploit the ease-of-use of off-platform tools. Zowe CLI lets you use common tools such as

Integrated Development Environments (IDEs), shell commands, bash scripts, and build tools for mainframe

development. Though its ecosystem of plug-ins, you can automate actions on systems such as IBM Db2,

IBM CICS, and more. It provides a set of utilities and services for users that want to become efficient in

supporting and building z/OS applications quickly.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/v2.2.x/user-guide/api-mediation-api-catalog
https://docs.zowe.org/v2.2.x/getting-started/zowe-architecture

📖 Learn more

Zowe CLI provides the following benefits:

Enables and encourages developers with limited z/OS expertise to build, modify, and debug z/OS

applications.

Fosters the development of new and innovative tools from a computer that can interact with z/OS.

Some Zowe extensions are powered by Zowe CLI, for example the Visual Studio Code Extension for

Zowe.

Ensure that business critical applications running on z/OS can be maintained and supported by

existing and generally available software development resources.

Provides a more streamlined way to build software that integrates with z/OS.

Note: For information about software requirements, installing, and upgrading Zowe CLI, see Installing

Zowe.

Zowe CLI capabilities

With Zowe CLI, you can interact with z/OS remotely in the following ways:

Interact with mainframe files: Create, edit, download, and upload mainframe files (data sets)

directly from Zowe CLI.

Submit jobs: Submit JCL from data sets or local storage, monitor the status, and view and

download the output automatically.

Issue TSO and z/OS console commands: Issue TSO and console commands to the mainframe

directly from Zowe CLI.

Integrate z/OS actions into scripts: Build local scripts that accomplish both mainframe and local

tasks.

Produce responses as JSON documents: Return data in JSON format on request for

consumption in other programming languages.

For detailed information about the available functionality in Zowe CLI, see Zowe CLI Command Groups.

For information about extending the functionality of Zowe CLI by installing plug-ins, see Extending Zowe

CLI.

More Information:

System requirements for Zowe CLI

Installing Zowe CLI

https://docs.zowe.org/v2.2.x/user-guide/ze-install
https://docs.zowe.org/v2.2.x/user-guide/installandconfig
https://docs.zowe.org/v2.2.x/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/v2.2.x/user-guide/cli-extending
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-cli
https://docs.zowe.org/v2.2.x/user-guide/cli-installcli

Zowe Explorer

Zowe Explorer is a Visual Studio Code extension that modernizes the way developers and system

administrators interact with z/OS mainframes. Zowe Explorer lets you interact with data sets, USS files, and

jobs that are stored on z/OS. The extension complements your Zowe CLI experience and lets you use

authentication services like API Mediation Layer. The extension provides the following benefits:

Enabling you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

Enabling you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

Providing a more streamlined way to access data sets, uss files, and jobs.

Letting you create, edit, and delete Zowe CLI zosmf compatible profiles.

Letting you use the Secure Credential Store plug-in to store your credentials securely in the settings.

Letting you leverage the API Mediation Layer token-based authentication to access z/OSMF.

For more information, see Information roadmap for Zowe Explorer.

Zowe Client Software Development Kits (SDKs)

The Zowe Client SDKs consist of programmatic APIs that you can use to build client applications or scripts

that interact with z/OS. The following SDKs are available:

Zowe Node.js Client SDK

Zowe Python Client SDK

For more information, see Using the Zowe SDKs.

Zowe Launcher

Provides an advanced launcher for Zowe z/OS server components in a high availability configuration. It

performs the following operations:

Stopping the Zowe server components using the STOP (or P) operator command

Stopping and starting specific server components without restarting the entire Zowe instance using

MODIFY (or F) operator command

Zowe Mobile - Incubator

https://docs.zowe.org/v2.2.x/getting-started/user-roadmap-zowe-explorer
https://docs.zowe.org/v2.2.x/user-guide/sdks-using

Lets you interact with your Zowe instance running on the mainframe from your mobile.

For more information, see Information roadmap for Zowe Mobile.

ZEBRA (Zowe Embedded Browser for RMF/SMF and APIs) - Incubator

Provides re-usable and industry compliant JSON formatted RMF/SMF data records, so that many other ISV

SW and users can exploit them using open-source SW for many ways.

For more information, see the ZEBRA documentation or visit the ZEBRA test/trial site.

Zowe Workflow wiZard - Incubator

The Workflow wiZard delivers a workflow builder which simplifies the creation of z/OSMF workflows. The

workflow builder reads a library of templates along with a set of properties, determines which steps are

necessary based upon rules that use property values, determines a suitable order to satisfy the workflow

engine requirements, inserts variable definitions when required, and outputs workflow XML.

For more information, see the Workflow Template Reference.

Zowe Third-Party Software Requirements and Bill of
Materials

Third-Party Software Requirements (TPSR)

Bill of Materials (BOM)

https://docs.zowe.org/v2.2.x/getting-started/user-roadmap-zowe-mobile
https://github.com/zowe/zebra/tree/main/Documentation
https://zebra.talktothemainframe.com/
https://github.com/zowe/workflow-wizard/raw/main/doc/Workflow%20Templates%20Reference.docx
https://github.com/zowe/docs-site/blob/master/tpsr/tpsr-v2.4.x.md
https://docs.zowe.org/v2.2.x/appendix/bill-of-materials

Version: v2.2.x LTS

Zowe architecture

Zowe™ is a collection of components that together form a framework that makes Z-based functionality

accessible across an organization. Zowe functionality includes exposing Z-based components, such as

z/OSMF, as REST APIs. The Zowe framework provides an environment where other components can be

included and exposed to a broader non-Z based audience.

The following diagram illustrates the high-level Zowe architecture.

The diagram shows the default port numbers that are used by Zowe. These are dependent on each instance

of Zowe and are held in the Zowe YAML configuration file.

Zowe components can be categorized by location: server or client. While the client is always an end-user

tool such as a PC, browser, or mobile device, the server components can be further categorized by what

machine they run on.

Zowe server components can be installed and run entirely on z/OS, but a subset of the components can

alternatively run on Linux or z/Linux via Docker. While on z/OS, many of these components run under UNIX

System Services (USS). The components that do not run under USS must remain on z/OS when using

Docker in order to provide connectivity to the mainframe.

Zowe architecture with high availability enablement on
Sysplex

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into

a Sysplex with high availability enabled as opposed to running all components on a single z/OS system.

Zowe has high availability feature build-in. To enable this feature, you can define haInstances section in

your YAML configuration file.

The diagram above shows that ZWESLSTC has started two Zowe instances running on two separate LPARs

that can be on the same or different sysplexes.

The Sysplex distributor port sharing enables the API Gateway 7554 ports to be shared so that incoming

requests can be routed to either the gateway on LPAR A or LPAR B.

The discovery servers on each LPAR communicate with each other and share their registered instances,

which allows the API gateway on LPAR A to dispatch APIs to components either on its own LPAR, or

alternatively to components on LPAR B. As indicated on the diagram, each component has two input

lines: one from the API gateway on its own LPAR and one from the gateway on the other LPAR. When

one of the LPARs goes down, the other LPAR remains operating within the sysplex providing high

availability to clients that connect through the shared port irrespective of which Zowe instance is

serving the API requests.

The zowe.yaml file can be configured to start Zowe instances on more than two LPARS, and also to start

more than one Zowe instance on a single LPAR, thereby providing a grid cluster of Zowe components that

can meet availability and scalability requirements.

The configuration entries of each LPAR in the zowe.yaml file control which components are started. This

configuration mechanism makes it possible to start just the desktop and API Mediation Layer on the first

LPAR, and start all of the Zowe components on the second LPAR. Because the desktop on the first LPAR is

available to the gateway of the second LPAR, all desktop traffic is routed there.

The caching services for each Zowe instance, whether on the same LPAR, or distributed across the sysplex,

are connected to each other by the same shared VSAM data set. This arrangement allows state sharing so

that each instance behaves similarly to the user irrespective of where their request is routed.

For simplification of the diagram above, the Jobs and Files API servers are not shown as being started. If the

user defines Jobs and Files API servers to be started in the zowe.yaml configuration file, these servers

behave the same as the servers illustrated. In other words, these services register to their API discovery

server which then communicates with other discovery servers on other Zowe instances on either the same

or other LPARs. The API traffic received by any API gateway on any Zowe instance is routed to any of the

Jobs or Files API components that are available.

To learn more about Zowe with high availability enablement, see Configuring Sysplex for high availability.

Zowe architecture when running in Kubernetes cluster

The following diagram illustrates the difference in locations of Zowe components when deploying Zowe into

a Kubernetes cluster as opposed to running all components on a single z/OS system.

https://docs.zowe.org/v2.2.x/user-guide/configure-sysplex

When deploying other server components into container orchestration software like Kubernetes, Zowe

follows standard Kubernetes practices. The cluster can be monitored and managed with common

Kubernetes administration methods.

All Zowe workloads run on a dedicated namespace (zowe by default) to distinguish from other

workloads in same Kubernetes cluster.

Zowe has its own ServiceAccount to help with managing permissions.

Server components use similar zowe.yaml on z/OS, which are stored in ConfigMap and Secret ,

to configure and start.

Server components can be configured by using the same certificates used on z/OS components.

Zowe claims its own Persistent Volume to share files across components.

Each server component runs in separated containers.

Components may register themselves to Discovery with their own Pod name within the cluster.

Zowe workloads use the zowe-launch-scripts initContainers step to prepare required

runtime directories.

Only necessary components ports are exposed outside of Kubernetes with Service .

App Server

The App Server is a node.js server that is responsible for the Zowe Application Framework. This server

provides the Zowe desktop, which is accessible through a web browser via port 7556. The Zowe desktop

includes a number of applications that run inside the Application Framework such as a 3270 emulator and a

File Editor.

The App Server server logs write to <zowe.logDirectory>/appServer-yyyy-mm-dd-hh-mm.log .

The Application Framework provides REST APIs for its services that are included on the API catalog tile

Zowe Application Framework that can be viewed at

https://<ZOWE_HOST_IP>:7554/apicatalog/ui/v1/#/tile/ZLUX/zlux .

ZSS

The Zowe desktop delegates a number of its services to the ZSS server which it accesses through the http

port 7557. ZSS is written in C and has native calls to z/OS to provide its services. ZSS logs write to STDOUT

and STDERR for capture into job logs, but also as a file into <zowe.logDirectory>/zssServer-yyyy-

mm-dd-hh-mm.log .

API Gateway

The API Gateway is a proxy server that routes requests from clients on its northbound edge, such as web

browsers or the Zowe command line interface, to servers on its southbound edge that are able to provide

data to serve the request. The API Gateway is also responsible for generating the authentication token used

to provide single sign-on (SSO) functionality. The API Gateway homepage is

https://<ZOWE_HOST_IP>:7554 . Following authentication, this URL enables users to navigate to the

API Catalog.

API Catalog

The API Catalog provides a list of the API services that have registered themselves as catalog tiles. These

tiles make it possible to view the available APIs from Zowe's southbound servers, as well as test REST API

calls.

API Discovery

The API Discovery server acts as the registration service broker between the API Gateway and its

southbound servers. This server can be accessed through the URL https://<ZOWE_HOST_IP>:7552

making it possible to view a list of registered API services on the API discovery homepage.

Caching service

The Caching service aims to provide an API which offers the possibility to store, retrieve, and delete data

associated with keys. The service is used only by internal Zowe applications and is not exposed to the

internet. The Caching service URL is https://<ZOWE_HOST_IP>:7555 . For more information about the

Caching service, see the Caching service documentation.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-caching-service

Desktop Apps

Zowe provides a number of rich GUI web applications for working with z/OS. Such applications include the

Editor for files and datasets, the JES Explorer for jobs, and the IP Explorer for the TCPIP stack. You can

access them through the Zowe desktop.

File API and JES API

The File API server provides a set of REST APIs for working with z/OS data sets and Unix files. These APIs

can be abled in zowe server configuration.

The JES API server provides a set of REST APIs for working with JES. These APIs can be abled in zowe

server configuration.

Both the File API and JES API servers are registered as tiles on the API Catalog, so users can view the

Swagger definition and test API requests and responses.

Cross Memory server

The Cross Memory server is a low-level privileged server for managing mainframe data securely. For security

reasons, it is not an HTTP server. Instead, this server has a trust relationship with ZSS. Other Zowe

components can work through ZSS in order to handle z/OS data that would otherwise be unavailable or

insecure to access from higher-level languages and software.

Unlike all of the servers described above which run under the ZWESLSTC started task as address spaces

for USS processes, the Cross Memory server has its own separate started task ZWESISTC and its own user

ID ZWESIUSR that runs the program ZWESIS01 .

Version: v2.2.x LTS

FAQ: Zowe and components

Check out the following FAQs to learn more about the purpose and function of Zowe™.

Zowe FAQ

Zowe CLI FAQ

Zowe Explorer FAQ

Zowe FAQ

What is Zowe?

📖 Click to hide answer

Zowe is an open source project within the Open Mainframe Project that is part of The Linux Foundation.

The Zowe project provides modern software interfaces on IBM z/OS to address the needs of a variety of

modern users. These interfaces include a new web graphical user interface, a script-able command-line

interface, extensions to existing REST APIs, and new REST APIs on z/OS.

Who is the target audience for using Zowe?

📖 Click to hide answer

Zowe technology can be used by a variety of mainframe IT and non-IT professionals. The target

audience is primarily application developers and system programmers, but the Zowe Application

Framework is the basis for developing web browser interactions with z/OS that can be used by anyone.

What language is Zowe written in?

📖 Click to hide answer

Zowe consists of several components. The primary languages are Java and JavaScript. Zowe CLI and

Desktop are written in TypeScript. ZSS is written in C, while the cross memory server is written in metal

https://www.openmainframeproject.org/
https://www.linuxfoundation.org/

C.

What is the licensing for Zowe?

📖 Click to hide answer

Zowe source code is licensed under EPL2.0. For license text click here and for additional information

click here.

In the simplest terms (taken from the FAQs above) - "...if you have modified EPL-2.0 licensed source

code and you distribute that code or binaries built from that code outside your company, you must make

the source code available under the EPL-2.0."

Why is Zowe licensed using EPL2.0?

📖 Click to hide answer

The Open Mainframe Project wants to encourage adoption and innovation, and also let the community

share new source code across the Zowe ecosystem. The open source code can be used by anyone,

provided that they adhere to the licensing terms.

What are some examples of how Zowe technology might be used by z/OS products
and applications?

📖 Click to hide answer

The Zowe Desktop (web user interface) can be used in many ways, such as to provide custom graphical

dashboards that monitor data for z/OS products and applications.

Zowe CLI can also be used in many ways, such as for simple job submission, data set manipulation, or

for writing complex scripts for use in mainframe-based DevOps pipelines.

The increased capabilities of RESTful APIs on z/OS allows APIs to be used in programmable ways to

interact with z/OS services.

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.txt
https://www.eclipse.org/legal/epl-2.0/faq.php

What is the best way to get started with Zowe?

📖 Click to hide answer

Zowe provides a convenience build that includes the components released-to-date, as well as IP being

considered for contribution, in an easy to install package on Zowe.org. The convenience build can be

easily installed and the Zowe capabilities seen in action.

To install the complete Zowe solution, see Installing Zowe.

To get up and running with the Zowe CLI component quickly, see Zowe CLI quick start.

What are the prerequisites for Zowe?

📖 Click to hide answer

Prerequisites vary by component used, but in most cases the primary prerequisites are Java and

NodeJS on z/OS and the z/OS Management Facility enabled and configured. For a complete list of

software requirements listed by component, see System requirements for z/OS components and

System requirements for Zowe CLI.

What's the difference between using Zowe with or without Docker?

Technical Preview

📖 Click to hide answer

Docker is a download option for Zowe that allows you to run certain Zowe server components outside of

z/OS. The Docker image contains the Zowe components that do not have the requirement of having to

run on z/OS: The App server, API Mediation Layer, and the USS/MVS/JES Explorers.

Configurating components with Docker is similar to the procedures you would follow without Docker,

however tasks such as installation and running with Docker are a bit different, as these tasks become

Linux oriented, rather than utilizing Jobs and STCs.

NOTE: z/OS is still required when using the Docker image. Depending on which components of Zowe

you use, you'll still need to set up z/OS Management Facility as well as Zowe's ZSS and Cross memory

servers.

https://zowe.org/
https://docs.zowe.org/v2.2.x/user-guide/installandconfig
https://docs.zowe.org/v2.2.x/getting-started/cli-getting-started
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zos
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-cli

Is the Zowe CLI packaged within the Zowe Docker download?

Technical Preview

📖 Click to hide answer

At this time, the Docker image referred to in this documentation contains only Zowe server components.

It is possible to make a Docker image that contains the Zowe CLI, so additional Zowe content, such as

the CLI, may have Docker as a distribution option later.

If you are interested in improvements such as this one, please be sure to express that interest to the

Zowe community!

Does ZOWE support z/OS ZIIP processors?

📖 Click to hide answer

Only the parts of Zowe that involve Java code are ZIIP enabled. The API Mediation Layer composed of

the API Gateway, Discovery and Catalog servers along with any Java-based services that work with

them such as the Jobs and Datasets servers are ZIIP enabled. Also, the CLI and VSCode Explorer make

large use of z/OSMF, which is Java so they are ZIIP enabled as well. More details on portions of Zowe

which are Java (ZIIP) enabled can be found here.

This leaves C and NodeJS code which are not ZIIP enabled, BUT, we have a tech preview available

currently that allows execution of Java as well as NodeJS code, on Linux or zLinux via Docker. With the

tech preview, only the C code remains on z/OS, which is not ZIIP enabled.

How is access security managed on z/OS?

📖 Click to hide answer

Zowe components use typical z/OS System authorization facility (SAF) calls for security.

How is access to the Zowe open source managed?

https://docs.zowe.org/stable/getting-started/zowe-architecture#zowe-architecture
https://www.zowe.org/download.html

📖 Click to hide answer

The source code for Zowe is maintained on an Open Mainframe Project GitHub server. Everyone has

read access. "Committers" on the project have authority to alter the source code to make fixes or

enhancements. A list of Committers is documented in Committers to the Zowe project.

How do I get involved in the open source development?

📖 Click to hide answer

The best way to get started is to join a Zowe Slack channel and/or email distribution list and begin

learning about the current capabilities, then contribute to future development.

For more information about emailing lists, community calendar, meeting minutes, and more, see the

Zowe Community GitHub repo.

For information and tutorials about extending Zowe with a new plug-in or application, see Extending on

Zowe Docs.

When will Zowe be completed?

📖 Click to hide answer

Zowe will continue to evolve in the coming years based on new ideas and new contributions from a

growing community.

Can I try Zowe without a z/OS instance?

📖 Click to hide answer

IBM has contributed a free hands-on tutorial for Zowe. Visit the Zowe Tutorial page to learn about

adding new applications to the Zowe Desktop and and how to enable communication with other Zowe

components.

The Zowe community is also currently working to provide a vendor-neutral site for an open z/OS build

and sandbox environment.

https://github.com/zowe/community/blob/master/COMMITTERS.md
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://developer.ibm.com/tutorials/zowe-step-by-step-tutorial/

Zowe is also compatible with IBM z/OSMF Lite for non-production use. For more information, see

Configuring z/OSMF Lite on Zowe Docs.

Zowe CLI FAQ

Why might I use Zowe CLI versus a traditional ISPF interface to perform mainframe
tasks?

📖 Click to hide answer

For developers new to the mainframe, command-line interfaces might be more familiar than an ISPF

interface. Zowe CLI lets developers be productive from day-one by using familiar tools. Zowe CLI also

lets developers write scripts that automate a sequence of mainframe actions. The scripts can then be

executed from off-platform automation tools such as Jenkins automation server, or manually during

development.

With what tools is Zowe CLI compatible?

📖 Click to hide answer

Zowe CLI is very flexible; developers can integrate with modern tools that work best for them. It can

work in conjunction with popular build and testing tools such as Gulp, Gradle, Mocha, and Junit. Zowe

CLI runs on a variety of operating systems, including Windows, macOS, and Linux. Zowe CLI scripts can

be abstracted into automation tools such as Jenkins and TravisCI.

Where can I use the CLI?

📖 Click to hide answer

Usage Scenario Example

https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zosmf-lite

Usage Scenario Example

Interactive use, in a

command prompt or bash

terminal.

Perform one-off tasks such as submitting a batch job.

Interactive use, in an IDE

terminal

Download a data set, make local changes in your editor, then upload

the changed dataset back to the mainframe.

Scripting, to simplify

repetitive tasks

Write a shell script that submits a job, waits for the job to complete,

then returns the output.

Scripting, for use in

automated pipelines

Add a script to your Jenkins (or other automation tool) pipeline to

move artifacts from a mainframe development system to a test

system.

Which method should I use to install Zowe CLI?

📖 Click to hide answer

You can install Zowe CLI using the following methods:

Local package installation: The local package method lets you install Zowe CLI from a zipped file

that contains the core application and all plug-ins. When you use the local package method, you

can install Zowe CLI in an offline environment. We recommend that you download the package and

distribute it internally if your site does not have internet access.

Online NPM registry: The online NPM (Node Package Manager) registry method unpacks all of the

files that are necessary to install Zowe CLI using the command line. When you use the online

registry method, you need an internet connection to install Zowe CLI

How can I get Zowe CLI to run faster?

📖 Click to hide answer

Zowe CLI runs significantly faster when you run it in daemon mode. Daemon mode significantly

improves the performance of Zowe CLI commands by running Zowe CLI as a persistent

background process. For more information, see Using daemon mode.

How can I manage profiles for my projects and teams?

📖 Click to hide answer

Zowe CLI V2 introduces team profiles. Using team profiles helps to improve the initial setup of

Zowe CLI by making service connection details easier to share and easier to store within projects.

For more information, see Using team profiles.

How can I get help with using Zowe CLI?

📖 Click to hide answer

You can get help for any command, action, or option in Zowe CLI by issuing the command 'zowe --

help'.

For information about the available commands in Zowe CLI, see Command Groups.

If you have questions, the Zowe Slack space is the place to ask our community!

How can I use Zowe CLI to automate mainframe actions?

📖 Click to hide answer

You can automate a sequence of Zowe CLI commands by writing bash scripts. You can then run

your scripts in an automation server such as Jenkins. For example, you might write a script that

moves your Cobol code to a mainframe test system before another script runs the automated tests.

Zowe CLI lets you manipulate data sets, submit jobs, provision test environments, and interact with

mainframe systems and source control management, all of which can help you develop robust

continuous integration/delivery.

How can I contribute to Zowe CLI?

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/v2.2.x/getting-started/user-guide/cli-using-understanding-core-command-groups
https://openmainframeproject.slack.com/

📖 Click to hide answer

As a developer, you can extend Zowe CLI in the following ways:

Build a plug-in for Zowe CLI

Contribute code to the core Zowe CLI

Fix bugs in Zowe CLI or plug-in code, submit enhancement requests via GitHub issues, and raise

your ideas with the community in Slack.

Note: For more information, see Developing for Zowe CLI.

Zowe Explorer FAQ

Why might I use Zowe Explorer versus a traditional ISPF interface to perform
mainframe tasks?

📖 Click to hide answer

The Zowe Explorer VSCode extension provides developers new to the mainframe with a modern UI,

allowing you to access and work with the data set, USS, and job functionalities in a fast and streamlined

manner. In addition, Zowe Explorer enables you to work with Zowe CLI profiles and issue TSO/MVS

commands.

How can I get started with Zowe Explorer?

📖 Click to hide answer

First of all, make sure you fulfill the following Zowe Explorer software requirements:

Get access to z/OSMF.

Install Node.js v8.0 or later.

Install VSCode.

Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs REST

interface. For more information, see z/OS Requirements.

https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-devTutorials#how-can-i-contribute
https://nodejs.org/en/download/
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements

Once the software requirements are fulfilled, create a Zowe Explorer profile.

Follow these steps:

�. Navigate to the explorer tree.

�. Click the + button next to the DATA SETS, USS, or JOBS bar.

�. Select the Create a New Connection to z/OS option.

�. Follow the instructions, and enter all required information to complete the profile creation.

You can also watch Getting Started with Zowe Explorer to understand how to use the basic features of

the extension.

Where can I use Zowe Explorer?

📖 Click to hide answer

You can use Zowe Explorer either in VSCode or in Theia. For more information about Zowe Explorer in

Theia, see the Theia Readme.

How do I get help with using Zowe Explorer?

📖 Click to hide answer

Use the Zowe Explorer channel in Slack to ask the Zowe Explorer community for help.

Open a question or issue directly in the Zowe Explorer GitHub repository.

How can I use Secure Credential Storage for Zowe Explorer?

📖 Click to hide answer

The Secure Credential Store Plug-in is no longer required for Zowe Explorer.

Secure credential storage functionality is now contained in the Zowe CLI core application.

https://www.youtube.com/watch?v=G_WCsFZIWt4
https://marketplace.visualstudio.com/items?itemName=Zowe.vscode-extension-for-zowe
https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Theia.md
https://openmainframeproject.slack.com/archives/CUVE37Z5F
https://github.com/zowe/vscode-extension-for-zowe/issues

What types of profiles can I create for Zowe Explorer?

📖 Click to hide answer

Zowe Explorer V2 supports using Service Profiles, Base Profiles, and Team Profiles. For more

information, see Using profiles in the Using Zowe CLI section.

How can I use FTP as my back-end service for Zowe Explorer?

📖 Click to hide answer

See the Zowe FTP extension README in GitHub for information about how to build, install, and use FTP

as your back-end service for working with UNIX files.

How can I contribute to Zowe Explorer?

📖 Click to hide answer

As a developer, you may contribute to Zowe Explorer in the following ways:

Build a Zowe Explorer extension.

Contribute code to core Zowe Explorer.

Fix bugs in Zowe Explorer, submit enhancement requests via GitHub issues, and raise your ideas

with the community in Slack.

Note: For more information, see Extending Zowe Explorer.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-profiles
https://github.com/zowe/zowe-explorer-ftp-extension/#readme
https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Extending.md

Version: v2.2.x LTS

FAQ: Zowe V2

Where can I find the V1 and V2 LTS conformance criteria?

The Zowe Squads have prepared XLS spreadsheets with conformance criteria for all Zowe extensions

including: CLI, APIs, App Framework, and Explorer for VS Code. The spreadsheets clearly show the prior / V1

criteria alongside the new / V2 criteria. Please be aware, there are additions, deletions, and CHANGES to the

criteria. In some cases the change is simply that a BEST PRACTICE has been deemed REQUIRED. Use the

included fill color key to identify new changes for V2, reworded changes, or changes from V1 removed in V2.

See the Changes to the Conformance Criteria section at Zowe.org/vNext.

Whats the difference between "server.json" and "example-
zowe.yaml"?

The previous Zowe V1.x config, "server.json", has been removed from V2 and has been replaced with a new

yaml configuration file. The app server will no longer support instances/workspaces which only contain a

"server.json" config file and will fallback to a default configuration. In addition to the app server, ZSS will no

longer support "server.json".

The yaml Zowe configuration file contains configurations for the setup, install, and initialization of Zowe as

well as for individual components. This file allows users to customize dataset names, security related

configs, certificate setup/config, job name & job prefix, various runtime configs, high availability config, as

well as individual component configurations.

For more information on Zowe setup and the yaml configuration, run the following command in the

command line:

zwe init --help

What are the new default ports?

Four of the default Zowe ports have changed: the app server, zss, the jobs API, and the files API. The new

default app server port is 7556 (previously 8544) and the new zss port is 7557 (previously 8542). The new

https://www.zowe.org/vnext#conformance-changes

jobs API port is 7558 (previously 8545) and the new files API is 7559 (previously 8547). The JES/USS/MVS

Explorer UI servers have been removed and thus no longer require port configurations.

How do I access Zowe through the API Mediation Layer in
V2?

In pervious V1.X versions of Zowe, the desktop could be accessed via the API Medation Layer by navigating

to https://${zowe.externalDomains[0]}:{zowe.externalPort}//ui/v1/zlux . In Zowe V2, the

route to access the desktop has changed to https://${zowe.externalDomains[0]}:

{zowe.externalPort}/zlux/ui/v1 . Such routing structure is applicable to other clients connected to

the API Gateway. For example, the API Catalog may be accessed via

https://${zowe.externalDomains[0]}:{zowe.externalPort}/apicatalog/ui/v1 .

What new frameworks are supported in V2?

The Zowe app framework now supports the more modern Angular 12, Corejs 3 and Typescript 4.

Why aren't the explorers appearing on my desktop
anymore?

By default, the explorers will not longer appear on the desktop if the instance is not configured to use the API

Mediation Layer.

Version: v2.2.x LTS

Version 2.2.0 (July 2022)

Welcome to the Zowe Version 2.2.0 release!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of

issues addressed in this release.

Download v2.2.0 build: Want to try new features as soon as possible? You can download the V2.2.0 build

from Zowe.org.

New features and enhancements

Zowe Version 2.2.0 contains the enhancements that are described in the following topics.

Zowe installation and packaging

A new command configmgr is now present in /bin/utils . It can load, validate, and report on the

Zowe configuration file.

Zowe Application Framework

Added a script dependencies.sh which assists in managing external dependencies needed for

project compilation

Added a new build target, configmgr , which builds a tool that can be called to either load, validate,

and print the zowe configuration, or load, validate, and run a JS script that is given the configuration.

Added an automated build for configmgr which is consumed by the Zowe packaging

Zowe API Mediation Layer

Revoke a Personal Access Token by admin (#2476) (e4d42a9), closes #2476

Caching Service can store invalidated token rules (#2460) (055aac9), closes #2460

Exchange client certificate for SAF IDT (#2455) (303087c), closes #2455 #2384

Fix SAF IDT scheme and service (#2224) (7772401), closes #2224

Generate Personal Access Token (#2452) (0e39aa7), closes #2452

Limit the scope of a Personal Access Token (#2456) (cc0aba4), closes #2456

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/commit/e4d42a9
https://github.com/zowe/api-layer/issues/2476
https://github.com/zowe/api-layer/commit/055aac9
https://github.com/zowe/api-layer/issues/2460
https://github.com/zowe/api-layer/commit/303087c
https://github.com/zowe/api-layer/issues/2455
https://github.com/zowe/api-layer/issues/2384
https://github.com/zowe/api-layer/commit/7772401
https://github.com/zowe/api-layer/issues/2224
https://github.com/zowe/api-layer/commit/0e39aa7
https://github.com/zowe/api-layer/issues/2452
https://github.com/zowe/api-layer/commit/cc0aba4
https://github.com/zowe/api-layer/issues/2456

Revoke a Personal Access Token (#2422) (c7f79d5), closes #2422

Validate ServiceId with Endpoint (#2413) (9f3825f), closes #2413

Zowe CLI

Zowe CLI (Core)

Added the zowe files download data-sets-matching command to download multiple data

sets at once. (#1287)

Note: If you used this command previously in the extended files plug-in for Zowe v1, the --fail-

fast option now defaults to true which is different from the original behavior.

Added the zowe zos-files compare data-set command to compare two datasets and display

the differences on the terminal. (#1442)

Zowe Explorer

Pull from Mainframe option added for JES spool files. #1837

Updated Licenses. #1841

Zowe Explorer

Pull from Mainframe option added for JES spool files. #1837

Updated Licenses. #1841

Bug fixes

Zowe Version 2.2.0 contains the bug fixes that are described in the following topics.

Zowe API Mediation Layer

Immediately expire a passticket command to generate a passticket for each call (#2496) (8adca78),

closes #2496

Optimize image builds (#2445) (e220cbd), closes #2445

Extend Tomcat to be able to recover after TCP/IP stack is restarted, so that the service does not require

restart. (#2421) (a851b8f), closes #2421

https://github.com/zowe/api-layer/commit/c7f79d5
https://github.com/zowe/api-layer/issues/2422
https://github.com/zowe/api-layer/commit/9f3825f
https://github.com/zowe/api-layer/issues/2413
https://github.com/zowe/zowe-cli/issues/1287
https://github.com/zowe/zowe-cli/issues/1442
https://github.com/zowe/vscode-extension-for-zowe/pull/1837
https://github.com/zowe/vscode-extension-for-zowe/issues/1841
https://github.com/zowe/vscode-extension-for-zowe/pull/1837
https://github.com/zowe/vscode-extension-for-zowe/issues/1841
https://github.com/zowe/api-layer/commit/8adca78
https://github.com/zowe/api-layer/issues/2496
https://github.com/zowe/api-layer/commit/e220cbd
https://github.com/zowe/api-layer/issues/2445
https://github.com/zowe/api-layer/commit/a851b8f
https://github.com/zowe/api-layer/issues/2421

Zowe CLI

Zowe CLI and related components contain the following bug fixes.

Zowe CLI (Core)

Updated Imperative to address ProfileInfo related issues.

Fixed the Zowe Daemon binary exiting with an error if the daemon server does not start within 3

seconds.

Alter the zowe daemon disable command to only kill the daemon running for the current user.

Zowe CLI Imperative Framework

Expose the isSecured functionality from the ProfilesCredentials. (#549)

Allow the ConfigAutoStore to store plain-text properties that are defined as secure in the schema (for

example, user, password). (zowe/vscode-extension-for-zowe: #1804)

Added ANSI escape codes trimming for the Web Help. (#704)

Fixed AbstractRestClient not converting LF line endings to CRLF for every line when downloading

large files on Windows. (zowe/zowe-cli/#1458)

Fixed zowe --version --rfj including a trailing newline in the version field. (#842)

Fixed --response-format-json option not supported by some commands in daemon mode.

(#843)

Removed some extraneous dependencies. (#477)

z/OS FTP Plug-in for Zowe CLI

Pick up zos-node-accessor v1.0.11 to fix listing single USS file or symbol link and update PDS

dataset allocation.

Refine help of partitioned dataset allocation.

Zowe Explorer

Updated imports to use the imperative instance provided by the CLI package. #1842

Fixed unwanted requests made by tree node when closing folder. #754

Fix for credentials not being updated after the invalid credentials error is displayed. #1799

Fixed hyperlink for Job submitted when profile is not already in JOBS view. #1751

https://github.com/zowe/imperative/issues/549
https://github.com/zowe/vscode-extension-for-zowe/issues/1804
https://github.com/zowe/imperative/issues/704
https://github.com/zowe/zowe-cli/issues/1458
https://github.com/zowe/imperative/issues/842
https://github.com/zowe/imperative/issues/843
https://github.com/zowe/imperative/issues/477
https://github.com/zowe/vscode-extension-for-zowe/issues/1842
https://github.com/zowe/vscode-extension-for-zowe/issues/754
https://github.com/zowe/vscode-extension-for-zowe/issues/1799
https://github.com/zowe/vscode-extension-for-zowe/issues/1751

Fixed key bindings for Refresh Zowe Explorer to not override default VSC key binding. See

README.md for new key bindings. #1826

Fixed Update Profile issue for missing nonsecure credentials. #1804

Fixed errors when operation cancelled during credential prompt. #1827

Login and Logout operations no longer require a restart of Zowe Explorer or VSC. #1750

Fix for Login token always being stored in plain text. #1840

Fixed Theia tests. #1665

https://github.com/zowe/vscode-extension-for-zowe/blob/master/packages/zowe-explorer/README.md#keyboard-shortcuts
https://github.com/zowe/vscode-extension-for-zowe/issues/1826
https://github.com/zowe/vscode-extension-for-zowe/issues/1804
https://github.com/zowe/vscode-extension-for-zowe/issues/1827
https://github.com/zowe/vscode-extension-for-zowe/issues/1750
https://github.com/zowe/vscode-extension-for-zowe/issues/1840
https://github.com/zowe/vscode-extension-for-zowe/issues/1665

Version: v2.2.x LTS

Version 2.1.0 (June 2022)

Welcome to the Version 2.1.0 release of Zowe!

See New features and enhancements for a full list of changes to the functionality. See Bug fixes for a list of

issues addressed in this release.

Download v2.1.0 build: Want to try new features as soon as possible? You can download the V2.1.0 build

from Zowe.org.

New features and enhancements

Zowe API Mediation Layer

Added trivial schema files for lib components. Updated manifests to remove build metadata (#2379)

(6eba58f), closes #2379

Extended API operation filter in the Swagger UI (#2397) (cffd6cf), closes #2397

Generate basic code snippets (#2387) (79c67d0), closes #2387

New endpoint to retrieve default API doc for service (#2327) (502ba3c), closes #2327

Enhanced Discovery service health check (#2312) (2f167ff), closes #2312

Support for TLS v1.3 (#2314) (e96135a), closes #2314 #2269

Enhanced x509 authentication scheme to support client certificates (#2285) (a053b00), closes #2285

Enhanced zowejwt authentication scheme to support client certificates (#2292) (c602080), closes

#2292

Enhanced z/OSMF authentication scheme to support client certificates (#2207) (5750072), closes

#2207

Added support to change password via z/OSMF (#2095) (51e8bd3), closes #2095

Enabled Discovery Service and Gateway Service native library extensions (#1987) (fd03db5), closes

#1987

Added methods for ZaaS client to support password change (#1991) (7597bd7), closes #1991

API ML sample extension (#1947) (a085cf3), closes #1947

Zowe Application Framework

https://www.zowe.org/download.html
https://github.com/zowe/api-layer/commit/6eba58f
https://github.com/zowe/api-layer/issues/2379
https://github.com/zowe/api-layer/commit/cffd6cf
https://github.com/zowe/api-layer/issues/2397
https://github.com/zowe/api-layer/commit/79c67d0
https://github.com/zowe/api-layer/issues/2387
https://github.com/zowe/api-layer/commit/502ba3c
https://github.com/zowe/api-layer/issues/2327
https://github.com/zowe/api-layer/commit/2f167ff
https://github.com/zowe/api-layer/issues/2312
https://github.com/zowe/api-layer/commit/e96135a
https://github.com/zowe/api-layer/issues/2314
https://github.com/zowe/api-layer/issues/2269
https://github.com/zowe/api-layer/commit/a053b00
https://github.com/zowe/api-layer/issues/2285
https://github.com/zowe/api-layer/commit/c602080
https://github.com/zowe/api-layer/issues/2292
https://github.com/zowe/api-layer/commit/5750072
https://github.com/zowe/api-layer/issues/2207
https://github.com/zowe/api-layer/commit/51e8bd3
https://github.com/zowe/api-layer/issues/2095
https://github.com/zowe/api-layer/commit/fd03db5
https://github.com/zowe/api-layer/issues/1987
https://github.com/zowe/api-layer/commit/7597bd7
https://github.com/zowe/api-layer/issues/1991
https://github.com/zowe/api-layer/commit/a085cf3
https://github.com/zowe/api-layer/issues/1947

USS Explorer contains the following enhancement.

Added the feature to download a file.

MVS Explorer contains the following enhancement.

Disabled the submit button and gave a warning message in Dialogs when dataset or dataset member

name is invalid.

JES Explorer contains the following enhancements.

Highlighted the selected Jobs and Job Files.

Updated the Job tree when a job is deleted or cancelled.

Added * support for job ID.

Added app2app arguments: expand - Boolean that says to expand the job. In a list of jobs, this

expands the first result. showDD - string that auto-opens any dataset definition with this name when

expanding the job.

Zowe CLI

Zowe CLI contains the following enhancements and changes.

Zowe CLI (Core)

Updated the zowe config auto-init command to allow using certificates for authentication.

(#1359)

Exposed profile type configuration from the respective SDKs.

Added the zowe zos-jobs view all-spool-content command to view all spool content given a

job ID. (#946)

Added the zowe jobs submit uss-file command to submit a job from a USS file. (#1286)

Added the zowe files view data-set and the zowe files view uss-file commands to

view a data set or a USS file. (#1283)

Added the zowe jobs delete old-jobs command to delete (purge) jobs in OUTPUT status.

(#1285)

Zowe CLI Imperative Framework

https://github.com/zowe/zowe-cli/issues/1359
https://github.com/zowe/zowe-cli/issues/946
https://github.com/zowe/zowe-cli/issues/1286
https://github.com/zowe/zowe-cli/issues/1283
https://github.com/zowe/zowe-cli/issues/1285

Added the ability for CLIs and Plug-ins to override some of the prompting logic if an alternate property

is set.

Introduced the --show-inputs-only flag to show the inputs of the command that would be used if

a command were executed.

Added the dark theme mode to web help that is automatically used when system-wide dark mode is

enabled.

Added environmental variable support to the ProfileInfo APIs by defaulting homeDir to cliHome .

(#1777)

Bug fixes

Zowe API Mediation Layer

Add log masking class for sensitive logs (#2003) (994b483), closes #2003

API Catalog swagger link (#2344) (be07fda), closes #2344

Use same key and record lengths as jcl (#2341) (d8644f2), closes #2341

Add server-side logging for swagger handling code (#2328) (7b0455d), closes #2328

Preserve request cookies (#2293) (71c6649), closes #2293 #2269

ZaaS client compatibility with Zowe v2 (#2227) (abdf995), closes #2227

Add BearerContent filter to enable bearer auth (#2197) (1d41704), closes #2197

Configure southbound timeout with APIML_GATEWAY_TIMEOUT_MILLIS (#2154) (6af5d6f), closes

#2154

Improve error handling for API diff endpoint (#2178) (1581e39), closes #2178

Update data model for infinispan storage in Caching service (#2156) (38a1348), closes #2156

Versioning in image publishing workflow (#2159) (db52527), closes #2159

Add x509 auth info to gw api doc (#2142) (0205470), closes #2142

Properly remove services when instances are removed from Discovery Service (#2128) (c675b91),

closes #2128

Use ribbon LB for Web sockets (#2147) (4751dbc), closes #2147

Add missing fields in error response (#2118) (3b9745c), closes #2118

Do not require keyAlias for SSL configuration (#2110) (03bee79), closes #2110

Zowe CLI

https://github.com/zowe/vscode-extension-for-zowe/issues/1777
https://github.com/zowe/api-layer/commit/994b483
https://github.com/zowe/api-layer/issues/2003
https://github.com/zowe/api-layer/commit/be07fda
https://github.com/zowe/api-layer/issues/2344
https://github.com/zowe/api-layer/commit/d8644f2
https://github.com/zowe/api-layer/issues/2341
https://github.com/zowe/api-layer/commit/7b0455d
https://github.com/zowe/api-layer/issues/2328
https://github.com/zowe/api-layer/commit/71c6649
https://github.com/zowe/api-layer/issues/2293
https://github.com/zowe/api-layer/issues/2269
https://github.com/zowe/api-layer/commit/abdf995
https://github.com/zowe/api-layer/issues/2227
https://github.com/zowe/api-layer/commit/1d41704
https://github.com/zowe/api-layer/issues/2197
https://github.com/zowe/api-layer/commit/6af5d6f
https://github.com/zowe/api-layer/issues/2154
https://github.com/zowe/api-layer/commit/1581e39
https://github.com/zowe/api-layer/issues/2178
https://github.com/zowe/api-layer/commit/38a1348
https://github.com/zowe/api-layer/issues/2156
https://github.com/zowe/api-layer/commit/db52527
https://github.com/zowe/api-layer/issues/2159
https://github.com/zowe/api-layer/commit/0205470
https://github.com/zowe/api-layer/issues/2142
https://github.com/zowe/api-layer/commit/c675b91
https://github.com/zowe/api-layer/issues/2128
https://github.com/zowe/api-layer/commit/4751dbc
https://github.com/zowe/api-layer/issues/2147
https://github.com/zowe/api-layer/commit/3b9745c
https://github.com/zowe/api-layer/issues/2118
https://github.com/zowe/api-layer/commit/03bee79
https://github.com/zowe/api-layer/issues/2110

Zowe CLI (Core)

Zowe CLI (Core) contains the following bug fixes:

Fixed an issue where config auto-init could report that it modified a config file that did not yet

exist.

Updated Imperative to fix the config import and config secure commands that were not

respecting the --reject-unauthorized option.

Fixed an issue where privateKey is not being respected. (#1398 and #1392)

Moved the authConfig object from the core SDK into the CLI's base profile definition to fix invalid

handler path.

Fixed an issue where SSH command waits forever when user has expired password. (#989)

Fixed the name of the positional in zowe zos-jobs submit uss-file command.

Updated the description of the zowe zos-jobs view all-spool-content command.

Updated the descriptions of the zowe zos-files view uss-file and zowe zos-files view

data-set commands.

Removed the zowe zos-files view uss-file <file> --record option.

Fixed the description of the zowe zos-jobs delete command group.

Added the --modify-version option to the zowe zos-jobs delete old-jobs command for

feature parity with zowe zos-jobs delete job .

Updated Imperative to address ProfileInfo related issues.

Zowe CLI Imperative Framework

Zowe CLI Imperative Framework contains the following bug fixes:

Fixed ProfileInfo API argTeamConfigLoc not recognizing secure fields in multi-layer operations.

(#800)

Fixed ProfileInfo API updateKnownProperty possibly storing information in the wrong location due

to optional osLoc information. (#800)

Fixed osLoc information returning project level paths instead of the global layer. (#805)

Fixed autoStore not being checked by updateKnownProperty . (#806)

Fixed the plugins uninstall command failing when there is a space in the install path.

https://github.com/zowe/zowe-cli/issues/1398
https://github.com/zowe/zowe-cli/issues/1392
https://github.com/zowe/zowe-cli/issues/989
https://github.com/zowe/imperative/pull/800
https://github.com/zowe/imperative/pull/800
https://github.com/zowe/imperative/issues/805
https://github.com/zowe/imperative/issues/806

Fixed an issue where config auto-init might fail to create project config when global config

already exists. (#810)

Fixed config secure not respecting the rejectUnauthorized property in team config. (#813)

Fixed config import not respecting the rejectUnauthorized property in team config. (#816)

Updated the cli-table3 dependency for performance improvements.

Fixed config init not replacing empty values with prompted for values in team config. (#821)

Fixed config init saving empty string values to config file when prompt was skipped.

Fixed ConfigLayers.read skipping load of secure property values.

Improved the performance of ConfigLayers.activate by skipping config reload if the active layer

directory has not changed.

Removed the async keyword from the ConfigLayers.read method and the

ConfigLayers.write method because they do not contain asynchronous code.

Fixed ProfileInfo.readProfilesFromDisk failing when team config files and old-school profile

directory do not exist.

Fixed ProfileInfo.updateProperty not updating properties that are newly present after

reloading team config.

Note: If you are developing an SDK that uses the ProfileInfo API, use the method

ProfileInfo.getTeamConfig instead of ImperativeConfig.instance.config which may

contain outdated config or be undefined.

Fixed ProfileInfo API not detecting secure credential manager after profiles have been reloaded.

Zowe Application Framework

USS Explorer contains the following fix.

Fixed the bug where opening a file fails when USS path has / at the end.

JES Explorer contains the following fixes.

https://github.com/zowe/imperative/issues/810
https://github.com/zowe/imperative/issues/813
https://github.com/zowe/imperative/issues/816
https://github.com/zowe/imperative/issues/821

Fixed bug where URL requests fail when using # character in prefix.

Fixed a bug where using app2app params at launch would not use desired data.

Zowe Explorer

Fixed Quick-key Delete in USS and Jobs trees. #1821

Fixed issue with Zowe Explorer crashing during initialization due to Zowe config file errors. #1822

Fixed issue where Spool files failed to open when credentials were not stored in a profile. #1823

Fixed extra space in the Invalid Credentials dialog, at profile validation profilename. #1824

Updated dependencies for improved security. #1819

Fixed USS search filter fails on credential-less profiles. #1811

Fixed Zowe Explorer recognizing environment variable ZOWE_CLI_HOME. #1803

Fixed Zowe Explorer prompting for TSO Account number when saved in config file's TSO profile. #1801

Improved logging information to help diagnose Team Profile issues. #1776

Fixed adding profiles to the tree view on Theia. #1774

Updated Log4js version to resolve initialization problem on Eclipse Che. #1692

Fixed dataset upload issue by trimming labels. #1789

Fixed duplicate jobs appearing in the jobs view upon making an owner/prefix filter search for extenders.

#1780

Fixed error displayed when opening a job file for extenders. #1701

https://github.com/zowe/vscode-extension-for-zowe/pull/1821
https://github.com/zowe/vscode-extension-for-zowe/pull/1822
https://github.com/zowe/vscode-extension-for-zowe/pull/1823
https://github.com/zowe/vscode-extension-for-zowe/pull/1824
https://github.com/zowe/vscode-extension-for-zowe/pull/1819
https://github.com/zowe/vscode-extension-for-zowe/pull/1811
https://github.com/zowe/vscode-extension-for-zowe/pull/1803
https://github.com/zowe/vscode-extension-for-zowe/pull/1801
https://github.com/zowe/vscode-extension-for-zowe/pull/1776
https://github.com/zowe/vscode-extension-for-zowe/issues/1774
https://github.com/zowe/vscode-extension-for-zowe/issues/1692
https://github.com/zowe/vscode-extension-for-zowe/issues/1789
https://github.com/zowe/vscode-extension-for-zowe/pull/1780
https://github.com/zowe/vscode-extension-for-zowe/pull/1701

Version: v2.2.x LTS

Version 2.0.0 (April 2022)

Welcome to the Version 2.0.0 release of Zowe!

Version 2.0 introduced breaking changes and a number of new features.

If you are upgrading from V1 to V2, review the Breaking changes first.

See New features and enhancements for a full list of changes to the functionality.

See Bug fixes for a list of V1 issues addressed in this release.

See Conformance and release compatibility for V2 Conformance Criteria updates and compatibility with

v1.

Download v2.0.0 build: Want to try new features as soon as possible? You can download the V2.0.0 build

from Zowe.org.

v2 office hours videos: Zowe held a series of v2 LTS office hours for extenders and consumers to introduce

all the V2 changes. Watch the videos to learn more about the new features.

Breaking changes

Zowe installation

You must pass -ppx when you unpax the Zowe convenience build to preserve extended file

attributes.

All utility scripts, like zowe-install.sh , zowe-install-xmem.sh , zowe-install-proc.sh ,

validate-directory-is-accessible.sh , are removed and migrated to the new zwe server

command format.

If you rely on some of the scripts, find the alternative new zwe command or shell library functions.

ZWESVSTC is removed and ZWESLSTC will replace it to start Zowe.

instance.env is deprecated and replaced by zowe.yml .

In V2, you use the P command to terminate Zowe instead of the C cancel command.

Zowe now allows fine-grained customization of log, workspace, and configuration directories. By

default, these directories remain grouped under an instance directory (same as Zowe v1).

https://www.zowe.org/download.html
https://docs.zowe.org/v2.2.x/getting-started/zowe-office-hours

Environment variables are reorganized to better describe itself. All zowe.yaml configuration entries

will be automatically converted to environment variables for easy consumption. Check with the

community what the new alternative variable names are.

During Zowe configuration, redundant ip fields will be removed or consolidated in favor of

hostname or domains .

Component or extension manifest is mandatory. You must use the zwe components install

command to install the extension.

API Mediation Layer

Removed the support for the old path pattern (#1770). This includes the changes to the endpoints used

in ZAAS client. If your application uses ZAAS client, please verify whether the configuration properties

use the new path pattern (/gateway/api/v1 instead of /api/v1/gateway).

Removed the support for different authentication schemas for different instances of service (#1051).

Zowe Application Framework

Some configuration, such as port and IP values, are different by default in V2 but can be reconfigured to old

values. However, some application framework extensions may not work in V2 without enhancements.

zLUX App Manager

Due to new library versions, native apps such as Angular and React apps written for Zowe v1 may not

work in Zowe v2. Rebuilding the apps with the same versions and the latest webpack build scripts is

recommended.

zLUX Server Framework

The list of properties sent back from the /server/environment has changed to reflect the different

environment values present in Zowe v2

Adjusted the server to respect ZSS's new cookie format in which the port or HA instance ID is a

suffix of the ZSS cookie. This means that the server may not work properly when paired with a v1

ZSS and works best with v2 ZSS.

zLUX Editor

The app now uses angular 12, making it compatible with Zowe v2 desktop and incompatible with v1

desktop.

https://github.com/zowe/api-layer/issues/1770
https://github.com/zowe/api-layer/issues/1051

Basic VT Terminal Emulator

Upgrade to Angular 12, Typescript 4, and Corejs 3 to match Desktop libraries in Zowe v2. This app may

no longer work in the Zowe v1 Desktop, and v2 should be used instead.

Basic TN3270 Display Emulator

Upgrade to Angular 12, Typescript 4, and Corejs 3 to match Desktop libraries in Zowe v2. This app may

no longer work in the Zowe v1 Desktop, and v2 should be used instead.

Sample angular app

The app now uses angular 12, making it compatible with Zowe v2 desktop and incompatible with v1

desktop.

Zowe CLI

Breaking changes for Zowe CLI end users:

zowe config no longer manages app settings (Imperative and CLI)

fail-on-error default changed to true for zowe plugins validate (Imperative and CLI)

Default Imperative and CLI log level changed from DEBUG to WARN (Imperative and CLI), which

potentially changes troubleshooting steps for providing information to support.

Breaking changes that could prevent a V1 plug-in or SDK from working in V2

CLI package should be removed as a plug-in peer dep (Imperative)

AbstractRestClient.mDecode defaults to true so any plug-in with custom RestClient

implementation that adds gzip decompression may break

The return value for PluginManagementFacility.requirePluginModuleCallback

changed. Application and plug-in developers requiring a module from a plug-in's relative path

using the requirePluginModuleCallback function no longer need to provide the plug-in

name in a separate variable this.pluginNmForUseInCallback = pluginName before

binding the class this.requirePluginModuleCallback.bind(this) . Instead they can call

this.requirePluginModuleCallback(pluginName) .

Previously in V1:

In V2:

Breaking changes for Zowe CLI and Imperative plug-in developers

These changes only impact early adopters of @next as these are breaking changes made during the

technical preview validation phase. Thanks to the community for the feedback.

tokenType and tokenValue were combined into authToken , which later was reverted

(Imperative and CLI)

Options in zowe config group are renamed: --user is renamed to --user-config , and -

-global to --global-config .

Zowe.schema.json format changed a few times (version 2, version 3):

ConfigSchemas.loadProfileSchemas is changed to ConfigSchemas.loadSchema

Config.set no longer coerces string values to other types unless parseString = true

which might impact the SDK instead of CLI plug-ins.

New features and enhancements

Zowe installation

Introduced a new server command zwe to balance between simplification and flexibility on installation

and configuration.

Almost all Zowe utility scripts in V1 are consolidated into new zwe server command. This new

command defines consistent help messages, logging options, and so on. See the ZWE Command

Reference for more information.

Provides shell function library to help extensions to achieve common tasks. For example, execute

TSO command, operator command, submit job and check job completion, and so on.

Keep away from commands/functions marked as experimental and internal.

Installation / Configuration changes

During installation, no new runtime directory will be created.

A zowe.yaml file can be used to centralize all configuration options. This configuration is

compatible with all Zowe use cases (including high availability and containerization).

For almost all Zowe configuration steps, an automation option zwe init command is provided.

You can still choose to run all steps one by one.

Provides the --security-dry-run mode that allows you to generate security commands and

pass along to your system admin.

You can run all steps from USS now.

https://docs.zowe.org/v2.2.x/getting-started/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean

A Zowe component or extension can use manifest.yaml to define how it interacts with Zowe and

other components.

The component or extension must define a manifest.yaml or manifest.json file to

describe itself. The manifest allows you to define how to register on Zowe API ML Discovery, how to

register under Zowe Desktop, and whether it s̓ Java extension library for API ML, and so on.

Components can define their own configs in manifest.yaml which shows you how to

customize this component and provides default values if they are not defined. This option is

compatible with Zowe running in high availability mode.

Introduced new data sets to better organize the contents.

Added SZWEEXEC to contain few utility tools.

You can customize your own PARMLIB, APF Authorized LOADLIB and APF-authorized ZIS plug-ins

library. CUST.JCLIB is a data set where Zowe will store temporary JCLs.

Zowe API Mediation Layer

There is now the option to change your password via the Catalog UI (#2035) (139a231), closes #2035

Discovery service can be configured to modify the service ID at registration time (#2229) (63f6fde),

closes #2229

There is now the option to specify base packages for the extensions loader(#2081) (9a4be5a), closes

#2081

There is a new design of the logout panel in the Catalog dashboard (#2102) (1382f24), closes #2102

Add missing tooltips to all onboarding options (#2194) (5446fd5), closes #2194

Migrate API Catalog to the Material UI library (2c595d5, 0da7f15, 95da488, c60371d, 537fa34,

81ab2ed), closes #1169

Made various improvements to the onboarding wizard (#1772) (20dd70b), closes #1772

Zowe Application Framework

zLUX App Manager

New desktop library versions are Angular 6->12, Corejs 2->3, Typescript 2->4, and so on. For more

information, visit https://www.zowe.org/vnext.

The web-browser and admin-desktop-notification apps now contains a manifest file so that it can

be installed with zwe components install.

zLUX App Server

https://github.com/zowe/api-layer/commit/139a231
https://github.com/zowe/api-layer/issues/2035
https://github.com/zowe/api-layer/commit/63f6fde
https://github.com/zowe/api-layer/issues/2229
https://github.com/zowe/api-layer/commit/9a4be5a
https://github.com/zowe/api-layer/issues/2081
https://github.com/zowe/api-layer/commit/1382f24
https://github.com/zowe/api-layer/issues/2102
https://github.com/zowe/api-layer/commit/5446fd5
https://github.com/zowe/api-layer/issues/2194
https://github.com/zowe/api-layer/commit/2c595d5
https://github.com/zowe/api-layer/commit/0da7f15
https://github.com/zowe/api-layer/commit/95da488
https://github.com/zowe/api-layer/commit/c60371d
https://github.com/zowe/api-layer/commit/537fa34
https://github.com/zowe/api-layer/commit/81ab2ed
https://github.com/zowe/api-layer/issues/1169
https://github.com/zowe/api-layer/commit/20dd70b
https://github.com/zowe/api-layer/issues/1772
https://www.zowe.org/vnext

Renamed ZLUX_ environment variables to ZWED_ for consistency. Backwards compatible with

old environment variables.

Added support for new logDirectory variable specification in zowe.yaml

Added support for reading from zowe.yaml instead of server.json

zLUX Server Framework

Added support for reading zowe.yaml directly, as opposed to server.json .

The server can now support checks on the existence and version of APIML if a plug-in states a

dependency on APIML in the "requirements.components" section of its plug-in definition.

The list of parameters for server configuration is now documented in json-schema for validation,

you can find this in the zlux repository

ZSS Package

New configuration option that allows to run 64-bit ZSS

zLUX Editor

Cookie name now has a suffix which includes the port or if in an HA instance, the HA ID.

Basic VT Terminal Emulator

The app now contains a manifest file so that it can be installed with zwe components install

Sample angular app

The app now contains a manifest file so that it can be installed with zwe components install

USS Explorer

USS-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe

environment, this will result in less processes but does break links about getting to the explorer via

APIML routes. The explorer is now available via the app-server's APIML route.

JES Explorer

JES-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe

environment, this will result in less processes but does break links about getting to the explorer via

APIML routes. The explorer is now available via the app-server's APIML route.

MVS Explorer

MVS-explorer no longer uses explorer-ui-server, but now depends on app-server. In a standard Zowe

environment, this will result in less processes but does break links about getting to the explorer via

APIML routes. The explorer is now available via the app-server's APIML route.

Zowe CLI

Zowe CLI contains the following enhancements and changes:

Team Configuration:

Team configuration significantly improves the configuration/onboarding experience and provides the

ability to easily share configuration information with others in an organization.

Automatic Team Configuration:

Automatic team configuration leverages the Zowe API Mediation Layer to automatically configure

connections for conformant API ML services that also have a CLI plug-in.

Daemon Mode:

Daemon Mode significantly improves the performance of Zowe CLI by not requiring separate node

processes to be spawned for every command.

Secure by Default:

Secure by default provides a secure out-of-the-box experience by including the secure credential store

feature, previously offered as a plug-in in V1, as part of the core Zowe CLI package.

Migrating to Zowe V2 Team Configuration:

After installing @zowe/cli@zowe-v2-lts and all desired plug-ins @zowe-v2-lts , you can easily

migrate to Zowe V2 team configuration by issuing the following command:

Note: For more information, see Using Profiles.

Zowe CLI Plug-ins

Zowe maintained CLI plug-ins are Zowe V2 LTS conformant. As such, they integrate with Team

configuration, daemon mode, and the team configuration migration utility. For information about

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/v2.2.x/getting-started/user-guide/cli-using-using-profiles#important-information-about-team-profiles

enhancements and bug fixes, see the changelogs for the following plug-ins:

IBM CICS Plug-in for Zowe CLI

IBM Db2 Database Plug-in for Zowe CLI

IBM z/OS FTP Plug-in for Zowe CLI

IBM IMS Plug-in for Zowe CLI

IBM MQ Plug-in for Zowe CLI

Imperative CLI Framework

Imperative is the infrastructure on which various Zowe technologies are built. For information about

enhancements and bug fixes, see the Imperative CLI Framework changelog.

Nodejs SDK

The Nodejs SDK packages were updated to make use of key Zowe V2 features, including Team

Configuration. For information about enhancements and bug fixes, see the changelogs for the following

packages:

Core Package

Provisioning Package

z/OS Console Package

z/OS Files Package

z/OS Jobs Package

z/OS Logs Package

z/OS Management Facility Package

z/OS TSO Package

z/OS USS Package

z/OS Workflows Package

Zowe Explorer

Zowe Explorer makes use of Team Configuration and is secure by default. For information about

enhancements and bug fixes, see the following changelogs:

Zowe Explorer

Zowe Explorer CICS Extension

https://github.com/zowe/zowe-cli-cics-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-db2-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ftp-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-ims-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli-mq-plugin/blob/master/CHANGELOG.md
https://github.com/zowe/imperative/blob/master/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/core/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/provisioning/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosconsole/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosfiles/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosjobs/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zoslogs/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosmf/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zostso/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/zosuss/CHANGELOG.md
https://github.com/zowe/zowe-cli/blob/master/packages/workflows/CHANGELOG.md
https://github.com/zowe/vscode-extension-for-zowe/blob/next/packages/zowe-explorer/CHANGELOG.md
https://github.com/zowe/vscode-extension-for-cics/blob/next/CHANGELOG.md

Zowe Explorer FTP Extension

Bug fixes

Zowe API Mediation Layer

Caching service logging (#2222) (5ff64d9), closes #2222

Add x509 Authentication information to the API Documentation of the API Gateway (#2142) (072ad23),

closes #2142

Authorization provider set empty as default (#2107) (aa77926), closes #2107

Update URL of the API Catalog to work with the V2 version of the Zowe Desktop (6f4257a), closes

#2022

Zowe Application Framework

zLUX Server Framework

When paired with the Zowe server infrastructure, the app-server will now automatically register and de-

register plug-ins at startup depending on each plug-in's component enabled status.

ZSS Package

Do not use "tee" when log destination is /dev/null

Cookie name now has a suffix which includes the port or if in an HA instance, the HA ID.

Conformance and release compatibility

Backward compatibility

Zowe v1 conformant extensions/plug-ins are not guaranteed to be compatible with Zowe v2 and therefore

may not be operable. In general, plug-ins/extensions which leverage v2 APIs that have known breaking

changes are at high risk of incompatibility and unpredictable results.

Recommendation: All v1 extenders test with Zowe v2, identify any issues, and disclose results to

consumers to clearly indicate backward compatibility status in the extension documentation. If unable to

test, clearly document as such.

https://github.com/zowe/vscode-extension-for-zowe/blob/next/packages/zowe-explorer-ftp-extension/CHANGELOG.md
https://github.com/zowe/api-layer/commit/5ff64d9
https://github.com/zowe/api-layer/issues/2222
https://github.com/zowe/api-layer/commit/072ad23
https://github.com/zowe/api-layer/issues/2142
https://github.com/zowe/api-layer/commit/aa77926
https://github.com/zowe/api-layer/issues/2107
https://github.com/zowe/api-layer/commit/6f4257a
https://github.com/zowe/api-layer/issues/2022

Forward compatibility

Zowe v2 conformant (planning to earn conformance) extensions/plug-ins are not guaranteed to be

compatible with Zowe v1 LTS. In general, plug-ins/extensions with no known dependency on any newly

introduced Zowe v2 functions are at minimum risk.

Recommendation: All v2 extenders test with Zowe v1 LTS, identify any issues, and disclose results to

consumers to clearly indicate forward compatibility status in the extension documentation. If unable to test,

clearly document as such.

Conformance compatibility

Zowe v1 conformant extensions/plug-ins are likely to require changes to meet Zowe v2 conformance criteria.

All extensions (regardless of v1 conformance status) must apply for v2 conformance and satisfy all required

v2 testing criteria. You can find the V2 Conformance Criteria here.

Recommendation: All extenders interested in earning v2 conformance review the v2 conformance criteria,

determine if technical changes are necessary, make appropriate modifications and prepare to apply for v2

conformance.

Need help? For assistance with reviewing or completing the Zowe Conformance Zowe v2 application, reach

out to members of the Zowe Onboarding Squad on Slack at https://slack.openmainframeproject.org in the

#zowe-onboarding channel.

https://github.com/openmainframeproject/foundation/files/8489757/Zowe.Conformance.Program.-.Test.Evaluation.Guide.Table.pdf
https://slack.openmainframeproject.org/

Version: v2.2.x LTS

Zowe V2 office hours videos

Watch the series of Zowe office hours videos to learn more about the new features and enhancements in

Zowe Version 2 release.

Office hours for Zowe extenders

The following videos walk you through Zowe V2 updates from an extender's perspective. You can start with

general information and dive deeper in other sections for more details.

General information

Zowe component updates

General information Updates for extenders Wrap-up session

Zowe CLI Zowe API Mediation Layer
Zowe Application

Framework
Zo

Installation and V2 conformance

Office hours for Zowe consumers

The following office hours walk you through Zowe V2 updates from a consumer's perspective. Listen to the

recordings to learn more about the enhancements that are introduced to each core component. The videos

will be ready later.

V2 Office Hours: Zowe API Mediation Layer for Consumers

V2 Office Hours: Zowe CLI for Consumers

V2 Office Hours: Zowe Explorers for Consumers

SSO and APIML SSO Conformance Systems and instal

https://zoom.us/rec/share/20SzIK38fhPD7RdNVRG0kFtaM5cC7bYsSbPCOQs2v-pJsJn-0GqvlAj-HGanAWuD.wSTgajcTaccDfYkT?startTime=1649260398000
https://zoom.us/rec/share/RdrLjSLouMku0AVu0EAvsc7xR_3dJAS8DWddkb7FuErz1Je-JpEW2bvfiFfOMOc.aH9QT4sJjPZhGI5q?startTime=1649865177000
https://zoom.us/rec/share/_obkOAHY6aI2oeQIjSZiNh3zouWtN8WyYmqOLbXN9GSV-W-qqa-nxGK1-276D8ln.kP--nSkSX3qkdBhL?startTime=1650469958000

Version: v2.2.x LTS

Zowe CLI quick start

Get started with Zowe™ CLI quickly and easily.

This article presumes that your role is that of a systems administrator or you possess prerequisite

knowledge of command-line tools and writing scripts. If you prefer more detailed instructions, see Installing

Zowe CLI.

Installing

The following topics describe the Zowe CLI system requirements and the various methods to use to install

Zowe CLI.

Software Requirements

Before you install Zowe CLI, download and install Node.js and npm. Use an LTS version of Node.js that is

compatible with your version of npm. For a list of compatible versions, see Node.js Previous Releases.

(Linux only): On graphical Linux, install gnome-keyring and libsecret on your computer before you

install the Secure Credential Store. On headless Linux, follow the procedure documented in the SCS plug-in

Readme.

Installing Zowe CLI core from public npm

Issue the following command to install the core CLI.

Installing CLI plug-ins

The command installs most open-source plug-ins, but the IBM Db2 plug-in requires additional configuration

to install.

For more information, see Installing plug-ins.

Issuing your first commands

https://docs.zowe.org/v2.2.x/user-guide/cli-installcli
https://nodejs.org/en/download/releases/
https://github.com/zowe/zowe-cli-scs-plugin/blob/master/README.md#software-requirements
https://docs.zowe.org/v2.2.x/user-guide/cli-db2plugin#installing
https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins

Issue zowe --help to display full command help. Append --help (alias -h) to any command to see

available command actions and options.

Optionally, you can view the Zowe CLI web help in a browser window. For more information, see Displaying

help.

All Zowe CLI commands start with zowe followed by the name of the core command group. For example,

zowe plugins -h . To interact with the mainframe, type zowe followed by a command group, action,

and object. Use options to specify your connection details such as password and system name.

Listing all data sets under a high-level qualifier (HLQ)

Example:

Downloading a partitioned data-set (PDS) member to local file

Example:

See Understanding core command groups for a list of available functionality.

Team profiles

Zowe CLI V2-LTS now supports team profiles. The process of setting up team profiles is simple and can be

rolled out easily accross your organization. We highly recommend that you configure team profiles to

support your Zowe CLI implementation. For more information, see Using team profiles.

Using profiles

Zowe profiles let you store configuration details such as username, password, host, and port for a

mainframe system. Switch between profiles to quickly target different subsystems and avoid typing

connection details on every command.

Profile types

Most command groups require a zosmf-profile , but some plug-ins add their own profile types. For

example, the CICS plug-in has a cics-profile . The profile type that a command requires is defined in

the PROFILE OPTIONS section of the help response.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-displaying-help
https://docs.zowe.org/v2.2.x/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/v2.2.x/user-guide/cli-using-understanding-core-command-groups
https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-team-profiles

Tip: The first zosmf profile that you create becomes your default profile. If you don't specify any options

on a command, the default profile is used. Issue zowe profiles -h to learn about listing profiles and

setting defaults.

Creating zosmf profiles

Notes:

The port defaults to 443 if you omit the --port option. Specify a different port if your host system

does not use port 443.

If z/OSMF is configured for high availability in Sysplex, create the CLI zosmf-profile with DVIPA

address/hostname to ensure availability of REST services. For more information, see Configuring

z/OSMF high availability in Sysplex.

Using zosmf profiles

For detailed information about issuing commands, using profiles, and more, see Using CLI.

Writing scripts

You can write Zowe CLI scripts to streamline your daily development processes or conduct mainframe

actions from an off-platform automation tool such as Jenkins or TravisCI.

Example:

You want to delete a list of temporary datasets. Use Zowe CLI to download the list, loop through the list, and

delete each data set using the zowe zos-files delete command.

For more information, see Writing scripts.

Next steps

You successfully installed Zowe CLI, issued your first commands, and wrote a simple script! Next, you might

want to perform the following tasks:

Issue the zowe --help command to explore the product functionality, or review the online web help.

https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zosmf-ha
https://docs.zowe.org/v2.2.x/user-guide/cli-using-usingcli
https://docs.zowe.org/v2.2.x/user-guide/cli-using-completing-advanced-tasks#writing-scripts
https://docs.zowe.org/v2.2.x/user-guide/cli-using-displaying-help

Learn how to configure Zowe CLI run Zowe CLI in daemon mode. Daemon mode significantly improves

the performance of Zowe CLI commands by running Zowe CLI as a persistent background process.

Learn about configuring environment variables to store configuration options.

Learn about integrating with API Mediation Layer.

Learn about how to write scripts and integrate them with automation server, such as Jenkins.

See what plug-ins are available for the CLI.

Learn about developing for the CLI (contributing to core and developing plug-ins).

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-daemon-mode
https://docs.zowe.org/v2.2.x/user-guide/cli-configuringcli-ev
https://docs.zowe.org/v2.2.x/user-guide/cli-using-integrating-apiml
https://docs.zowe.org/v2.2.x/user-guide/cli-using-completing-advanced-tasks#writing-scripts
https://docs.zowe.org/v2.2.x/user-guide/cli-extending
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-devTutorials

Version: v2.2.x LTS

Migrating Zowe server component from V1 to
V2

This doc guides you through migrating an existing Zowe server component from version 1 to version 2.

To make Zowe server component compatible with Zowe version 2, you must update the following

configurations.

Component manifest

Lifecycle scripts

Environment variables

Packaging one component deliverable for both Zowe v1 and v2

Component manifest

In Zowe v2, the component must define a manifest file and package it into the extension's root directory.

This manifest file is used by Zowe to understand how this component should be installed, configured, and

started. For detailed information of this file, see Server Component Manifest File Reference.

Lifecycle scripts

In Zowe v2, lifecycle scripts can be located anywhere in your component directory. However, you must

explicitly define them in the commands section of the component manifest file.

Environment variables

Zowe v1 and v2 environment variables are not exact match. There are the following differences:

Some variables in Zowe v1 are removed in v2.

Some are separated into two or more variables.

Zowe v2 defines more configuration options than v1.

Review the following table for a detailed mapping of Zowe v1 and v2 variables.

https://docs.zowe.org/v2.2.x/appendix/server-component-manifest

Zowe v1 Variable Zowe v2 YAML ConfiZowe v1 Variable Zowe v2 YAML Confi

APIML_ALLOW_ENCODED_SLASHES components.gateway.apiml.service.al

APIML_CORS_ENABLED components.gateway.apiml.service.co

APIML_DEBUG_MODE_ENABLED components.gateway.debug , etc

APIML_ENABLE_SSO Removed in v2

APIML_GATEWAY_EXTERNAL_MAPPER components.gateway.apiml.security.x

APIML_GATEWAY_INTERNAL_HOST Not configurable in v2

APIML_GATEWAY_INTERNAL_PORT components.gateway.server.internal.

APIML_GATEWAY_TIMEOUT_MILLIS components.gateway.apiml.gateway.ti

APIML_MAX_CONNECTIONS_PER_ROUTE components.gateway.server.maxConnec

APIML_MAX_TOTAL_CONNECTIONS components.gateway.server.maxTotalC

APIML_PREFER_IP_ADDRESS Removed in v2

APIML_SECURITY_AUTH_PROVIDER components.gateway.apiml.security.a

APIML_SECURITY_AUTHORIZATION_ENDPOINT_URL components.gateway.apiml.security.a

APIML_SECURITY_X509_ENABLED components.gateway.apiml.security.x

APIML_SECURITY_ZOSMF_APPLID zOSMF.applId

CATALOG_PORT components.api-catalog.port

Zowe v1 Variable Zowe v2 YAML Confi

DISCOVERY_PORT components.discovery.port

EXTERNAL_CERTIFICATE_AUTHORITIES zowe.certificate.pem.certificateAut

EXTERNAL_COMPONENTS Removed in v2

FILES_API_PORT components.files-api.port

GATEWAY_PORT components.gateway.port

INSTANCE_DIR Removed in v2

JAVA_HOME java.home

JES_EXPLORER_UI_PORT Removed in v2

JOBS_API_PORT components.jobs-api.port

KEY_ALIAS zowe.certificate.keystore.alias

KEYSTORE_CERTIFICATE_AUTHORITY zowe.certificate.pem.certificateAut

KEYSTORE_CERTIFICATE zowe.certificate.pem.certificate

KEYSTORE_DIRECTORY zowe.setup.certificate.pkcs12.direc

Zowe v1 Variable Zowe v2 YAML Confi

KEYSTORE_KEY zowe.certificate.pem.key

KEYSTORE_PASSWORD
zowe.certificate.keystore.password

zowe.certificate.truststore.passwor

KEYSTORE_TYPE
zowe.certificate.keystore.type and

zowe.certificate.truststore.type

KEYSTORE zowe.certificate.keystore.file

LAUNCH_COMPONENT_GROUPS Removed in v2

MVS_EXPLORER_UI_PORT Removed in v2

PKCS11_TOKEN_LABEL Removed in v2

PKCS11_TOKEN_NAME Removed in v2

ROOT_DIR zowe.runtimeDirectory

SKIP_NODE Removed in v2

STATIC_DEF_CONFIG_DIR -

TRUSTSTORE zowe.certificate.truststore.file

USS_EXPLORER_UI_PORT Removed in v2

Zowe v1 Variable Zowe v2 YAML Confi

ZOSMF_HOST zOSMF.host

ZOSMF_PORT zOSMF.port

ZOWE_APIM_NONSTRICT_VERIFY_CERTIFICATES zowe.verifyCertificates

ZOWE_APIM_VERIFY_CERTIFICATES zowe.verifyCertificates

ZOWE_EXPLORER_FRAME_ANCESTORS Removed in v2

ZOWE_EXPLORER_HOST zowe.externalDomains or haInstances.

ZOWE_INSTANCE Removed in v2

ZOWE_IP_ADDRESS Removed in v2

ZOWE_PREFIX zowe.job.prefix

ZOWE_ZLUX_SECURITY_TYPE -

ZOWE_ZLUX_SERVER_HTTPS_PORT -

Zowe v1 Variable Zowe v2 YAML Confi

ZOWE_ZLUX_SSH_PORT -

ZOWE_ZLUX_TELNET_PORT -

ZOWE_ZSS_SERVER_PORT -

ZOWE_ZSS_SERVER_TLS -

ZOWE_ZSS_XMEM_SERVER_NAME -

ZWE_CACHING_EVICTION_STRATEGY components.caching-service.storage.

ZWE_CACHING_SERVICE_PERSISTENT components.caching-service.storage.

ZWE_CACHING_SERVICE_PORT components.caching-service.port

ZWE_CACHING_SERVICE_VSAM_DATASET components.caching-service.storage.

ZWE_CACHING_STORAGE_SIZE components.caching-service.storage.

ZWE_DISCOVERY_SERVICES_LIST -

ZWE_DISCOVERY_SERVICES_REPLICAS components.discovery.replicas

ZWE_EXTENSION_DIR zowe.extensionDirectory

ZWE_EXTERNAL_HOSTS zowe.externalDomains

ZWE_EXTERNAL_PORT zowe.externalPort

Packaging one component deliverable for both Zowe v1 and
v2

It is recommended that you create a dedicated package of extensions for Zowe v2, which is the most

straight-forward way to address all of the breaking changes introduced in v2. We understand that this

method presents the challenge of maintaining two sets of packages. If you prefer not to maintain two sets of

packages, it's still possible to maintain one version of an extension which works for both Zowe v1 and v2.

However, the lifecycle code will be complicated and in this case, comprehensive testing should be

performed.

CAUTION

Zowe v1 Variable Zowe v2 YAML Confi

ZWE_LAUNCH_COMPONENTS
Combined information of components.<comp

true

ZWE_LOG_LEVEL_ZWELS zowe.launchScript.logLevel

ZWEAD_EXTERNAL_STATIC_DEF_DIRECTORIES Removed in v2

ZWES_ZIS_LOADLIB zowe.setup.dataset.authLoadlib

ZWES_ZIS_PARMLIB_MEMBER -

ZWES_ZIS_PARMLIB zowe.setup.dataset.parmlib

ZWES_ZIS_PLUGINLIB zowe.setup.dataset.authPluginLib

The Zowe v2 App Framework desktop is upgraded from Angular version 6 to angular version 12 for

support and security - websites have a "1 version of a library" limitation. This means that plug-ins

dependent upon Angular must be coded for either v6 or v12 [not both] thus the single version

approach is not applicable.

If the lifecycle scripts are the main concern, the following steps outline requirements and recommendations

for the single version approach:

Packaging manifest.yaml is required. This is a hard requirement for Zowe v2. If you define lifecycle

scripts with default names, for example, use bin/start.sh as commands.start , it should work

for v1.

Revisit all environment variables used in the lifecycle scripts and apply fallback variables. For example, if

you use $ROOT_DIR in Zowe v1, this should be changed to

${ZWE_zowe_runtimeDirectory:-${ROOT_DIR}} to make it compatible with both versions. Other

variables like $EXPLORER_HOST should be changed to

${ZWE_haInstance_hostname:-${EXPLORER_HOST}} or

${ZWE_externalDomains_0:-${EXPLORER_HOST}} based on purpose.

In Zowe v2, we recommend you to define extension configurations in the manifest.yaml configs

section and use ${ZWE_configs_*} variables to access them. This feature does not exist in Zowe

v1. So if you use ${ZWE_configs_*} variables, it should fall back to the matching environment

variable used in v1.

In Zowe v2, we recommend you to define a commands.install lifecycle script to handle extension

installation. This lifecycle script will be executed by zwe components install . In v1, this also exists

if you use the zowe-install-components.sh utility to install a Zowe extension. So if you want one

extension package to work for both Zowe v1 and v2, this install lifecycle script should also be

compatible with both v1 and v2.

A new v2 variable ${ZWE_VERSION} may help you determine the Zowe version number. This variable

does not exist in Zowe v1. By knowing the Zowe version, the lifecycle scripts can implement logic to

source v1 or v2 dedicated scripts to avoid handling fallbacks in the same script. This could help avoid

complicated compatibility version checks, and it could be easier in the future if you decide to drop Zowe

v1.

Version: v2.2.x LTS

Zowe learning resources

Learn more about Zowe from these blog posts, videos, and other resources.

Blogs

Zowe blogs on Medium

Zowe blogs on Open Mainframe Project website

Want to contribute a blog? Details for how to contribute to the Zowe blogs on Medium site are at Zowe Blog

Guidelines.

Videos

As well as Zowe videos owned and managed by the community, there are a number of external youtubers

who host Zowe related content.

Zowe Demos playlist from Bill Pereira

Mainframe Bytes channel from Jessielaine Punongbayan

https://medium.com/zowe
https://www.openmainframeproject.org/category/blog/zowe
https://medium.com/zowe
https://github.com/zowe/community/blob/master/blogging/blog_guidelines.md
https://www.youtube.com/embed?listType=playlist&list=PL8REpLGaY9QE_9d57tw3KQdwSVLKuTpUZ
https://www.youtube.com/playlist?list=PLM85SdWDWtebJ13Kww8rxKlDlWe72D7b3
https://www.youtube.com/channel/UCZrvxFwT1GpvJuFRyqc5uWg

Webinars

Find out what's happening with Zowe in the Zowe Quarterly Update Webinar Series.

Zowe Quarterly Update Webinar: October 2021

Zowe Quarterly Update Webinar: July 2021

Zowe Quarterly Update Webinar: April 2021

Zowe Quarterly Update Webinar: January 2021

Zowe Quarterly Update Webinar: October 2020

The OMP Youtube channel also offers other webinars about Zowe.

Treat Yourself to a Guided, Comprehensive Tour of Zowe Desktop Applications

Zowe Webinar Feb. 22, 2019

Open Mainframe Project Webinar: Zowe Virtual Hackathon

Community

Join us on Slack

Slack invite link

Introduction to Zowe Slack channels

Learn more about the community

Zowe community GitHub repo

Find out information about Zowe sub-projects, GitHub repos, mailing lists, community meeting minutes,

contribution guidelines, and so on.

Connect with the community through meetings

Zowe meeting calendar

You can join one of the Zowe meetings to get latest Zowe updates and get involved in different squads

and initiatives.

Training

https://youtu.be/b0Xo6WIy3vc
https://youtu.be/T3Z4hMwElII
https://youtu.be/9rQCcZGVDzQ
https://youtu.be/ZEwd8wZvbIw
https://youtu.be/GbAFO5vzBhw
https://www.youtube.com/channel/UC-WTXQQtz2m5iTflJLK59aw/videos
https://youtu.be/cbEVbcsaGCs
https://youtu.be/XixEltbRmds
https://youtu.be/zIPzaQK2bfU
https://slack.openmainframeproject.org/
https://github.com/zowe/community/blob/master/README.md#slack
https://github.com/zowe/community/blob/master/README.md
https://lists.openmainframeproject.org/g/zowe-dev/calendar

Courses

Zowe Fundamentals

Interskill Learning offers a free training course that introduces the components that comprise Zowe and

the benefits of using Zowe and how its capabilities can be extended.

Trials

Zowe trial

The Zowe trial hosted by IBM is a fully configured z/OS environment with Zowe preinstalled and set up

along with a set of integrated easy-to-follow tutorials that walk you through the basics of Zowe and

gives you hands-on experience of extending Zowe. This no-charge trial is available in two hours for

three days.

Get started with the Zowe Web UI

This online tutorial hosted by IBM guides you to add new apps to the Zowe Web UI. It provides a public

hosted Zowe instance that allows you to perform the steps in a z/OS environment.

https://interskill.com/course/zowe-training/
https://www.openmainframeproject.org/projects/zowe/ztrial
https://developer.ibm.com/components/ibmz/tutorials/zowe-step-by-step-tutorial/

Version: v2.2.x LTS

Overview

The installation of Zowe™ consists of the following processes:

installation of the Zowe server components.

You can install the components either on z/OS only or you can install the components both on z/OS and

on Docker.

installation of Zowe CLI on a desktop computer.

The Zowe server components provide a web desktop that runs a number of applications such as API

Mediation Layer that includes the Single Sign-on (SSO) capability, organization of the multiple Zowe servers

under a single website, and other useful features for z/OS developers.

Because Zowe is a set of components, before installing Zowe, use this guide to determine which

components you want to install and where you want to install them.

Consider the following scenarios:

If you plan to use Zowe CLI on PC only, you may not need to install the Zowe server components.

Note: Some CLI plug-ins require the installation of components on z/OS. If you plan to use core Zowe

CLI groups from your PC, the z/OS you connect to does not require any components of Zowe to be

installed on z/OS, unless you want to take advantage of advanced authentication methods such as

single sign-on or multi-factor authentication.

If you use the Docker technical preview to run the Linux parts of Zowe in a container, you only need to

configure the Zowe z/OS component to start the ZSS server.

Version: v2.2.x LTS

Installation roadmap

When you install Zowe™ on z/OS, you install the following two parts:

�. The Zowe runtime, which consists of a number of components including:

Zowe Application Framework

Zowe API Mediation Layer

Z Secure Services (ZSS)

�. The Zowe Cross Memory Server, also known as ZIS, which is an APF authorized server application that

provides privileged services to Zowe in a secure manner.

Zowe provides the ability for some of its unix components to be run not under USS, but as a container, see

Installing Zowe Containers.

If you want to configure Zowe for high availability, see High Availability overview for instructions.

Stage 1: Plan and prepare

Before you start the installation, review the information on hardware and software requirements and other

considerations. See Planning the installation for details.

Stage 2: Install the Zowe z/OS runtime

�. Ensure that the software requirements are met. The prerequisites are described in System

requirements.

�. Choose the method of installing Zowe on z/OS.

The Zowe z/OS binaries are distributed in the following formats. They contain the same contents but

you install them by using different methods. You can choose which method to use depending on your

needs.

Convenience build

https://docs.zowe.org/v2.2.x/user-guide/k8s-introduction
https://docs.zowe.org/v2.2.x/user-guide/zowe-ha-overview
https://docs.zowe.org/v2.2.x/user-guide/installandconfig
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zos

The Zowe z/OS binaries are packaged as a PAX file which is a full product install. Transfer this to a

USS directory and expand its contents. The command zwe install will extract a number of

PDS members contain load modules, JCL scripts, and PARMLIB entries.

SMP/E build

The Zowe z/OS binaries are packaged as the following files that you can download. You install this

build through SMP/E.

A pax.Z file, which contains an archive (compressed copy) of the FMIDs to be installed.

A readme file, which contains a sample job to decompress the pax.Z file, transform it into a

format that SMP/E can process, and invoke SMP/E to extract and expand the compressed

SMP/E input data sets.

Portable Software Instance (PSWI)

You can acquire and install the Zowe z/OS PAX file as a portable software instance (PSWI) using

z/OSMF.

While the procedures to obtain and install the convenience build, SMP/E build or PSWI are different, the

procedure to configure a Zowe runtime is the same irrespective of how the build is obtained and

installed.

�. Obtain and install the Zowe build.

For how to obtain the convenience build and install it, see Installing Zowe runtime from a

convenience build.

For how to obtain the SMP/E build and install it, see Installing Zowe SMP/E.

For how to obtain the PSWI and install it, see Installing Zowe from a Portable Software Instance.

After successful installation of either a convenience build or an SMP/E build, there will be a zFS folder that

contains the unconfigured Zowe runtime directory, a utility library SZWEEXEC that contains utilities, a

SAMPLIB library SZWESAMP that contains sample members, and a load library SZWEAUTH that contains

load modules. The steps to prepare the z/OS environment to launch Zowe are the same irrespective of the

installation method.

Stage 3: Configure the Zowe z/OS runtime

You can configure the Zowe runtime with one of the following methods depending on your needs.

https://docs.zowe.org/v2.2.x/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/v2.2.x/user-guide/install-zowe-smpe
https://docs.zowe.org/v2.2.x/user-guide/install-zowe-pswi

Use a combination of JCL and the zwe init command

Use z/OSMF Workflows

Tip: We recommend you open the links to this configuration procedure in new tabs.

Whether you have obtained Zowe from a .pax convenience build, or an SMP/E distribution, the steps to

initialize the system are the same.

�. Prepare custom MVS data sets. Copy the data sets provided with Zowe to custom data sets.

�. (Required only if you are configuring Zowe for cross LPAR sysplex high availability): Create the VSAM

data sets used by the Zowe API Mediation Layer caching service.

�. APF authorize load libraries containing the modules that need to perform z/OS priviledged security

calls..

�. Initialize Zowe security configurations. Create the user IDs and security manager settings.

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2 you can skip

this security configuration step unless told otherwise in the release documentation.

�. Configure Zowe to use TLS certificates.

�. Install Zowe main started tassks.

Looking for troubleshooting help?

If you encounter unexpected behavior when installing or verifying the Zowe runtime on z/OS, see the

Troubleshooting section for tips.

https://docs.zowe.org/v2.2.x/user-guide/initialize-mvs-datasets
https://docs.zowe.org/v2.2.x/user-guide/initialize-vsam-dataset
https://docs.zowe.org/v2.2.x/user-guide/apf-authorize-load-library
https://docs.zowe.org/v2.2.x/user-guide/initialize-security-configuration
https://docs.zowe.org/v2.2.x/user-guide/install-stc-members
https://docs.zowe.org/v2.2.x/troubleshoot/troubleshooting

Version: v2.2.x LTS

Planning the installation

The following information is required during the Zowe installation process. Software and hardware

prerequisites are covered in the next section.

The zFS directory where you will install the Zowe runtime files and folders. For more details of setting up

and configuring the UNIX Systems Services (USS) environment, see UNIX System Services

considerations for Zowe.

A HLQ that the installation can create a load library and samplib containing load modules and JCL

samples required to run Zowe.

Multiple instances of Zowe can be started from the same Zowe z/OS runtime. Each launch of Zowe has

its own configuration, usually mentioned as Zowe YAML configuration file or zowe.yaml, and zFS

directory that is known as a workspace directory.

For Zowe in a high availability configuration, there will be only one workspace directory which must be

created on a shared file system (zFS directory) where all LPARs in a Sysplex can access.

(If not using containerization) Zowe optionally uses a zFS directory to contain its northbound certificate

keys as well as a truststore for its southbound keys if the administrator chooses to use PKCS#12

keystore for certificate storage. Northbound keys are one presented to clients of the Zowe desktop or

Zowe API Gateway, and southbound keys are for servers that the Zowe API gateway connects to. The

certificate directory is not part of the Zowe runtime so that it can be shared between multiple Zowe

runtimes and have its permissions secured independently.

Zowe has the following started tasks:

ZWESISTC is a cross memory server that the Zowe desktop uses to perform APF-authorized

code. More details on the cross memory server are described in Configuring the Zowe cross

memory server.

ZWESASTC is a cross memory Auxiliary server that is used under some situations in support of a

Zowe extension. Auxiliary server is started, controlled, and stopped by the cross memory server, so

no need to start it manually. More details are described in Zowe auxiliary service

ZWESLSTC brings up other parts of the Zowe runtime on z/OS as requested. This may include

Desktop, API mediation layer, ZSS, and more, but when using containerization likely only ZSS will

https://docs.zowe.org/v2.2.x/user-guide/configure-uss
https://docs.zowe.org/v2.2.x/user-guide/configure-xmem-server
https://docs.zowe.org/v2.2.x/user-guide/configure-xmem-server

be used here. It can be used for a single Zowe instance deployment and can also be used for Zowe

high availability deployment in Sysplex. It brings up and stops Zowe instances, or specific Zowe

components without restarting the entire Zowe instances.

In order for above started tasks to run correctly, security manager configuration needs to be

performed. This is documented in Configuring the z/OS system for Zowe and a sample JCL

member ZWESECUR is shipped with Zowe that contains commands for RACF, TopSecret, and

ACF2 security managers.

Notes:

To start the API Mediation Layer as a standalone component, see API Mediation Layer as a

standalone component.

If you plan to use API ML with basic authentication and JSON web token authentication, you need

to run only ZWESLSTC . No need to run ZWESISTC and ZWESASTC .

If you plan to use API ML with x509 client-side certificate authentication, you need to run

ZWESISTC and ZWESLSTC .

Topology of the Zowe z/OS launch process

Runtime directory

The runtime directory contains the binaries and executable files. You can create a runtime directory in one of

the following ways:

Create a directory and extract Zowe convenience build into it.

Installing the Zowe SMP/E FMID AZWE002 using the JCL members in the REL4 member.

Executing the z/OSMF worklow script ZWERF01 contained in the SMP/E FMID AZWE002.

During execution of Zowe, the runtime directory contents are not modified. Maintenance or APAR release for

Zowe replaces the contents of the runtime directory and are rollup PTFs.

A typical Zowe runtime directory looks like this:

zwe server command

https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system
https://docs.zowe.org/v2.2.x/user-guide/api-mediation-standalone

The zwe command is provided in the <RUNTIME_DIR>/bin directory. You can use this command and

sub-commands to initialize Zowe, manage Zowe instances and fulfill common tasks.

The zwe command has built in help that can be retrieved with the -h suffix. For example, type zwe -h

to display all of the supported commands. These are broken down into a number of sub-commands.

Other useful global parameters are:

--debug or -v to enable verbose mode.

--trace or -vv to enable trace mode for current command.

--log-dir or -l to also write output to log files.

Add the zwe command to your PATH

You can add this Zowe bin directory to your PATH environment variable so you can execute the zwe

command without having to fully qualify its location. To update your PATH, run the following command:

This will update the PATH for the current shell. To make this update persistent, you can add the line to your

~/.profile file, or the ~/.bashProfile file if you are using a bash shell. To make this update system

wide, you can update the /etc/.profile file. Once the PATH is updated, you can execute the zwe

command from any USS directory. For the remainder of the documentation when zwe command is

referenced, it is assumed that it has been added to your PATH .

z/OS Data sets used by Zowe

After Zowe is properly installed, you should have these data sets created on z/OS under the prefix you

defined:

<prefix>.SZWEAUTH contains few Zowe component programs to start Zowe and ZSS.

<prefix>.SZWEEXEC contains few utility executables will be used by Zowe.

<prefix>.SZWESAMP contains sample JCLs to help you configure or start Zowe.

If you install Zowe with convenience build, these data sets will be created by zwe install command. If

you install Zowe with SMPE or equivalent methods, these data sets will be created during install and you are

not required to run zwe install command. The above data sets will be overwritten during upgrade

process.

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-install

Zowe configuration and runtime also use few other data sets to store customization. These data sets will not

be overwritten during upgrade.

zowe.setup.datasets.parmlib defined in Zowe configuration, which contains user customized

PARMLIB members.

zowe.setup.datasets.jcllib defined in Zowe configuration, which contains user customized

JCLs or JCLs generated by zwe init command.

zowe.setup.datasets.authLoadlib defined in Zowe configuration is optional. If the user choose

to copy out load libraries from <prefix>.SZWEAUTH , they will be placed here. With this option, you

have better control on what will be APF authorized other than authorize whole <prefix>.SZWEAUTH .

zowe.setup.datasets.authPluginLib defined in Zowe configuration contains extra load libraries

used by ZIS plugins.

Zowe configuration file

Zowe uses a YAML format configuration. If you store the configuration on USS, this file is usually referred as

zowe.yaml .

This configuration file can be placed on a location with these requirements:

Zowe runtime user, usually referred as ZWESVUSR , must have read permission to this file.

If you plan to run Zowe in Sysplex, all Zowe high availability instances must share the same

configuration file. That means this configuration file should be placed in a shared file system (zFS

directory) where all LPARs in a Sysplex can access.

Zowe configuration file may contain sensitive configuration information so it should be protected

against malicious accessing.

To create this configuration, you can copy from example-zowe.yaml located in Zowe runtime directory.

Please be aware of the zowe.runtimeDirectory definition in the configuration file, it should match the

Zowe runtime directory mentioned above.

To learn more about this configuration, please check Zowe YAML configuration file reference.

When you execute the zwe command, the --config or -c argument is used to pass the location of a

zowe.yaml file.

TIP

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zowe-yaml-configuration

To avoid passing --config or -c to every zwe commands, you can define

ZWE_CLI_PARAMETER_CONFIG environment variable points to location of zowe.yaml.

For example, after defining export ZWE_CLI_PARAMETER_CONFIG=/path/to/my/zowe.yaml ,

you can simply type zwe start instead of full command zwe start -c

/path/to/my/zowe.yaml .

TIP

If you are new to the example-zowe.yaml configuration file, you can start with entries that are

marked with COMMONLY_CUSTOMIZED . It highlights most of the common configurations, such as

directories, host and domain name, service ports, certificate setup, and z/OSMF, which are critical for

standing a new Zowe instance.

Workspace directory

The workspace directory is required to launch Zowe. It is automatically created when you start Zowe. More

than one workspace directory can be created and used to launch multiple instances of Zowe sharing the

same runtime directory. It's not recommended to create workspace directory manually in order to avoid

permission conflicts.

Zowe instances are started by running the server command zwe start . This creates a started task with

the PROCLIB member ZWESLSTC that is provided with the samplib SZWESAMP created during the

installation of Zowe. The JCL member ZWESLSTC starts Zowe launcher under which it launches Zowe

components address spaces.

Zowe enables read and write permission to both Zowe runtime user (ZWESVUSR by default) and Zowe

admin group (ZWEADMIN by default) for Zowe workspace directory.

If you plan to run Zowe in Sysplex, all Zowe high availability instances must share the same workspace

directory, which means it should be placed in a shared file system (zFS directory) where all LPARs in a

Sysplex can access.

The workspace directory should be defined in your Zowe configuration file as

zowe.workspaceDirectory .

Log directory

Some Zowe components will write logs to file system. The directory will be created automatically when you

start Zowe and the content will be automatically managed by Zowe components. It's not recommended to

create log directory manually in order to avoid permission conflicts.

Multiple Zowe instances can define different log directories, they are not necessary to be shared in Sysplex

deployment like workspace directory.

The log directory should be defined in your Zowe configuration file as zowe.logDirectory .

Keystore directory

Zowe uses certificates to enable transport layer security. The system administrator can choose to use z/OS

Keyring or PKCS#12 keystore for certificate storage. A keystore directory will be created and used if

PKCS#12 keystore is chosen.

A typical PKCS#12 keystore directory looks like:

To generate keystore directory, you need proper zowe.setup.certificate configuration defined in

Zowe configuration file and then execute server command zwe init certificate . To learn more about

this command, check Reference of zwe init certificate.

Extension directory

Zowe allows server extensions to expand its core functionalities. The extensions are required to be installed

in a central location so Zowe runtime can find and recognize them.

Similar to Zowe runtime directory, this extension directory should be created by the administrators perform

Zowe installation and configuration task. Zowe runtime user, typically ZWESVUSR requires read-only

permission to this directory.

The extension directory should be created by system administrator and defined in your Zowe configuration

file as zowe.extensionDirectory .

Zowe uses zwe components install command to install Zowe server extensions. This command will

create sub-directories or symbolic links under the extension directory.

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install

Version: v2.2.x LTS

UNIX System Services considerations for
Zowe

The Zowe z/OS component runtime requires USS to be configured. As shown in the Zowe architecture, a

number of servers run under UNIX System Services (USS) on z/OS. Review this topic for knowledge and

considerations about USS when you install and configure Zowe.

Introduction

Setting up USS for the first time

Language environment

OMVS segment

Address space region size

What is USS?

The UNIX System Services element of z/OS® is a UNIX operating environment, which is implemented within

the z/OS operating system. It is also known as z/OS UNIX. z/OS UNIX files are organized in a hierarchy, as in

a UNIX system. All files are members of a directory, and each directory in turn is a member of another

directory at a higher level in the hierarchy. The highest level of the hierarchy is the root directory. The z/OS

UNIX files system is also known as zFS.

For more information on USS, see the following resources:

Introduction to z/OS UNIX for z/OS 2.2

Introduction to z/OS UNIX for z/OS 2.3

Introduction to z/OS UNIX for z/OS 2.4

Setting up USS for the first time

If you have not enabled USS for your z/OS environment before, the SMP/E distribution of Zowe provides a

number of JCL jobs to assist with this purpose. You can consult with your USS administrator if you need

more information such as the USS file system.

https://docs.zowe.org/v2.2.x/getting-started/zowe-architecture
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxb200/int.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/int.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.bpxb200/int.htm

Language environment

To ensure that Zowe has enough memory, the recommended HEAP64 site should be large enough.

OMVS segment

Users who install Zowe to run Zowe scripts need to have an OMVS segment. If the user profile doesn't have

OMVS segment, the following situations might occur:

When you access USS through TSO OMVS, you will see the following message:

When you access USS through SSH, you will see the following message:

Address space region size

Java as a prerequisite for Zowe requires a suitable z/OS region size to operate successfully while you install

and configure Zowe. It is suggested that you do not restrict the region size, but allow Java to use what is

necessary. Restricting the region size might cause failures with storage-related error messages such as the

following one:

You can fix the storage-related issue by making one of the following changes:

ASSIZEMAX parameter

The ASSIZEMAX parameter is the maximum size of the process's virtual memory (address space) in

bytes.

To specify the JVM maximum address space size on a per-user basis, set the ASSIZEMAX configuration

parameter to the value of 2147483647 .

Note: Running a shell script via TSO OMVS will run the shell in the TSO address space, unless you

specify _BPX_SHAREAS=NO when invoking OMVS. If you are using TSO OMVS to install Zowe, you will

need export _BPX_SHAREAS=NO to make the ASSIZEMAX change effective.

SIZE parameter of TSO segment

Set SIZE operand of TSO segment to the value of 2096128 .

Note: If you set export _BPX_SHAREAS=YES in your shell setup as recommended, Java will run in

the TSO address space and the SIZE change will work.

ulimit -A

The maximum address space size for the process should be at least 250 M, in units of 1024 bytes. For

example, ulimit -A 250000 .

Note: Running ulimit -a displays the current process limits.

Version: v2.2.x LTS

System requirements

Before installing Zowe™ z/OS components, ensure that your z/OS environment meets the prerequisites. The

prerequisites you need to install depend on what Zowe z/OS components you want to use and how you want

to install and configure Zowe on z/OS. Therefore, assess your installation scenario and install the

prerequisites that meet your needs.

All Zowe server components can be installed on a z/OS environment, while some can alternatively be

installed on Linux or zLinux via Docker. The components provide a number of services that are accessed

through a web browser such as an API catalog and a web desktop.

z/OS system requirements

z/OS

Node.js

Java

z/OSMF (Optional)

User ID requirements

ZWESVUSR

ZWESIUSR

ZWEADMIN

zowe_user

Network requirements

Zowe Containers requirements

Zowe Desktop requirements (client PC)

Feature requirements

Multi-Factor Authentication MFA

Single Sign-On SSO

Memory requirements

z/OS system requirements

Be sure your z/OS system meets the following prerequisites.

z/OS

z/OS version in active support, such as Version 2.3 and Version 2.4

Note: z/OS V2.2 reached end of support on 30 September 2020. For more information, see the z/OS

v2.2 lifecycle details https://www.ibm.com/support/lifecycle/details?q45=Z497063S01245B61.

zFS volume with at least 833 mb of free space for Zowe server components, their keystore, instance

configuration files and logs, and third-party plug-ins.

(Optional, recommended) z/OS OpenSSH V2.2.0 or later

Some features of Zowe require SSH, such as the Desktop's SSH terminal. Or, you want to install and

manage Zowe via SSH, as an alternative to OMVS over TN3270.

(Optional, recommended) Parallel Sysplex.

To deploy Zowe for high availability, a Parallel Sysplex environment is recommended. Please check

Configuring Sysplex for high availability for more information.

Node.js

Node.js v14.x (except v14.17.2) or v16.x

Node is not included with z/OS so must be installed separately. To install Node.js on z/OS, follow the

instructions in Installing Node.js on z/OS.

Note: If you are a software vendor building extensions for Zowe, when using Node.js v14.x or later, it is

highly recommended that plug-ins used are tagged. For more information, see Tagging on z/OS.

Java

IBM SDK for Java Technology Edition V8

z/OSMF (Optional)

(Optional, recommended) IBM z/OS Management Facility (z/OSMF) Version 2.2, Version 2.3 or Version

2.4.

z/OSMF is included with z/OS so does not need to be separately installed. If z/OSMF is present, Zowe

will detect this when it is configured and use z/OSMF for the following purposes:

https://www.ibm.com/support/lifecycle/details?q45=Z497063S01245B61
https://docs.zowe.org/v2.2.x/user-guide/configure-sysplex
https://docs.zowe.org/v2.2.x/user-guide/install-nodejs-zos
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-buildingplugins#tagging-plugin-files-on-z-os

Authenticating TSO users and generating a single sign-on JSON Web Token (JWT). Ensure that the

z/OSMF JWT Support is available via APAR and associated PTFs. If z/OSMF is not available, then

Zowe is still able to provide SSO by generating its own JWT and making direct SAF calls.

REST API services for Files (Data Sets and USS), JES, and z/OSMF workflows. These are used by

some Zowe applications such as the Zowe Explorers in the Zowe Desktop. If z/OSMF REST APIs are

not present, other Zowe desktop application, such as the File Editor that provides access to USS

directories and files as well as MVS data sets and members, will work through the Zowe Z Secure

Services (ZSS) component to access z/OS resources.

Tips:

For non-production use of Zowe (such as development, proof-of-concept, demo), you can

customize the configuration of z/OSMF to create what is known as "z/OS MF Lite" that simplifies

the setup of z/OSMF. As z/OS MF Lite only supports selected REST services (JES, DataSet/File,

TSO and Workflow), you will observe considerable improvements in startup time as well as a

reduction in the efforts involved in setting up z/OSMF. For information about how to set up z/OSMF

Lite, see Configuring z/OSMF Lite (non-production environment).

For production use of Zowe, see Configuring z/OSMF.

User ID requirements

Specific user IDs with sufficient permissions are required to run or access Zowe.

ZWESVUSR

This is a started task ID for ZWESLSTC .

The task starts a USS environment using BPXBATSL that executes the core Zowe Desktop (ZLUX) node.js

server, the Java API Mediation Layer, and the Z Secure Services C component. To work with USS, the user ID

ZWESVUSR must have a valid OMVS segment.

Class ID Access Reason

https://www.ibm.com/support/pages/apar/PH12143
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zosmf-lite
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zosmf

Class ID Access Reason

CSFSERV Multiple READ

To generate symmetric keys using ICSF that is

used by Zowe Desktop cookies. The list of IDs

to enable will include CSF1TRD , CSF1TRC ,

CSF1SKE , CSF1SKD . The full list of IDs is

described in the z/OS Cryptographic Services

user guide for your z/OS release level: 2.2, 2.3,

2.4 and 2.5.

FACILITY ZWES.IS READ
To allow Zowe ZWESVSTC processes to access

the Zowe ZIS cross memory server

FACILITY
BPX.SERVER +

BPX.DAEMON
UPDATE

To allow the Zowe Desktop ZLUX server to run

code on behalf of the API requester's TSO user

ID. For more information, see Security

Environment Switching.

FACILITY IRR.RUSERMAP READ
To allow Zowe to map an X.509 client certificate

to a z/OS identity

FACILITY BPX.JOBNAME READ

To allow z/OS address spaces for unix

processes to be renamed for ease of

identification

FACILITY IRR.RADMIN.LISTUSER READ

To allow Zowe to obtain information about

OMVS segment of the user profile using

LISTUSER TSO command

APPL 'OMVSAPPL' READ
Optional To allow Zowe Desktop vendor

extensions the ability to use single-sign on.

ZWESIUSR

This is a started task ID used to run the PROCLIB ZWESISTC that launches the cross memory server (also

known as ZIS). It must have a valid OMVS segment.

https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://www.ibm.com/docs/en/zos/2.2.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.3.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.4.0?topic=ssl-racf-csfserv-resource-requirements
https://www.ibm.com/docs/en/zos/2.5.0?topic=ssl-racf-csfserv-resource-requirements
https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system#configure-security-environment-switching
https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system#configure-main-zowe-server-to-use-identity-mapping
https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system#configure-address-space-job-naming
https://docs.zowe.org/v2.2.x/user-guide/configure-xmem-server

ZWEADMIN

This is a group that ZWESVUSR and ZWESIUSR should belong to. It must have a valid OMVS segment.

zowe_user

If z/OSMF is used for authentication and serving REST APIs for Zowe CLI and Zowe Explorer users, the TSO

user ID for end users must belong to one or both of the groups IZUUSER or IZUADMIN .

Network requirements

The following ports are required for Zowe. These are default values. You can change the values by updating

variable values in the zowe.yaml file.

Port

number
zowe.yaml variable name Purpose

7552
zowe.components.api-

catalog.port

Used to view API swagger / openAPI specifications for

registered API services in the API Catalog.

7553
zowe.components.api-

catalog.port

Discovery server port which dynamic API services can

issue APIs to register or unregister themselves.

7554 zowe.components.gateway.port

The northbound edge of the API Gateway used to

accept client requests before routing them to registered

API services. This port must be exposed outside the

z/OS network so clients (web browsers, VS Code,

processes running the Zowe CLI) can reach the gateway.

7555
zowe.components.caching-

service.port

Port of the caching service that is used to share state

between different Zowe instances in a high availability

topology.

7556
zowe.components.app-

server.port

The Zowe Desktop (also known as ZLUX) port used to

log in through web browsers.

Port

number
zowe.yaml variable name Purpose

7557 zowe.components.zss.port

Z Secure Services (ZSS) provides REST API services to

ZLUX, used by the File Editor application and other ZLUX

applications in the Zowe Desktop.

7558 zowe.components.jobs-api.port
Port of the service that provides REST APIs to z/OS jobs

used by the JES Explorer.

7559 zowe.components.files-api.port
Port of the service that provides REST APIs to MVS and

USS file systems.

zowe.components.explorer-jes
Port of the JES Explorer GUI for viewing and working

with jobs in the Zowe Desktop.

zowe.components.explorer-

mvs

Port of the MVS Explorer GUI for working with data sets

in the Zowe Desktop.

zowe.components.explorer-uss
Port of the USS Explorer GUI for working with USS in the

Zowe Desktop.

Zowe Containers requirements

Zowe (server) containers are available for download as an alternative to running Zowe servers on z/OS

through the Zowe convenience and SMP/E builds Check Zowe Containers Prerequisites page for more

details.

Zowe Desktop requirements (client PC)

The Zowe Desktop is powered by the Application Framework which has server prereqs depending on where

it is installed

Zowe Application Framework on z/OS requirements

Application Framework on Docker prerequisites

https://docs.zowe.org/v2.2.x/user-guide/k8s-prereqs

The Zowe Desktop runs inside of a browser. No browser extensions or plugins are required. The Zowe

Desktop supports Google Chrome, Mozilla Firefox, Apple Safari and Microsoft Edge releases that are at most

1 year old, except when the newest release is older. For Firefox, both the regular and Extended Support

Release (ESR) versions are supported under this rule.

Currently, the following browsers are supported:

Google Chrome V79 or later

Mozilla Firefox V68 or later

Safari V13 or later

Microsoft Edge 79

If you do not see your browser listed here, please contact the Zowe community so that it can be validated

and included.

Feature requirements

Zowe has several optional features that have additional prerequisites as follows.

Multi-Factor Authentication (MFA)

Multi-factor authentication is supported for several components, such as the Desktop and API Mediation

Layer. Multi-factor authentication is provided by third-party products which Zowe is compatible with. The

following are known to work:

IBM Z Multi-Factor Authentication.

Note: To support the multi-factor authentication, it is necessary to apply z/OSMF APAR PH39582.

For information on using MFA in Zowe, see Multi-Factor Authentication.

Note: MFA must work with Single sign-on (SSO). Make sure that SSO is configured before you use MFA in

Zowe.

Single Sign-On (SSO)

Zowe has an SSO scheme with the goal that each time you use multiple Zowe components you should only

be prompted to login once.

https://www.ibm.com/us-en/marketplace/ibm-multifactor-authentication-for-zos
https://www.ibm.com/support/pages/apar/PH39582
https://docs.zowe.org/v2.2.x/user-guide/mvd-configuration#multi-factor-authentication-configuration

Requirements:

IBM z/OS Management Facility (z/OSMF)

Memory requirements

Zowe API ML components have following memory requiremets:

Component name Memory usage

Gateway service 256MB

Discovery service 256MB

API Catalog 512MB

Metrics service 512MB

Caching service 512MB

Version: v2.2.x LTS

Installing Node.js on z/OS

Note: This section is not required if using Docker or only using the CLI.

Before you install Zowe™ on z/OS, you must install IBM SDK for Node.js on the same z/OS server that hosts

the Zowe Application Server and z/OS Explorer Services. Review the information in this topic to obtain and

install Node.js.

Supported Node.js versions

How to obtain IBM SDK for Node.js - z/OS

Hardware and software prerequisites

Installing the PAX edition of Node.js - z/OS

Installing the SMP/E edition of Node.js - z/OS

Supported Node.js versions

The following Node.js versions are supported to run Zowe. See the Hardware and software prerequisites

section for the prerequisites that are required by Zowe.

The corresponding IBM SDK for Node.js - z/OS documentation lists all the prerequisites for Node.js. Some

software packages, which might be listed as prerequisites there, are NOT required by Zowe. Specifically, you

do NOT need to install Python, Make, Perl, or C/C++ runtime or compiler. If you can run node --version

successfully, you have installed the prerequisites required by Zowe.

Notice: IBM SDK for node.js had withdrawn v12 from marketing on September 6, 2021 and ended v12

service on September 30, 2022.

v14.x (except v14.17.2)

z/OS V2R3: PTFs UI61308, UI61375, UI61747 (APARs PH07107, PH08352, PH09543)

z/OS V2R4: PTFs UI64830, UI64837, UI64839, UI64940, UI65567 (APARs PH14560, PH15674,

PH14559, PH16038, PH17481)

Known issue: There is a known issue with node.js v14.17.2. It will cause the error of ZWESLSTC

not found in "<dsn-prefix>.SZWESAMP" when you run the zowe-install-proc.sh

https://www.ibm.com/docs/en/sdk-nodejs-zos
https://www-01.ibm.com/support/docview.wss?uid=isg1PH07107
https://www-01.ibm.com/support/docview.wss?uid=swg1PH08352
https://www-01.ibm.com/support/docview.wss?uid=swg1PH09543
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH15674
https://www.ibm.com/support/pages/apar/PH14559
https://www.ibm.com/support/pages/apar/PH16038
https://www.ibm.com/support/pages/apar/PH17481

utility.

v16.x

z/OS V2R4: PTFs UI64830, UI64837, UI64839, UI64940, UI65567.

z/OS V2R5: PTFs UI64830, UI64837,UI64940.

How to obtain IBM SDK for Node.js - z/OS

You can obtain IBM SDK for Node.js - z/OS for free in one of the following ways:

Use the PAX edition for non-production deployments which you can download from

ibm.com/products/sdk-nodejs-compiler-zos.

Order the SMP/E edition through your IBM representative for production use.

For more information, see the blog "How to obtain IBM SDK for Node.js - z/OS, at no charge".

Hardware and software prerequisites

To install Node.js for Zowe, the following requirements must be met.

The corresponding IBM SDK for Node.js - z/OS documentation lists all the prerequisites for Node.js. Some

software packages, which might be listed as prerequisites there, are NOT required by Zowe. Specifically, you

do NOT need to install Python, Make, Perl, or C/C++ runtime or compiler.

If you can run node --version successfully, you have installed the Node.js prerequisites required by

Zowe.

Hardware:

IBM zEnterprise® 196 (z196) or newer

Software:

z/OS UNIX System Services enabled

Integrated Cryptographic Service Facility (ICSF) configured and started

https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH14559
https://www.ibm.com/support/pages/apar/PH16038
https://www.ibm.com/support/pages/apar/PH17481
https://www.ibm.com/support/pages/apar/PH14560
https://www.ibm.com/support/pages/apar/PH15674
https://www.ibm.com/support/pages/apar/PH16038
https://www.ibm.com/products/sdk-nodejs-compiler-zos
https://developer.ibm.com/mainframe/2019/04/17/ibm-sdk-for-node-js-z-os-at-no-charge/
https://www.ibm.com/docs/en/sdk-nodejs-zos

ICSF is required for Node.js to operate successfully on z/OS. If you have not configured your z/OS

environment for ICSF, see Cryptographic Services ICSF: System Programmer's Guide. To see whether

ICSF has been started, check whether the started task ICSF or CSF is active.

Installing the PAX edition of Node.js - z/OS

Follow these steps to install the PAX edition of Node.js - z/OS to run Zowe.

�. Download the pax.Z file to a z/OS machine.

�. Extract the pax.Z file inside an installation directory of your choice. For example:

pax -rf <path_to_pax.Z_file> -x pax

�. Add the full path of your installation directory to your PATH environment variable:

�. Run the following command from the command line to verify the installation.

If Node.js is installed correctly, the version of Node.js is displayed.

�. After you install Node.js, set the NODE_HOME environment variable to the directory where Node.js is

installed. For example, NODE_HOME=/proj/mvd/node/installs/node-v6.14.4-os390-s390x .

Installing the SMP/E edition of Node.js - z/OS

To install the SMP/E edition of Node.js, see the documentation for IBM SDK for Node.js - z/OS. Remember

that the software packages Perl, Python, Make, or C/C++ runtime or compiler that the Node.js

documentation might mention are NOT needed by Zowe.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/abstract.htm
https://www.ibm.com/docs/en/sdk-nodejs-zos

Version: v2.2.x LTS

Configuring z/OSMF

The following information contains procedures and tips for meeting z/OSMF requirements. For complete

information, go to IBM Knowledge Center and read the following documents.

IBM z/OS Management Facility Configuration Guide

IBM z/OS Management Facility Help

z/OS requirements for z/OSMF configuration

Ensure that the z/OS system meets the following requirements:

Requirements Description

Resources in

IBM

Knowledge

Center

AXR (System

REXX)

z/OS uses AXR (System REXX) component to perform Incident Log

tasks. The component enables REXX executable files to run outside

of conventional TSO and batch environments.

System REXX

Common

Event Adapter

(CEA) server

The CEA server, which is a co-requisite of the Common Information

Model (CIM) server, enables the ability for z/OSMF to deliver z/OS

events to C-language clients.

Customizing

for CEA

Common

Information

Model (CIM)

server

z/OSMF uses the CIM server to perform capacity-provisioning and

workload-management tasks. Start the CIM server before you start

z/OSMF (the IZU* started tasks).

Reviewing

your CIM

server setup

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3/en/homepage.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_PartConfiguring.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izu/izu.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieaa800/systemrexx.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.e0zb100/custcea.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm

Requirements Description

Resources in

IBM

Knowledge

Center

CONSOLE and

CONSPROF

commands

The CONSOLE and CONSPROF commands must exist in the

authorized command table.

Customizing

the

CONSOLE

and

CONSPROF

commands

Java level
IBM® 64-bit SDK for z/OS®, Java Technology Edition V8 or later is

required.

Software

prerequisites

for z/OSMF

TSO region

size

To prevent exceeds maximum region size errors, verify that the

TSO maximum region size is a minimum of 65536 KB for the z/OS

system.

N/A

User IDs

User IDs require a TSO segment (access) and an OMVS segment.

During workflow processing and REST API requests, z/OSMF might

start one or more TSO address spaces under the following job

names: userid; substr(userid, 1, 6) CN (Console).

N/A

Configuring z/OSMF

Follow these steps:

�. From the console, issue the following command to verify the version of z/OS:

Part of the output contains the release, for example,

�. Configure z/OSMF.

z/OSMF is a base element of z/OS V2.2 and V2.3, so it is already installed. But it might not be configured

and running on every z/OS V2.2 and V2.3 system.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.ikjb400/consol.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_SoftwarePrereqs.htm

In short, to configure an instance of z/OSMF, run the IBM-supplied jobs IZUSEC and IZUMKFS, and then

start the z/OSMF server. The z/OSMF configuration process occurs in three stages, and in the following

order:

Stage 1 - Security setup

Stage 2 - Configuration

Stage 3 - Server initialization

This stage sequence is critical to a successful configuration. For complete information about how

to configure z/OSMF, see Configuring z/OSMF for the first time if you use z/OS V2.2 or Setting up

z/OSMF for the first time if V2.3.

Note: In z/OS V2.3, the base element z/OSMF is started by default at system initial program load (IPL).

Therefore, z/OSMF is available for use as soon as you set up the system. If you prefer not to start z/OSMF

automatically, disable the autostart function by checking for START commands for the z/OSMF started

procedures in the COMMNDxx parmlib member.

The z/OS Operator Consoles task is new in Version 2.3. Applications that depend on access to the operator

console such as Zowe™ CLI's RestConsoles API require Version 2.3.

�. Verify that the z/OSMF server and angel processes are running. From the command line, issue the

following command:

If jobs IZUANG1 and IZUSVR1 are not active, issue the following command to start the angel process:

After you see the message ""CWWKB0056I INITIALIZATION COMPLETE FOR ANGEL"", issue the

following command to start the server:

The server might take a few minutes to initialize. The z/OSMF server is available when the message

""CWWKF0011I: The server zosmfServer is ready to run a smarter planet."" is displayed.

�. Issue the following command to find the startup messages in the SDSF log of the z/OSMF server:

You could see a message similar to the following message, which indicates the port number:

In this example, the port number is 443. You will need this port number later.

Point your browser at the nominated z/OSMF STANDALONE Server home page and you should see its

Welcome Page where you can log in.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.izua300/IZUHPINFO_ConfiguringMain.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_ConfiguringMain.htm

Note: If your implementation uses an external security manager other than RACF (for example, Top Secret

for z/OS or ACF2 for z/OS), you provide equivalent commands for your environment. For more information,

see the following product documentation:

Configure z/OS Management Facility for Top Secret

Configure z/OS Management Facility for ACF2

z/OSMF REST services for the Zowe CLI

The Zowe CLI uses z/OSMF Representational State Transfer (REST) APIs to work with system resources and

extract system data. Ensure that the following REST services are configured and available.

z/OSMF

REST

services

Requirements

Resources in

IBM

knowledge

Center

Cloud

provisioning

services

Cloud provisioning services are required for the Zowe CLI CICS and

Db2 command groups. Endpoints begin with

/zosmf/provisioning/

Cloud

provisioning

services

TSO/E

address

space

services

TSO/E address space services are required to issue TSO commands in

the Zowe CLI. Endpoints begin with /zosmf/tsoApp

TSO/E

address

space

services

z/OS

console

services

z/OS console services are required to issue console commands in the

Zowe CLI. Endpoints begin with /zosmf/restconsoles/
z/OS console

services

z/OS data

set and file

REST

interface

z/OS data set and file REST interface is required to work with

mainframe data sets and UNIX System Services files in the Zowe CLI.

Endpoints begin with /zosmf/restfiles/

z/OS data set

and file REST

interface

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-top-secret.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-acf2.html
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_CloudProvSecuritySetup.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_TSOServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTCONSOLE.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTFILES.htm

z/OSMF

REST

services

Requirements

Resources in

IBM

knowledge

Center

z/OS jobs

REST

interface

z/OS jobs REST interface is required to use the zos-jobs command

group in the Zowe CLI. Endpoints begin with /zosmf/restjobs/

z/OS jobs

REST

interface

z/OSMF

workflow

services

z/OSMF workflow services is required to create and manage z/OSMF

workflows on a z/OS system. Endpoints begin with

/zosmf/workflow/

z/OSMF

workflow

services

Zowe uses symbolic links to the z/OSMF bootstrap.properties ,

jvm.security.override.properties , and ltpa.keys files. Zowe reuses SAF, SSL, and LTPA

configurations; therefore, they must be valid and complete.

For more information, see Using the z/OSMF REST services in IBM z/OSMF documentation.

To verify that z/OSMF REST services are configured correctly in your environment, enter the REST endpoint

into your browser. For example: https://mvs.ibm.com:443/zosmf/restjobs/jobs

Notes:

Browsing z/OSMF endpoints requests your user ID and password for defaultRealm; these are your TSO

user credentials.

The browser returns the status code 200 and a list of all jobs on the z/OS system. The list is in raw

JSON format.

Configuration of z/OSMF to properly work with API ML

There is an issue observed in z/OSMF which leads to a stuck JSON web token(JWT). It manifests as the

endpoint /zosmf/services/authenticate issuing a JWT with success RC that is not valid for API calls,

resulting in 401 response status code. This is a persistent condition. To get the token unstuck, perform a

logout with the LTPA token from the login request. This causes logins to start serving unique JWTs again.

Until this issue is properly fixed in z/OSMF, we propose a possible temporary workaround. Update z/OSMF

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/izuprog_API_WorkflowServices.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_RESTServices.htm
https://mvs.ibm.com/zosmf/restjobs/jobs

configuration with allowBasicAuthLookup="false" . After applying this change, each authentication

call results in generating a new JWT.

Version: v2.2.x LTS

Configuring z/OSMF Lite (for non-production
use)

This section provides information about requirements for z/OSMF Lite configuration.

Disclaimer: z/OSMF Lite can be used in a non-production environment such as development, proof-of-

concept, demo and so on. It is not for use in a production environment. To use z/OSMF in a production

environment, see Configuring z/OSMF.

Configuring z/OSMF Lite (for non-production use)

Introduction

Assumptions

Software Requirements

Minimum Java level

WebSphere® Liberty profile (z/OSMF V2R3 and later)

System settings

Web browser

Creating a z/OSMF nucleus on your system

Running job IZUNUSEC to create security

Before you begin

Procedure

Results

Common errors

Running job IZUMKFS to create the z/OSMF user file system

Before you begin

Procedure

Results

Common errors

Copying the IBM procedures into JES PROCLIB

Before you begin

Procedure

Results

https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zosmf

Common errors

Starting the z/OSMF server

Before you begin

Procedure

Results

Accessing the z/OSMF Welcome page

Before you begin

Procedure

Results

Common errors

Mounting the z/OSMF user file system at IPL time

Before you begin

Procedure

Results

Adding the required REST services

Enabling the z/OSMF JOB REST services

Procedure

Results

Common errors

Enabling the TSO REST services

Before you begin

Procedure

IZUTSSEC

Results

Enabling the z/OSMF data set and file REST services

Before you begin

Procedure

Results

Common errors

Enabling the z/OSMF Workflow REST services and Workflows task UI

Before you begin

Procedure

Results

Troubleshooting problems

Common problems and scenarios

System setup requirements not met

Tools and techniques for troubleshooting

Common messages

Appendix A. Creating an IZUPRMxx parmlib member

Appendix B. Modifying IZUSVR1 settings

Appendix C. Adding more users to z/OSMF

Before you Begin

Procedure

Results

Appendix A. Creating an IZUPRMxx parmlib member

Appendix B. Modifying IZUSVR1 settings

Appendix C. Adding more users to z/OSMF

Introduction

IBM® z/OS® Management Facility (z/OSMF) provides extensive system management functions in a task-

oriented, web browser-based user interface with integrated user assistance, so that you can more easily

manage the day-to-day operations and administration of your mainframe z/OS systems.

By following the steps in this guide, you can quickly enable z/OSMF on your z/OS system. This simplified

approach to set-up, known as "z/OSMF Lite", requires only a minimal amount of z/OS customization, but

provides the key functions that are required by many exploiters, such as the open mainframe project

(Zowe™).

A z/OSMF Lite configuration is applicable to any future expansions you make to z/OSMF, such as adding

more optional services and plug-ins.

It takes 2-3 hours to set up z/OSMF Lite. Some steps might require the assistance of your security

administrator.

For detailed information about various aspects of z/OSMF configuration such as enabling the optional plug-

ins and services, see the IBM publication z/OSMF Configuration Guide.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

Assumptions

This document is intended for a first time z/OSMF setup. If z/OSMF is already configured on your system,

you do not need to create a z/OSMF Lite configuration.

This document is designed for use with a single z/OS system, not a z/OS sysplex. If you plan to run z/OSMF

in a sysplex, see z/OSMF Configuration Guide for multi-system considerations.

It is assumed that a basic level of security for z/OSMF is sufficient on the z/OS system. IBM provides a

program, IZUNUSEC, to help you set up basic security for a z/OSMF Lite configuration.

System defaults are used for the z/OSMF environmental settings. Wherever possible, it is recommended that

you use the default values. If necessary, however, you can override the defaults by supplying an IZUPRMxx

member, as described in Appendix A. Creating an IZUPRMxx parmlib member.

It is recommended that you use the following procedures as provided by IBM:

Started procedures IZUSVR1 and IZUANG1

Logon procedure IZUFPROC

Information about installing these procedures is provided in Copying the IBM procedures into JES PROCLIB.

Software Requirements

Setting up z/OSMF Lite requires that you have access to a z/OS V2R2 system or later. Also, your z/OS

system must meet the following minimum software requirements:

Minimum Java level

WebSphere® Liberty profile (z/OSMF V2R3 and later)

System settings

Web browser

Minimum Java level

Java™ must be installed and operational on your z/OS system, at the required minimum level. See the table

that follows for the minimum level and default location. If you installed Java in another location, you must

specify the JAVA_HOME statement in your IZUPRMxx parmlib member, as described in Appendix A.

Creating an IZUPRMxx parmlib member.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

z/OS

Version
Minimum level of Java™

Recommended

level of Java
Default location

z/OS

V2R2

IBM® 64-bit SDK for z/OS®, Java

Technology Edition V7.1 (SR3), with

the PTFs for APAR PI71018 and APAR

PI71019 applied OR IBM® 64-bit SDK

for z/OS®, Java Technology Edition

V8, with the PTF for APAR PI72601

applied.

IBM® 64-bit SDK

for z/OS®, Java™

Technology

Edition, V8 SR6

(5655-DGH)

/usr/lpp/java/J7.1_64

z/OS

V2R3

IBM® 64-bit SDK for z/OS®, Java™

Technology Edition, V8 SR4 FP10

(5655-DGH)

IBM® 64-bit SDK

for z/OS®, Java™

Technology

Edition, V8 SR6

(5655-DGH)

/usr/lpp/java/J8.0_64

WebSphere® Liberty profile (z/OSMF V2R3 and later)

z/OSMF V2R3 uses the Liberty Profile that is supplied with z/OS, rather than its own copy of Liberty. The

WebSphere Liberty profile must be mounted on your z/OS system. The default mount point is:

/usr/lpp/liberty_zos . To determine whether WebSphere® Liberty profile is mounted, check for the

existence of the mount point directory on your z/OS system.

If WebSphere® Liberty profile is mounted at a non-default location, you need to specify the location in the

IZUSVR1 started procedure on the keyword WLPDIR=. For details, see Appendix B. Modifying IZUSVR1

settings.

Note: Whenever you apply PTFs for z/OSMF, you might be prompted to install outstanding WebSphere

Liberty service. It is recommended that you do so to maintain z/OSMF functionality.

System settings

Ensure that the z/OS host system meets the following requirements:

Port 443 (default port) is available for use.

The system host name is unique and maps to the system on which z/OSMF Lite will be configured.

Otherwise, you might encounter errors later in the process. If you encounter errors, see Troubleshooting

problems for the corrective actions to take.

Web browser

For the best results with z/OSMF, use one of the following web browsers on your workstation:

Microsoft Internet Explorer Version 11 or later

Microsoft Edge (Windows 10)

Mozilla Firefox ESR Version 52 or later.

To check your web browser's level, click About in the web browser.

Creating a z/OSMF nucleus on your system

The following system changes are described in this chapter:

Running job IZUNUSEC to create security

Running job IZUMKFS to create the z/OSMF user file system

Copying the IBM procedures into JES PROCLIB

Starting the z/OSMF server

Accessing the z/OSMF Welcome page

Mounting the z/OSMF user file system at IPL time

The following sample jobs that you might use are included in the package and available for download:

IZUAUTH

IZUICSEC

IZUNUSEC_V2R2

IZUNUSEC_V2R3

IZUPRM00

IZURFSEC

IZUTSSEC

IZUWFSEC

Download sample jobs

Check out the video for a demo of the process:

Running job IZUNUSEC to create security

The security job IZUNUSEC contains a minimal set of RACF® commands for creating security profiles for the

z/OSMF nucleus. The profiles are used to protect the resources that are used by the z/OSMF server, and to

grant users access to the z/OSMF core functions. IZUNUSEC is a simplified version of the sample job

IZUSEC, which is intended for a more complete installation of z/OSMF.

Note: If your implementation uses an external security manager other than RACF (for example, Top Secret or

ACF2), provide equivalent commands for your environment. For more information, see the following product

documentation:

Configure z/OS Management Facility for Top Secret

Configure z/OS Management Facility for ACF2

Before you begin

In most cases, you can run the IZUNUSEC security job without modification. To verify that the job is okay to

run as is, ask your security administrator to review the job and modify it as necessary for your security

environment. If security is not a concern for the host system, you can run the job without modification.

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://docops.ca.com/ca-top-secret-for-z-os/16-0/en/installing/configure-z-os-management-facility-for-ca-top-secret
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/installing/configure-z-os-management-facility-for-ca-acf2.html

Procedure

�. If you run z/OS V2R2 or V2R3, download job IZUNUSEC in the sample jobs package and upload this job

to z/OS. If you run z/OS V2R4, locate job IZUNUSEC at SYS1.SAMPLIB.

�. Review and edit the job, if necessary.

�. Submit IZUNUSEC as a batch job on your z/OS system.

�. Connect your user ID to IZUADMIN group.

i. Download job IZUAUTH in the sample jobs package and customize it.

ii. Replace the 'userid' with your z/OSMF user ID.

iii. Submit the job on your z/OS system.

Results

Ensure the IZUNUSEC job completes with return code 0000 .

To verify, check the results of the job execution in the job log. For example, you can use SDSF to examine the

job log:

�. In the SDSF primary option menu, select Option ST.

�. On the SDSF Status Display, enter S next to the job that you submitted.

�. Check the return code of the job. The job succeeds if '0000' is returned.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution

Message IKJ56702I:

INVALID data is

issued

The job is

submitted more

than once.

You can ignore this message.

Job fails with an

authorization error.

Your user ID lacks

superuser

authority.

Contact your security admin to run IZUNUSEC. If you are

using RACF®, select a user ID with SPECIAL attribute

which can issue all RACF® commands.

https://docs.zowe.org/stable/zosmf_lite_samples.zip

Symptom Cause Resolution

Job fails with an

authorization error.

Your installation

uses the RACF

PROTECT-ALL

option.

See Troubleshooting problems.

ADDGROUP and

ADDUSER

commands are not

executed.

The automatic GID

and UID

assignment is

required.

Define SHARED.IDS and BPX.NEXT.USER profiles to

enable the use of AUTOUID and AUTOGID.

Running job IZUMKFS to create the z/OSMF user file system

The job IZUMKFS initializes the z/OSMF user file system, which contains configuration settings and

persistence information for z/OSMF.

The job mounts the file system. On a z/OS V2R3 system with the PTF for APAR PI92211 installed, the job

uses mount point /global/zosmf . Otherwise, for an earlier system, the job mounts the file system at

mount point /var/zosmf .

Before you begin

To perform this step, you need a user ID with "superuser" authority on the z/OS host system. For more

information about how to define a user with superuser authority, see the publication z/OS UNIX System

Services.

Procedure

�. In the system library SYS1.SAMPLIB , locate job IZUMKFS.

�. Copy the job.

�. Review and edit the job:

Modify the job information so that the job can run on your system.

You must specify a volume serial (VOLSER) to be used for allocating a data set for the z/OSMF data

directory.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

�. Submit IZUMKFS as a batch job on your z/OS system.

Results

The z/OSMF file system is allocated, formatted, and mounted, and the necessary directories are created.

To verify if the file system is allocated, formatted, locate the following messages in IZUMKFS job output.

Sample output:

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Job fails with

FSM error.

Your user ID lacks

superuser

authority.

For more information about how to define a user with

superuser authority, see the publication z/OS UNIX System

Services.

Job fails with an

authorization

error.

Job statement

errors.
See Troubleshooting problems.

Copying the IBM procedures into JES PROCLIB

Copy the z/OSMF started procedures and logon procedure from SYS1.PROCLIB into your JES

concatenation. Use $D PROCLIB command to display your JES2 PROCLIB definitions.

Before you begin

Locate the IBM procedures. IBM supplies procedures for z/OSMF in your z/OS order:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpx/bpx.htm

ServerPac and CustomPac orders: IBM supplies the z/OSMF procedures in the SMP/E managed proclib

data set. In ServerPac and SystemPac, the default name for the data set is SYS1.IBM.PROCLIB.

CBPDO orders: For a CBPDO order, the SMP/E-managed proclib data set is named as SYS1.PROCLIB.

Application Development CD.

Procedure

Use ISPF option 3.3 or 3.4 to copy the procedures from SYS1.PROCLIB into your JES concatenation.

IZUSVR1

IZUANG1

IZUFPROC

Results

The procedures now reside in your JES PROCLIB.

Common errors

Review the following messages and the corresponding resolutions as needed

Symptom Cause Resolution

Not authorized to

copy into PROCLIB.

Your user ID doesn't have the

permission to modify PROCLIB.
Contact your security administrator.

Abend code B37 or

E37.
The data set runs out of space.

Use IEBCOPY utility to compress

PROCLIB dataset before you copy it.

Starting the z/OSMF server

z/OSMF processing is managed through the z/OSMF server, which runs as the started tasks IZUANG1 and

IZUSVR1. z/OSMF is started with the START command.

Before you begin

Ensure that you have access to the operations console and can enter the START command.

Procedure

In the operations console, enter the START commands sequentially:

Note: The z/OSMF angel (IZUANG1) must be started before the z/OSMF server (IZUSVR1).

You must enter these commands manually at subsequent IPLs. If necessary, you can stop z/OSMF

processing by entering the STOP command for each of the started tasks IZUANG1 and IZUSVR1.

Note: z/OSMF offers an autostart function, which you can configure to have the z/OSMF server started

automatically. For more information about the autostart capability, see z/OSMF Configuration Guide.

Results

When the z/OSMF server is initialized, you can see the following messages displayed in the operations

console:

Accessing the z/OSMF Welcome page

At the end of the z/OSMF configuration process, you can verify the results of your work by opening a web

browser to the Welcome page.

Before you begin

To find the URL of the Welcome page, look for message IZUG349I in the z/OSMF server job log.

Procedure

�. Open a web browser to the z/OSMF Welcome page. The URL for the Welcome page has the following

format: https://hostname:port/zosmf/

Where:

hostname is the host name or IP address of the system in which z/OSMF is installed.

port is the secure port for the z/OSMF configuration. If you specified a secure port for SSL

encrypted traffic during the configuration process through parmlib statement HTTP_SSL_PORT,

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

port is required to log in. Otherwise, it is assumed that you use the default port 443.

�. In the z/OS USER ID field on the Welcome page, enter the z/OS user ID that you use to configure

z/OSMF.

�. In the z/OS PASSWORD field, enter the password or pass phrase that is associated with the z/OS user

ID.

�. Select the style of UI for z/OSMF. To use the desktop interface, select this option. Otherwise, leave this

option unselected to use the tree view UI.

�. Click Log In.

Results

If the user ID and password or pass phrase are valid, you are authenticated to z/OSMF. The Welcome page

of IBM z/OS Management Facility tab opens in the main area. At the top right of the screen, Welcome

<your_user_ID> is displayed. In the UI, only the options you are allowed to use are displayed.

You have successfully configured the z/OSMF nucleus.

Common errors

The following errors might occur during this step:

Symptom Cause Resolution

z/OSMF welcome page does not load

in your web browser.

The SSL handshake was

not successful. This

problem can be related to

the browser certificate.

See Certificate error in the

Mozilla Firefox browser.

To log into z/OSMF, enter a valid z/OS

user ID and password. Your account

might be locked after too many

incorrect log-in attempts.

The user ID is not

connected to the

IZUADMIN group.

Connect your user ID to the

IZUADMIN group.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_FirefoxCertificateError.htm

Symptom Cause Resolution

To log into z/OSMF, enter a valid z/OS

user ID and password. Your account

might be locked after too many

incorrect log-in attempts.

The password is expired.

Log on to TSO using your z/OS

User ID and password, you will

be asked to change your

password if it's expired.

Mounting the z/OSMF user file system at IPL time

Previously, in Running job IZUMKFS to create the z/OSMF user file system, you ran job IZUMKFS to create

and mount the z/OSMF user file system. Now you should ensure that the z/OSMF user file system is

mounted automatically for subsequent IPLs. To do so, update the BPXPRMxx parmlib member on your z/OS

system.

Before you begin

By default, the z/OSMF file system uses the name IZU.SIZUUSRD, and is mounted in read/write mode. It is

recommended that this file system is mounted automatically at IPL time.

If you do not know which BPXPRMxx member is active, follow these steps to find out:

�. In the operations console, enter the following command to see which parmlib members are included in

the parmlib concatenation on your system:

D PARMLIB

�. Make a note of the BPXPRMxx member suffixes that you see.

�. To determine which BPXPRMxx member takes precedence, enter the following command:

D OMVS

The output of this command should be similar to the following:

In this example, the member BPXPRMST takes precedence. If BPXPRMST is not present in the

concatenation, member BPXPRM3T is used.

Procedure

Add a MOUNT command for the z/OSMF user file system to your currently active BPXPRMxx parmlib

member. For example:

On a z/OS V2R3 system with the PTF for APAR PI92211 installed:

On a z/OS V2R2 or V2R3 system without PTF for APAR PI92211 installed:

Results

The BPXPRMxx member is updated. At the next system IPL, the following message is issued to indicate that

the z/OSMF file system is mounted automatically.

Adding the required REST services

You must enable a set of z/OSMF REST services for the Zowe framework.

The following system changes are described in this topic:

Enabling the z/OSMF JOB REST services

Enabling the TSO REST services

Enabling the z/OSMF data set and file REST services

Enabling the z/OSMF Workflow REST services and Workflows task UI

Enabling the z/OSMF JOB REST services

The Zowe framework requires that you enable the z/OSMF JOB REST services, as described in this topic.

Procedure

None

Results

To verify if the z/OSMF JOB REST services are enabled, open a web browser to our z/OS system (host name

and port) and add the following REST call to the URL:

GET /zosmf/restjobs/jobs

The result is a list of the jobs that are owned by your user ID. For more information about the z/OSMF JOB

REST services, see z/OSMF Programming Guide.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom 1

401 Unauthorized

Cause

The user ID is not connected to IZUADMIN or IZUUSER.

Resolution

Connect your user ID to IZUADMIN or IZUUSER.

Symptom 2

HTTP/1.1 500 Internal Server Error {"rc":16,"reason":-1,"stack":"JesException: CATEGORY_CIM rc=16

reason=-1 cause=com.ibm.zoszmf.util.eis.EisConnectionException: IZUG911I: Connection to

\"http:\/\/null:5988\" cannot be established, or was lost and cannot be re-established using protocol

\"CIM\"......Caused by: WBEMException: CIM_ERR_FAILED (JNI Exception type

CannotConnectException:\nCannot connect to local CIM server. Connection failed.)

Cause

For JES2, you may have performed one of the following "Modify" operations: Hold a job, Release a job,

Change the job class, Cancel a job, Delete a job (Cancel a job and purge its output), or you are running JES3

without configuring CIM Server.

Resolution

If you are running JES2, you can use synchronous support for job modify operations which does not

required CIM. If you are running JES3, follow the CIM setup instructions to configure CIM on your system.

Enabling the TSO REST services

The Zowe framework requires that you enable the TSO REST services, as described in this topic.

Before you begin

Ensure that the common event adapter component (CEA) of z/OS is running in full function mode.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_RESTJOBS.htm#izuhpinfo_api_restjobs__RequestingSynchronousProcessing
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/IZUHPINFO_AdditionalCIMStepsForZOS.htm

�. To check if the CEA address space is active, enter the following command:

D A,CEA

�. If not, start CEA in full function mode. For detailed instructions, see System prerequisites for the CEA

TSO/E address space services.

�. To verify that CEA is running in full function mode, enter the following command:

F CEA,D

The output should look like the following:

Procedure

�. If you run z/OS V2R2 and V2R3, download job IZUTSSEC in the sample jobs package and upload this

Job to z/OS. If you run z/OS V2R4, locate job IZUTSSEC at SYS1.SAMPLIB .

�. Review and edit job IZUTSSEC before you submit. You can review the IZUTSSEC section below for more

details.

�. Submit IZUTSSEC as a batch job on your z/OS system.

IZUTSSEC

IBM provides a set of jobs in SYS1.SAMPLIB with sample RACF commands to help with your z/OSMF

configuration and its prerequisites. The IZUTSSEC job represents the authorizations that are needed for the

z/OSMF TSO/E address space service. Your security administrator can edit and run the job. Generally, your

z/OSMF user ID requires the same authorizations for using the TSO/E address space services as when you

perform these operations through a TSO/E session on the z/OS system. For example, to start an application

in a TSO/E address space requires that your user ID be authorized to operate that application. In addition, to

use TSO/E address space services, you must have:

READ access to the account resource in class ACCTNUM, where account is the value specified in the

COMMON_TSO ACCT option in parmlib.

READ access to the CEA.CEATSO.TSOREQUEST resource in class SERVAUTH.

READ access to the proc resource in class TSOPROC, where proc is the value specified with the

COMMON_TSO PROC option in parmlib.

READ access to the <SAF_PREFIX>.*.izuUsers profile in the EJBROLE class. Or, at a minimum, READ

access to the <SAF_PREFIX>.IzuManagementFacilityTsoServices.izuUsers resource name in the

EJBROLE class. You must also ensure that the z/OSMF started task user ID, which is IZUSVR by default,

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.ieac100/prerequisites.htm
https://docs.zowe.org/stable/zosmf_lite_samples.zip

has READ access to the CEA.CEATSO.TSOREQUEST resource in class SERVAUTH. To create a TSO/E

address space on a remote system, you require the following authorizations:

You must be authorized to the SAF resource profile that controls the ability to send data to the remote

system (systemname), as indicated: CEA.CEATSO.FLOW.systemname

To flow data between different systems in the sysplex, you must be authorized to do so by your external

security manager, such as a RACF database with sysplex-wide scope. For example, to flow data

between System A and System B, you must be permitted to the following resource profiles:

CEA.CEATSO.FLOW.SYSTEMA

CEA.CEATSO.FLOW.SYSTEMB

Results

The IZUTSSEC job should complete with return code 0000.

Enabling the z/OSMF data set and file REST services

The Zowe framework requires that you enable the z/OSMF data set and file REST services.

Before you begin

�. Ensure that the message queue size is set to a large enough value. It is recommended that you specify

an IPCMSGQBYTES value of at least 20971520 (20M) in BPXPRMxx.

Issue command D OMVS,O to see the current value of IPCMSGQBYTES, if it is not large enough, use

the SETOMVS command to set a large value. To set this value dynamically, you can enter the following

operator command:

SETOMVS IPCMSGQBYTES=20971520

�. Ensure that the TSO REST services are enabled.

�. Ensure that IZUFPROC is in your JES concatenation.

�. Ensure that your user ID has a TSO segment defined. To do so, enter the following command from

TSO/E command prompt:

LU userid TSO

Where userid is your z/OS user ID.

The output from this command must include the section called TSO information, as shown in the following

example:

Procedure

�. If you run z/OS V2R2 and V2R3, download job IZURFSEC in the sample jobs package and upload it to

z/OS. If you run z/OS V2R4, locate job IZURFSEC at SYS1.SAMPLIB .

�. Copy the job.

�. Examine the contents of the job.

�. Modify the contents as needed so that the job will run on your system.

�. From the TSO/E command line, run the IZURFSEC job.

Results

Ensure that the IZURFSEC job completes with return code 0000 .

To verify if this setup is complete, try issuing a REST service. See the example in List data sets in the z/OSMF

programming guide.

Common errors

Review the following messages and the corresponding resolutions as needed:

Symptom Cause Resolution

REST API doesn't return expected

data with rc=12, rsn=3, message:

message queue size "SIZE" is less

than minimum: 20M

The

message

queue size

for CEA is

too small.

Ensure that the message queue size is set to a

large enough value. It is recommended that you

specify an IPCMSGQBYTES value of at least

20971520 (20M) in BPXPRMx.

Enabling the z/OSMF Workflow REST services and Workflows task UI

The Zowe framework requires that you enable the z/OSMF Workflow REST services and Workflows task UI.

Before you begin

�. Ensure that the JOB REST services are enabled.

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua700/IZUHPINFO_API_GetListDataSets.htm

�. Ensure that the TSO REST services are enabled.

�. Ensure that the dataset and file REST services are enabled.

Procedure

�. If you run z/OS V2R2 and V2R3, download job IZUWFSEC in the sample jobs package and upload this

job to z/OS. If you run z/OS V2R4, locate job IZUWFSEC at SYS1.SAMPLIB .

�. Copy the job.

�. Examine the contents of the job.

�. Modify the contents as needed so that the job will run on your system.

�. From the TSO/E command line, run the IZUWFSEC job.

Results

Ensure the IZUWFSEC job completes with return code 0000 .

To verify, log on to z/OSMF (or refresh it) and verify that the Workflows task appears in the z/OSMF UI.

At this point, you have completed the setup of z/OSMF Lite.

Optionally, you can add more users to z/OSMF, as described in Appendix C. Adding more users to z/OSMF.

Troubleshooting problems

This section provides tips and techniques for troubleshooting problems you might encounter when creating

a z/OSMF Lite configuration. For other types of problems that might occur, see z/OSMF Configuration Guide.

Common problems and scenarios

This section discusses troubleshooting topics, procedures, and tools for recovering from a set of known

issues.

System setup requirements not met

This document assumes that the following is true of the z/OS host system:

Port 443 is available for use. To check this, issue either TSO command NETSTAT SOCKET or TSO

command NETSTAT BYTE to determine if the port is being used.

https://docs.zowe.org/stable/zosmf_lite_samples.zip
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

The system host name is unique and maps to the system on which z/OSMF Lite is being installed. To

retrieve this value, enter either "hostname" z/OS UNIX command or TSO command "HOMETEST". If

your system uses another method of assigning the system name, such as a multi-home stack, dynamic

VIPA, or System Director, see z/OSMF Configuration Guide.

The global mount point exists. On a z/OS 2.3 system, the system includes this directory by default. On a

z/OS 2.2 system, you must create the global directory at the following location: /global/zosmf/ .

If you find that a different value is used on your z/OS system, you can edit the IZUPRMxx parmlib member to

specify the correct setting. For details, see Appendix A. Creating an IZUPRMxx parmlib member.

Tools and techniques for troubleshooting

For information about working with z/OSMF log files, see z/OSMF Configuration Guide.

Common messages

If you see above error messages, check if your IZUANG0 procedure is up to date.

For descriptions of all the z/OSMF messages, see z/OSMF messages in IBM Knowledge Center.

Appendix A. Creating an IZUPRMxx parmlib member

If z/OSMF requires customization, you can modify the applicable settings by using the IZUPRMxx parmlib

member. To see a sample member, locate the IZUPRM00 member in the SYS1.SAMPLIB data set. IZUPRM00

contains settings that match the z/OSMF defaults.

Using IZUPRM00 as a model, you can create a customized IZUPRMxx parmlib member for your environment

and copy it to SYS1.PARMLIB to override the defaults.

The following IZUPRMxx settings are required for the z/OSMF nucleus:

HOSTNAME

HTTP_SSL_PORT

JAVA_HOME.

The following setting is needed for the TSO/E REST services:

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zosmfmessages.help.doc/izuG00hpMessages.html

COMMON_TSO ACCT(IZUACCT) REGION(50000) PROC(IZUFPROC)

Descriptions of these settings are provided in the table below. For complete details about the IZUPRMxx

settings and the proper syntax for updating the member, see z/OSMF Configuration Guide.

If you change values in the IZUPRMxx member, you might need to customize the started procedure

IZUSVR1, accordingly. For details, see Appendix B. Modifying IZUSVR1 settings.

To create an IZUPRMxx parmlib member, follow these steps:

�. Copy the sample parmlib member into the desired parmlib data set with the desired suffix.

�. Update the parmlib member as needed.

�. Specify the IZUPRMxx parmlib member or members that you want the system to use on the IZU

parameter of IEASYSxx. Or, code a value for IZUPRM= in the IZUSVR1 started procedure. If you specify

both IZU= in IEASYSxx and IZUPARM= in IZUSVR1, the system uses the IZUPRM= value you specify in

the started procedure.

Setting Purpose Rules Default

HOSTNAME(hostname)

Specifies the host name, as defined by

DNS, where the z/OSMF server is

located. To use the local host name,

enter asterisk (*), which is equivalent

to \@HOSTNAME from previous

releases. If you plan to use z/OSMF in a

multisystem sysplex, IBM recommends

using a dynamic virtual IP address

(DVIPA) that resolves to the correct IP

address if the z/OSMF server is moved

to a different system.

Must be a

valid TCP/IP

HOSTNAME

or an asterisk

(*).

Default: *

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

Appendix B. Modifying IZUSVR1 settings

You might need to customize the started procedure IZUSVR1 for z/OSMF Lite.

Setting Purpose Rules Default

HTTP_SSL_PORT(nnn)

Identifies the port number that is

associated with the z/OSMF server.

This port is used for SSL encrypted

traffic from your z/OSMF configuration.

The default value, 443, follows the

Internet Engineering Task Force (IETF)

standard. Note: By default, the

z/OSMF server uses the SSL protocol

SSL_TLSv2 for secure TCP/IP

communications. As a result, the

server can accept incoming

connections that use SSL V3.0 and the

TLS 1.0, 1.1 and 1.2 protocols.

Must be a

valid TCP/IP

port number.

Value range:

1 - 65535

(up to 5

digits)

Default: 443

COMMON_TSO

ACCT(account-

number)

REGION(region-size)

PROC(proc-name)

Specifies values for the TSO/E logon

procedure that is used internally for

various z/OSMF activities and by the

Workflows task.

The valid

ranges for

each value

are

described in

z/OSMF

Configuration

Guide.

Default: 443

ACCT(IZUACCT)

REGION(50000)

PROC(IZUFPROC)

USER_DIR=filepath

z/OSMF data directory path. By

default, the z/OSMF data directory is

located in /global/zosmf . If you

want to use a different path for the

z/OSMF data directory, specify that

value here, for example:

USER_DIR= /the/new/config/dir .

Must be a

valid z/OS

UNIX path

name.

Default:

/global/zosmf/

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

To modify the IZUSVR1 settings, follow these steps:

�. Make a copy

�. Apply your changes

�. Store your copy in PROCLIB.

Setting Purpose Rules Default

WLPDIR='directory-

path'
WebSphere Liberty server code path.

The

directory

path

must: Be

a valid

z/OS

UNIX

path

name Be

a full or

absolute

path

name Be

enclosed

in

quotation

marks

Begin

with a

forward

slash

('/').

Default:

/usr/lpp/zosmf/liber

Appendix C. Adding more users to z/OSMF

Your security administrator can authorize more users to z/OSMF. Simply connect the required user IDs to the

z/OSMF administrator group (IZUADMIN). This group is permitted to a default set of z/OSMF resources

(tasks and services). For the specific group permissions, see Appendix A in z/OSMF Configuration Guide.

You can create more user groups as needed, for example, one group per z/OSMF task.

Before you Begin

Collect the z/OS user IDs that you want to add.

Procedure

�. On an RACF system, enter the CONNECT command for the user IDs to be granted authorization to

z/OSMF resources:

CONNECT userid GROUP(IZUADMIN)

Results

The user IDs can now access z/OSMF.

Setting Purpose Rules Default

USER_DIR=filepath

z/OSMF data directory path. By

default, the z/OSMF data directory is

located in /global/zosmf. If you want to

use a different path for the z/OSMF

data directory, specify that value here,

for example:

USER_DIR= /the/new/config/dir .

Must be

a valid

z/OS

UNIX

path

name.

Default: /global/zosmf/

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/toc.htm

Version: v2.2.x LTS

Installing Zowe runtime from a convenience
build

You install the Zowe™ convenience build by obtaining a PAX file and using this to create the Zowe runtime

environment.

Introduction

The Zowe installation file for Zowe z/OS components is distributed as a PAX file that contains the runtimes

and the scripts to install and launch the z/OS runtime. You must obtain the PAX file and transfer it to z/OS

first. Then, to install, configure and start Zowe, you use the zwe command. This command defines help

messages, logging options, and more. For details about how to use this command, see the ZWE Server

Command Reference.

The configuration data that is read by the zwe command are stored in a YAML configuration file named

zowe.yaml . You modify the zowe.yaml file based on your environment.

Complete the following steps to install the Zowe runtime.

Step 1: Obtain the convenience build

To download the PAX file, open your web browser on the Zowe Download website, navigate to Zowe V2

Preview -> Convenience build section, and select the button to download the v2 convenience build.

Step 2: Transfer the convenience build to USS and expand
it

After you download the PAX file, you can transfer it to z/OS and expand its contents.

�. Open a terminal in Mac OS/Linux, or command prompt in Windows OS, and navigate to the directory

where you downloaded the Zowe PAX file.

�. Connect to z/OS using SFTP. Issue the following command:

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe
https://www.zowe.org/download.html

If SFTP is not available or if you prefer to use FTP, you can issue the following command instead:

�. Navigate to the target directory that you want to transfer the Zowe PAX file into on z/OS.

Note: After you connect to z/OS and enter your password, you enter the UNIX file system. The following

commands are useful:

To see what directory you are in, type pwd .

To switch directory, type cd .

To list the contents of a directory, type ls .

To create a directory, type mkdir .

�. When you are in the directory you want to transfer the Zowe PAX file into, issue the following command:

Where zowe-V.v.p is a variable that indicates the name of the PAX file you downloaded.

Note: When your terminal is connected to z/OS through FTP or SFTP, you can prepend commands with

l to have them issued against your desktop. To list the contents of a directory on your desktop, type

lls where ls lists contents of a directory on z/OS.

After the PAX file has sucessfully transferred, exit your sftp or ftp session.

�. Open a USS shell to expand the PAX file. This can either be an ssh terminal, OMVS, iShell, or any other

z/OS unix system services command environment.

�. Expand the PAX file by issuing the following command in the USS shell.

Where zowe-V.v.p is a variable that indicates the name of the PAX file you downloaded. When extracting

the Zowe convenience build, you must always include the -ppx argument that preserves extended

attributes.

This will expand to a file structure similar to the following one.

This is the Zowe runtime directory and is referred to as <RUNTIME_DIR> throughout this

documentation.

Note: Zowe version 1 had a script zowe-install.sh that created a separate Zowe runtime directory

from the expanded contents of the Zowe PAX file. Zowe v2 no longer has this step. In Zowe v2, the

contents of the expanded Zowe PAX file are the Zowe runtime directory.

Step 3: (Optional) Add the zwe command to your PATH

The zwe command is provided in the <RUNTIME_DIR>/bin directory. You can optionally add this Zowe

bin directory to your PATH environment variable so you can execute the zwe command without having to

fully qualify its location. To update your PATH , run the following command:

<RUNTIME_DIR> should be replaced with your real Zowe runtime directory path. This will update the

PATH for the current shell. To make this update persistent, you can add the line to your ~/.profile file,

or the ~/.bashProfile file if you are using a bash shell. To make this update system wide, you can

update the /etc/.profile file. Once the PATH is updated, you can execute the zwe command from

any USS directory. For the remainder of the documentation when zwe command is referenced, it is

assumed that it has been added to your PATH .

The zwe command has built in help that can be retrieved with the -h suffix. For example, type zwe -h

to display all of the supported commands. These are broken down into a number of sub-commands.

Step 4: Copy the zowe.yaml configuration file to preferred
location

Copy the template file <RUNTIME_DIR>/example-zowe.yaml file to a new location, such as

/var/lpp/zowe/zowe.yaml or your home directory ~/.zowe.yaml . This will become your

configuration file that contains data used by the zwe command at a number of parts of the lifecycle of

configuring and starting Zowe. You will need to modify the zowe.yaml file based on your environment.

When you execute the zwe command, the -c argument is used to pass the location of a zowe.yaml

file.

TIP

To avoid passing --config or -c to every zwe commands, you can define

ZWE_CLI_PARAMETER_CONFIG environment variable points to location of zowe.yaml.

For example, after defining

, you can simply type zwe install instead of full command zwe install -c

/path/to/my/zowe.yaml .

Step 5: Install the MVS data sets

After you extract the Zowe convenience build, you can run the zwe install command to install MVS

data sets.

About the MVS data sets

Zowe includes a number of files that are stored in the following three data sets. See the following table for

the storage requirements.

Library

DDNAME
Member Type

Target

Volume
Type Org RECFM LRECL

No.

of

3390

Trks

No.

of

DIR

Blks

SZWESAMP Samples ANY U PDSE FB 80 15 5

SZWEAUTH
Zowe APF Load

Modules
ANY U PDSE U 0 15 N/A

SZWEEXEC
CLIST copy

utilities
ANY U PDSE FB 80 15 5

The SZWESAMP data set contains the following members.

Member

name
Purpose

ZWESECUR JCL member to configure z/OS user IDs and permissions required to run Zowe

ZWENOSEC
JCL member to undo the configuration steps performed in ZWESECUR and revert z/OS

environment changes.

ZWEKRING JCL member to configure a z/OS keyring containing the Zowe certificate

ZWENOKYR JCL member to undo the configuration steps performed in ZWEKRING

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-install

Member

name
Purpose

ZWESLSTC JCL to start Zowe

ZWEXMSTC JCL to start the Zowe cross memory server

ZWESIP00 Parmlib member for the cross memory server

ZWESASTC Started task JCL for the cross memory Auxiliary server

ZWESIPRG Console commands to APF authorize the cross memory server load library

ZWESISCH
PPT entries required by Cross memory server and its Auxiliary address spaces to run in

Key(4)

ZWECSVSM JCL Member to create the VSAM data set for the caching service

The SZWEAUTH data set is a load library containing the following members.

Member

name
Purpose

ZWELNCH
The Zowe launcher that controls the startup, restart and shutdown of Zowe's address

spaces

ZWESIS01 Load module for the cross memory server

ZWESAUX Load module for the cross memory server's auxiliary address space

The SZWEEXEC data set contains few utilities used by Zowe.

Procedure

The high level qualifer (or HLQ) for these data sets is specified in the zowe.yaml section below. Ensure

that you update the zowe.setup.dataset.prefix value to match your system.

To create and install the MVS data sets, use the command zwe install .

�. In a USS shell, execute the command zwe install -c /path/to/zowe.yaml . This creates the

three data sets and copy across their content.

�. If the data sets already exist, specify --allow-overwritten .

�. To see the full list of parameters, execute the command zwe install -h .

A sample run of the command is shown below using default values.

Next steps

You successfully installed Zowe from the convenience build! However, before you start Zowe, you must

complete several required configurations. Next, go to Initialize the z/OS system and permissions to initialize

your z/OS system for Zowe first.

https://docs.zowe.org/v2.2.x/user-guide/initialize-zos-system

Version: v2.2.x LTS

Installing Zowe SMP/E

Contents

Introduction

Zowe description

Zowe FMIDs

Program materials

Basic machine-readable material

Program publications

Program source materials

Publications useful during installation

Program support

Statement of support procedures

Program and service level information

Program level information

Service level information

Installation requirements and considerations

Driving system requirements

Driving system machine requirements

Driving system programming requirements

Target system requirements

Target system machine requirements

Target system programming requirements

DASD storage requirements

FMIDs deleted

Installation instructions

SMP/E considerations for installing Zowe

SMP/E options subentry values

Overview of the installation steps

Download the Zowe SMP/E package

Allocate file system to hold the download package

Upload the download package to the host

Extract and expand the compressed SMPMCS and RELFILEs

GIMUNZIP

Sample installation jobs

Create SMP/E environment (optional)

Perform SMP/E RECEIVE

Allocate SMP/E Target and Distributions Libraries

Allocate, create and mount ZSF Files (Optional)

Allocate z/OS UNIX Paths

Create DDDEF Entries

Perform SMP/E APPLY

Perform SMP/E ACCEPT

Run REPORT CROSSZONE

Cleaning up obsolete data sets, paths, and DDDEFs

Activating Zowe

File system execution

Zowe customization

Introduction

This program directory is intended for system programmers who are responsible for program installation and

maintenance. It contains information about the material and procedures associated with the installation of

Zowe Open Source Project (Base). This publication refers to Zowe Open Source Project (Base) as Zowe.

The Program Directory contains the following sections:

Program Materials identifies the basic program materials and documentation for Zowe.

Program Support describes the support available for Zowe.

Program and Service Level Information lists the APARs (program level) and PTFs (service level) that

have been incorporated into Zowe.

Installation Requirements and Considerations identifies the resources and considerations that are

required for installing and using Zowe.

Installation Instructions provides detailed installation instructions for Zowe. It also describes the

procedures for activating the functions of Zowe, or refers to appropriate publications.

Zowe description

Zowe™ is an open source project created to host technologies that benefit the Z platform. It is a sub-project

of Open Mainframe Project which is part of the Linux Foundation. More information about Zowe is available

at https://zowe.org.

Zowe FMIDs

Zowe consists of the following FMIDs:

AZWE002

Program materials

Basic Machine-Readable Materials are materials that are supplied under the base license and are required

for the use of the product.

Basic machine-readable material

The distribution medium for this program is via downloadable files. This program is in SMP/E RELFILE format

and is installed using SMP/E. See Installation instructions for more information about how to install the

program.

Program source materials

No program source materials or viewable program listings are provided for Zowe in the SMP/E installation

package. However, program source materials can be downloaded from the Zowe GitHub repositories at

https://github.com/zowe/.

Publications useful during installation

Publications listed below are helpful during the installation of Zowe.

Publication Title Form Number

IBM SMP/E for z/OS User's Guide SA23-2277

IBM SMP/E for z/OS Commands SA23-2275

https://www.openmainframeproject.org/projects
https://zowe.org/
https://github.com/zowe/
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232277/$file/gim3000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232275/$file/gim1000_v2r3.pdf

Publication Title Form Number

IBM SMP/E for z/OS Reference SA23-2276

IBM SMP/E for z/OS Messages, Codes, and Diagnosis GA32-0883

These and other publications can be obtained from https://www.ibm.com/shop/publications/order.

Program support

This section describes the support available for Zowe.

Because this is an alpha release of the Zowe FMID package for early testing and adoption, no formal support

is offered. Support is available through the Zowe community. See Community Engagement for details. Slack

is the preferred interaction channel.

Additional support may be available through other entities outside of the Open Mainframe Project and Linux

Foundation which offers no warranty and provides the package under the terms of the EPL v2.0 license.

Statement of support procedures

Report any problems which you feel might be an error in the product materials to the Zowe community via

the Zowe GitHub community repo at https://github.com/zowe/community/issues/new/choose. You may be

asked to gather and submit additional diagnostics to assist the Zowe Community for analysis and resolution.

Program and service level information

This section identifies the program and relevant service levels of Zowe. The program level refers to the APAR

fixes that have been incorporated into the program. The service level refers to the PTFs that have been

incorporated into the program.

Program level information

All issues of previous releases of Zowe that were resolved before August 2019 have been incorporated into

this packaging of Zowe.

Service level information

https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3sa232276/$file/gim2000_v2r3.pdf
https://www-01.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3ga320883/$file/gim0000_v2r3.pdf
https://www.ibm.com/shop/publications/order
https://github.com/zowe/community/blob/master/README.md#communication-channels
https://github.com/zowe/community/issues/new/choose

The Zowe SMP/E package is a distribution of Zowe version 2.0.0 with an FMID of AZWE002.

Subsequent releases of the Zowe z/OS components are delivered as rollup PTFs on zowe.org.

Installation requirements and considerations

The following sections identify the system requirements for installing and activating Zowe. The following

terminology is used:

Driving System: the system on which SMP/E is executed to install the program.

Target system: the system on which the program is configured and run.

Use separate driving and target systems in the following situations:

When you install a new level of a product that is already installed, the new level of the product will

replace the old one. By installing the new level onto a separate target system, you can test the new level

and keep the old one in production at the same time.

When you install a product that shares libraries or load modules with other products, the installation can

disrupt the other products. By installing the product onto a separate target system, you can assess

these impacts without disrupting your production system.

Driving system requirements

This section describes the environment of the driving system required to install Zowe.

Driving system machine requirements

The driving system can be run in any hardware environment that supports the required software.

Driving system programming requirements

Program

Number

Product

Name

Minimum

VRM

Minimum Service Level will

satisfy these APARs

Included in the

shipped product?

5650-ZOS z/OS
V2.2.0 or

later
N/A No

Notes:

https://www.zowe.org/download.html

SMP/E is a requirement for Installation and is an element of z/OS but can also be ordered as a separate

product, 5655-G44, minimally V03.06.00.

Installation might require migration to a new z/OS release to be service supported. See https://www-

01.ibm.com/software/support/lifecycle/index_z.html.

Zowe is installed into a file system, either HFS or zFS. Before installing Zowe, you must ensure that the target

system file system data sets are available for processing on the driving system. OMVS must be active on the

driving system and the target system file data sets must be mounted on the driving system.

If you plan to install Zowe in a zFS file system, this requires that zFS be active on the driving system.

Information on activating and using zFS can be found in z/OS Distributed File Service zSeries File System

Administration (SC24-5989).

Target system requirements

This section describes the environment of the target system required to install and use Zowe.

Zowe installs in the z/OS (Z038) SREL.

Target system machine requirements

The target system can run in any hardware environment that supports the required software.

Target system programming requirements

Installation requisites

Installation requisites identify products that are required and must be present on the system or products that

are not required but should be present on the system for the successful installation of Zowe.

Mandatory installation requisites identify products that are required on the system for the successful

installation of Zowe. These products are specified as PREs or REQs.

Zowe has no mandatory installation requisites.

Conditional installation requisites identify products that are not required for successful installation of Zowe

but can resolve such things as certain warning messages at installation time. These products are specified

as IF REQs.

Zowe has no conditional installation requisites.

https://www-01.ibm.com/software/support/lifecycle/index_z.html
https://www.ibm.com/servers/resourcelink/svc00100.nsf/pages/zOSV2R3SC236887/$file/ioea700_v2r3.pdf

Operational requisites

Operational requisites are products that are required and must be present on the system, or, products that

are not required but should be present on the system for Zowe to operate all or part of its functions.

Mandatory operational requisites identify products that are required for this product to operate its basic

functions. The following table lists the target system mandatory operational requisites for Zowe.

Program Number Product Name and Minimum VRM/Service Level

5650-ZOS IBM z/OS Management Facility V2.2.0 or higher

5655-SDK IBM SDK for Node.js - z/OS V12 or higher

5655-DGH IBM 64-bit SDK for z/OS Java Technology Edition V8.0.0

Conditional operational requisites identify products that are not required for Zowe to operate its basic

functions but are required at run time for Zowe to operate specific functions. These products are specified

as IF REQs. Zowe has no conditional operational requisites.

Toleration/coexistence requisites

Toleration/coexistence requisites identify products that must be present on sharing systems. These systems

can be other systems in a multi-system environment (not necessarily Parallel SysplexTM), a shared DASD

environment (such as test and production), or systems that reuse the same DASD environment at different

time intervals.

Zowe has no toleration/coexistence requisites.

Incompatibility (negative) requisites

Negative requisites identify products that must not be installed on the same system as Zowe.

Zowe has no negative requisites.

DASD storage requirements

Zowe libraries can reside on all supported DASD types.

Total DASD space required by Zowe

Library

Type

Total Space Required in

3390 Trks
Description

Target 45 Tracks /

Distribution 12045 Tracks /

File

System(s)
21000 Tracks /

Web

Download
38666 Tracks

These are temporary data sets, which can be removed

after the SMP/E install.

Notes:

�. For non-RECFM U data sets, we recommend using system-determined block sizes for efficient DASD

utilization. For RECFM U data sets, we recommend using a block size of 32760, which is most efficient

from the performance and DASD utilization perspective.

�. Abbreviations used for data set types are shown as follows.

U - Unique data set, allocated by this product and used by only this product. This table provides all

the required information to determine the correct storage for this data set. You do not need to refer

to other tables or program directories for the data set size.

S - Shared data set, allocated by this product and used by this product and other products. To

determine the correct storage needed for this data set, add the storage size given in this table to

those given in other tables (perhaps in other program directories). If the data set already exists, it

must have enough free space to accommodate the storage size given in this table.

E - Existing shared data set, used by this product and other products. This data set is not allocated

by this product. To determine the correct storage for this data set, add the storage size given in

this table to those given in other tables (perhaps in other program directories). If the data set

already exists, it must have enough free space to accommodate the storage size given in this table.

If you currently have a previous release of Zowe installed in these libraries, the installation of this

release will delete the old release and reclaim the space that was used by the old release and any

service that had been installed. You can determine whether these libraries have enough space by

deleting the old release with a dummy function, compressing the libraries, and comparing the

space requirements with the free space in the libraries.

For more information about the names and sizes of the required data sets, see Allocate SMP/E

target and distribution libraries.

�. Abbreviations used for the file system path type are as follows.

N - New path, created by this product.

X - Path created by this product, but might already exist from a previous release.

P - Previously existing path, created by another product.

�. All target and distribution libraries listed have the following attributes:

The default name of the data set can be changed.

The default block size of the data set can be changed.

The data set can be merged with another data set that has equivalent characteristics.

The data set can be either a PDS or a PDSE, with some exceptions. If the value in the "ORG"

column specifies "PDS", the data set must be a PDS. If the value in "DIR Blks" column specifies

"N/A", the data set must be a PDSE.

�. All target libraries listed have the following attributes:

These data sets can be SMS-managed, but they are not required to be SMS-managed.

These data sets are not required to reside on the IPL volume.

The values in the "Member Type" column are not necessarily the actual SMP/E element types that

are identified in the SMPMCS.

�. All target libraries that are listed and contain load modules have the following attributes:

These data sets cannot be in the LPA, with some exceptions. If the value in the "Member Type"

column specifies "LPA", it is advised to place the data set in the LPA.

These data sets can be in the LNKLST.

These data sets are not required to be APF-authorized, with some exceptions. If the value in the

"Member Type" column specifies "APF", the data set must be APF-authorized.

Storage requirements for SMP/E work data sets

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR BlksLibrary DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

SMPWRK6 S PDS FB 80 (300,3000) 50

SYSUT1 U SEQ -- -- (300,3000) 0

In the table above, (20,200) specifies a primary allocation of 20 tracks, and a secondary allocation of 200

tracks.

Storage requirements for SMP/E data sets

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

SMPPTS S PDSE FB 80 (12000,3000) 50

The following figures describe the target and distribution libraries and file system paths required to install

Zowe. The storage requirements of Zowe must be added to the storage required by other programs that

have data in the same library or path.

Note: Use the data in these tables to determine which libraries can be merged into common data sets. In

addition, since some ALIAS names may not be unique, ensure that no naming conflicts will be introduced

before merging libraries.

Storage requirements for Zowe target libraries

Note: These target libraries are not required for the initial FMID install of Zowe SMP/E but will be required for

subsequent SYSMODS so are included here for future reference.

Library

DDNAME

Member

Type

Target

Volume
Type Org RECFM LRECL

No. of

3390

Trks

No.

of

DIR

Blks

SZWEAUTH
APF Load

Modules
ANY U PDSE U 0 15 N/A

SZWESAMP Samples ANY U PDSE FB 80 15 5

Zowe file system paths

DDNAME TYPE Path Name

SZWEZFS X /usr/lpp/zowe/SMPE

Storage requirements for Zowe distribution libraries

Note: These target libraries are not required for the initial alpha drop of Zowe SMP/E but will be required for

subsequent drops so are included here for future reference.

Library DDNAME TYPE ORG RECFM LRECL No. of 3390 Trks No. of DIR Blks

AZWEAUTH U PDSE U 0 15 N/A

AZWESAMP U PDSE FB 80 15 5

AZWEZFS U PDSE VB 6995 12000 30

The following figures list data sets that are not used by Zowe, but are required as input for SMP/E.

Data Set Name TYPE ORG RECFM LRECL
No. of 3390

Trks

No. of DIR

Blks

hlq.ZOWE.AZWE002.F1 U PDSE FB 80 5 N/A

hlq.ZOWE.AZWE002.F2 U PDSE FB 80 5 N/A

hlq.ZOWE.AZWE002.F3 U PDSE U 0 30 N/A

hlq.ZOWE.AZWE002.F4 U PDSE VB 6995 9900 N/A

hlq.ZOWE.AZWE002.SMPMCS U SEQ FB 80 1 N/A

z/OS UNIX file system U zFS N/A N/A 28715 N/A

Note: These are temporary data sets, which can be removed after the SMP/E installation.

FMIDs deleted

Installing Zowe might result in the deletion of other FMIDs.

To see which FMIDs will be deleted, examine the ++VER statement in the SMPMCS of the product. If you

do not want to delete these FMIDs now, install Zowe into separate SMP/E target and distribution zones.

Note: These FMIDs are not automatically deleted from the Global Zone. If you want to delete these FMIDs

from the Global Zone, use the SMP/E REJECT NOFMID DELETEFMID command. See the SMP/E Commands

book for details.

Special considerations

Zowe has no special considerations for the target system.

Installation instructions

This section describes the installation method and the step-by-step procedures to install and activate the

functions of Zowe.

Notes:

If you want to install Zowe into its own SMP/E environment, consult the SMP/E manuals for instructions

on creating and initializing the SMPCSI and SMP/E control data sets.

You can use the sample jobs that are provided to perform part or all of the installation tasks. The SMP/E

jobs assume that all DDDEF entries that are required for SMP/E execution have been defined in

appropriate zones.

You can use the SMP/E dialogs instead of the sample jobs to accomplish the SMP/E installation steps.

SMP/E considerations for installing Zowe

Use the SMP/E RECEIVE, APPLY, and ACCEPT commands to install this release of Zowe.

SMP/E options subentry values

The recommended values for certain SMP/E CSI subentries are shown in the following table. Using values

lower than the recommended values can result in failures in the installation. DSSPACE is a subentry in the

GLOBAL options entry. PEMAX is a subentry of the GENERAL entry in the GLOBAL options entry. See the

SMP/E manuals for instructions on updating the global zone.

Subentry Value Comment

DSSPACE (1200,1200,1400) Space allocation

PEMAX SMP/E Default IBM recommends using the SMP/E default for PEMAX.

Overview of the installation steps

Follow these high-level steps to download and install Zowe Open Source Project (Base).

�. Download the Zowe SMP/E package

�. Allocate file system to hold web download package

�. Upload the download package to the host

�. Extract and expand the compress SMPMCS and RELFILEs

�. Sample installation jobs

�. Create SMP/E environment (optional)

�. Perform SMP/E RECEIVE

�. Allocate SMP/E target and distribution libraries

�. Allocate, create and mount ZSF files (Optional)

��. Allocate z/OS UNIX paths

��. Create DDDEF Entries

��. Perform SMP/E APPLY

��. Perform SMP/E ACCEPT

��. Run REPORT CROSSZONE

��. Cleaning up obsolete data sets, paths, and DDDEFs

Download the Zowe SMP/E package>P>

To download the Zowe SMP/E package, open your web browser and go to the Zowe Download website. Click

the Zowe SMP/E FMID AZWE002 button to save the file to a folder on your desktop.

You will receive one ZIP package on your desktop. Extract the following files from the package. You may

need to use the unzip command at a terminal rather than an unzip utility.

AZWE002.pax.Z (binary)

https://www.zowe.org/download.html

The SMP/E input data sets to install Zowe are provided as compressed files in AZWE002.pax.Z. This pax

archive file holds the SMP/E MCS and RELFILEs.

AZWE002.readme.txt (text)

The README file AZWE002.readme.txt is a single JCL file containing a job with the job steps you need

to begin the installation, including comprehensive comments on how to tailor them. There is a sample

job step that executes the z/OS UNIX System Services pax command to extract package archives. This

job also executes the GIMUNZIP program to expand the package archives so that the data sets can be

processed by SMP/E.

AZWE002.hml (text)

The Program Directory for the Zowe Open Source Project.

Allocate file system to hold the download package

You can either create a new z/OS UNIX file system (zFS) or create a new directory in an existing file system

to place AZWE002.pax.Z. The directory that will contain the download package must reside on the z/OS

system where the function will be installed.

To create a new file system, and directory, for the download package, you can use the following sample JCL

(FILESYS).

Copy and paste the sample JCL into a separate data set, uncomment the job, and modify the job to update

required parameters before submitting it.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Upload the download package to the host

Upload the AZWE002.readme.txt file in text format and the AZWE002.pax.Z file in binary format from your

workstation to the z/OS UNIX file system. The instructions in this section are also in the

AZWE002.readme.txt file that you downloaded.

Note: Ensure you download the pax file in a different file system than where you put Zowe runtime.

There are many ways to transfer the files or make them available to the z/OS system where the package will

be installed. In the following sample dialog, we use FTP from a Microsoft Windows command line to do the

transfer. This assumes that the z/OS host is configured as an FTP host/server and that the workstation is an

FTP client. Commands or other information entered by the user are in bold, and the following values are

assumed.

If you are not sure which protocol or port to use to transfer the files or any access that might be needed, you

may need to consult with the network administrator.

User

enters:
Values

mvsaddr TCP/IP address or hostname of the z/OS system

tsouid Your TSO user ID

tsopw Your TSO password

d: Location of the downloaded files

@zfs_path@
z/OS UNIX path where to store the files. This matches the @zfs_path@ variable you

specified in the previous step.

Important! The AZWE002.pax.Z file must be uploaded to the z/OS driving system in binary format, or the

subsequent UNPAX step will fail.

This step of tranferring the files can take a long time to run, depending on the capacity of your system, and

on what other jobs are running.

Sample FTP upload scenario:

If you are unable to connect with ftp and only able to use sftp, the commands above are the same

except that you will use sftp at the command prompt instead of ftp. Also, because sftp only supports binary

file transfer, the ascii and binary commands should be omitted. After you transfer the AZWE002.readme.txt

file, it will be in an ASCII codepage so you need to convert it to EBCDIC before it can be used. To convert

AZWE002.readme.txt to EBCDIC, log in to the distribution system using ssh and run an ICONV command.

C:>/ssh tsouid@mvsaddr

tsouid@mvsaddr's password: tsopw

/u/tsouid:>

cd:@zfs_path@

@zfs_path:>

@zfs_path:>iconv -f ISO8859-1 -t IBM-1047 AZWE002.readme.txt > AZWE002.readme.EBCDIC

@zfs_path:>rm AZWE002.readme.txt

@zfs_path:>mv AZWE002.readme.EBCDIC AZWE002.readme.txt

@zfs_path:>exit

C:>/

Extract and expand the compressed SMPMCS and RELFILEs

The AZWE002.readme.txt file uploaded in the previous step holds a sample JCL to expand the compressed

SMPMCS and RELFILEs from the uploaded AZWE002.pax.Z file into data sets for use by the SMP/E RECEIVE

job. The JCL is repeated here for your convenience.

@zfs_path@ matches the variable that you specified in the previous step.

If the oshell command gets a RC=256 and message "pax: checksum error on tape (got ee2e,

expected 0)", then the archive file was not uploaded to the host in binary format.

GIMUNZIP allocates data sets to match the definitions of the original data sets. You might encounter

errors if your SMS ACS routines alter the attributes used by GIMUNZIP. If this occurs, specify a non-

SMS managed volume for the GINUMZIP allocation of the data sets. For example:

Normally, your Automatic Class Selection (ACS) routines decide which volumes to use. Depending on

your ACS configuration, and whether your system has constraints on disk space, units, or volumes,

some supplied SMP/E jobs might fail due to volume allocation errors. See GIMUNZIP for more details.

GIMUNZIP

The GIMUNZIP job may issue allocation error messages for SYSUT1 similar to these:

The job will end with RC=12. If this happens, add a TEMPDS control statement to the existing SYSIN as

shown below:

where, &VOLSER is a DISK volume with sufficient free space to hold temporary copies of the RELFILES. As

a guide, this may require 1,000 cylinders, or about 650 MB.

Sample installation jobs

The following sample installation jobs are provided in hlq.ZOWE.AZWE002.F1 , or equivalent, as part of

the project to help you install Zowe:

Job Name Job Type Description RELFILEJob Name Job Type Description RELFILE

ZWE1SMPE SMP/E
(Optional) Sample job to create an SMP/E

environment
ZOWE.AZWE002.F1

ZWE2RCVE RECEIVE Sample SMP/E RECEIVE job ZOWE.AZWE002.F1

ZWE3ALOC ALLOCATE
Sample job to allocate target and distribution

libraries
ZOWE.AZWE002.F1

ZWE4ZFS ALLOMZFS
(Optional) Sample job to allocate, create

mountpoint, and mount zFS data sets
ZOWE.AZWE002.F1

ZWE5MKD MKDIR
Sample job to invoke the supplied ZWEMKDIR

EXEC to allocate file system paths
ZOWE.AZWE002.F1

ZWE6DDEF DDDEF Sample job to define SMP/E DDDEFs ZOWE.AZWE002.F1

ZWE7APLY APPLY Sample SMP/E APPLY job ZOWE.AZWE002.F1

ZWE8ACPT ACCEPT Sample SMP/E ACCEPT job ZOWE.AZWE002.F1

Note: When Zowe is downloaded from the web, the RELFILE data set name will be prefixed by your chosen

high-level qualifier, as documented in the Extract and expand the compressed SMPMCS and RELFILEs

section.

You can access the sample installation jobs by performing an SMP/E RECEIVE (refer to Perform SMP/E

RECEIVE), then copy the jobs from the RELFILES to a work data set for editing and submission.

You can also copy the sample installation jobs from the product files by submitting the following job. Before

you submit the job, add a job statement and change the lowercase parameters to uppercase values to meet

the requirements of your site.

See the following information to update the statements in the sample above:

IN:

filevol is the volume serial of the DASD device where the downloaded files reside.

OUT:

jcl-library-name is the name of the output data set where the sample jobs are stored.

dasdvol is the volume serial of the DASD device where the output data set resides. Uncomment

the statement is a volume serial must be provided.

The following supplied jobs might fail due to disk space allocation errors, as mentioned above for GIMUNZIP.

Review the following sections for example error and actions that you can take to resolve the error.

ZWE2RCVE

ZWE1SMPE and ZWE4ZFS

ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

ZWE2RCVE

Add space and directory allocations to this SMPCNTL statement in the preceding ZWE1SMPE job:

This makes it as below:

ZWE1SMPE and ZWE4ZFS

Example error

Uncomment the VOLUMES(...) control statements and refer to the comments at the start of the JCL job

for related necessary changes.

ZWEMKDIR, ZWE1SMPE, ZWE2RCVE, ZWE3ALOC, ZWE4ZFS and ZWE5MKD

Example error

Uncomment the VOL=SER=&... control statements and refer to the comments at the start of the JCL job

for related necessary changes.

Create SMP/E environment (Optional)

A sample job ZWE1SMPE is provided or you may choose to use your own JCL. If you are using an existing

CSI, do not run the sample job ZWE1SMPE. If you choose to use the sample job provided, edit and submit

ZWE1SMPE. Consult the instructions in the sample job for more information.

Note: If you want to use the default of letting your Automatic Class Selection (ACS) routines decide which

volume to use, comment out the following line in the sample job ZWE1SMPE.

// SET CSIVOL=#csivol

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Perform SMP/E RECEIVE

Edit and submit sample job ZWE2RCVE to perform the SMP/E RECEIVE for Zowe. Consult the instructions in

the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Allocate SMP/E target and distributions libraries

Edit and submit sample job ZWE3ALOC to allocate the SMP/E target and distribution libraries for Zowe.

Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Allocate, create and mount ZSF files (Optional)

This job allocates, creates a mountpoint, and mounts zFS data sets.

If you plan to install Zowe into a new z/OS UNIX file system, you can edit and submit the optional ZWE4ZFS

job to perform the following tasks. Consult the instructions in the sample job for more information.

Create the z/OS UNIX file system

Create a mountpoint

Mount the z/OS UNIX file system on the mountpoint

The recommended z/OS UNIX file system type is zFS. The recommended mountpoint is /usr/lpp/zowe.

Before running the sample job to create the z/OS UNIX file system, you must ensure that OMVS is active on

the driving system. zFS must be active on the driving system if you are installing Zowe into a file system that

is zFS.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to

mount the new file system at IPL time. This action can be helpful if an IPL occurs before the installation is

completed.

See the following information to update the statements in the previous sample:

#dsn is the name of the data set holding the z/OS UNIX file system.

/usr/lpp/zowe is the name of the mountpoint where the z/OS UNIX file system will be mounted.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Allocate z/OS UNIX paths

The target system HFS or zFS data set must be mounted on the driving system when running the sample

ZWE5MKD job since the job will create paths in the HFS or zFS.

Before running the sample job to create the paths in the file system, you must ensure that OMVS is active on

the driving system and that the target system's HFS or zFS file system is mounted on the driving system.

zFS must be active on the driving system if you are installing Zowe into a file system that is zFS.

If you plan to install Zowe into a new HFS or zFS file system, you must create the mountpoint and mount the

new file system on the driving system for Zowe.

The recommended mountpoint is /usr/lpp/zowe.

Edit and submit sample job ZWE5MKD to allocate the HFS or zFS paths for Zowe. Consult the instructions in

the sample job for more information.

If you create a new file system for this product, consider updating the BPXPRMxx PARMLIB member to

mount the new file system at IPL time. This action can be helpful if an IPL occurs before the installation is

completed.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Create DDDEF entries

Edit and submit sample job ZWE6DDEF to create DDDEF entries for the SMP/E target and distribution

libraries for Zowe. Consult the instructions in the sample job for more information.

Expected Return Codes and Messages: You will receive a return code of 0 if this job runs correctly.

Perform SMP/E APPLY

In this step, you run the sample job ZWE7APLY to apply Zowe. This step can take a long time to run,

depending on the capacity of your system, and on what other jobs are running.

Follow these steps

�. Ensure that you have the latest HOLDDATA; then edit and submit sample job ZWE7APLY to perform an

SMP/E APPLY CHECK for Zowe. Consult the instructions in the sample job for more information.

The latest HOLDDATA is available through several different portals, including

http://service.software.ibm.com/holdata/390holddata.html. The latest HOLDDATA may identify HIPER

and FIXCAT APARs for the FMIDs you will be installing. An APPLY CHECK will help you determine

whether any HIPER or FIXCAT APARs are applicable to the FMIDs you are installing. If there are any

applicable HIPER of FIXCAT APARs, the APPLY CHECK will also identify fixing PTFs that will resolve the

APARs, if a fixing PTF is available.

You should install the FMIDs regardless of the status of unresolved HIPER or FIXCAT APARs. However,

do not deploy the software until the unresolved HIPER and FIXCAT APARs have been analyzed to

determine their applicability. That is, before deploying the software either ensure fixing PTFs are applied

to resolve all HIPER or FIXCAT APARs, or ensure the problems reported by all HIPER or FIXCAT APARs

are not applicable to your environment.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID,

REQ, and IFREQ on the APPLY CHECK. The SMP/E root cause analysis identifies the cause only of errors

and not of warnings (SMP/E treats bypassed PRE, ID, REQ, and IFREQ conditions as warnings, instead of

errors).

Here are sample APPLY commands:

i. To ensure that all recommended and critical service is installed with the FMIDs, receive the latest

HOLDDATA and use the APPLY CHECK command as follows

Some HIPER APARs might not have fixing PTFs available yet. You should analyze the symptom

flags for the unresolved HIPER APARs to determine if the reported problem is applicable to your

environment and if you should bypass the specific ERROR HOLDs in order to continue the

installation of the FMIDs.

This method requires more initial research, but can provide resolution for all HPERs that have fixing

PTFs available and not in a PE chain. Unresolved PEs or HIPERs might still exist and require the use

of BYPASS.

http://service.software.ibm.com/holdata/390holddata.html

ii. To install the FMIDs without regard for unresolved HIPER APARs, you can add the

BYPASS(HOLDCLASS(HIPER)) operand to the APPLY CHECK command. This will allow you to

install FMIDs, even though one of more unresolved HIPER APARs exist. After the FMIDs are

installed, use the SMP/E REPORT ERRSYSMODS command to identify unresolved HIPER APARs

and any fixing PTFs.

This method is quicker, but requires subsequent review of the Exception SYSMOD report produced

by the REPORT ERRSYSMODS command to investigate any unresolved HIPERs. If you have

received the latest HOLDDATA, you can also choose to use the REPORT MISSINGFIX command

and specify Fix Category IBM.PRODUCTINSTALL-REQUIREDSERVICE to investigate missing

recommended service.

If you bypass HOLDs during the installation of the FMIDs because fixing PTFs are not yet available,

you can be notified when the fixing PTFs are available by using the APAR Status Tracking (AST)

function of the ServiceLink or the APAR Tracking function of Resource Link.

�. After you take actions that are indicated by the APPLY CHECK, remove the CHECK operand and run the

job again to perform the APPLY.

Note: The GROUPEXTENDED operand indicates the SMP/E applies all requisite SYSMODs. The requisite

SYSMODS might be applicable to other functions.

Expected Return Codes and Messages from APPLY CHECK: You will receive a return code of 0 if the job

runs correctly.

Expected Return Codes and Messages from APPLY: You will receive a return code of 0 if the job runs

correctly.

Perform SMP/E ACCEPT

Edit and submit sample job ZWE8ACPT to perform an SMP/E ACCEPT CHECK for Zowe. Consult the

instructions in the sample job for more information.

To receive the full benefit of the SMP/E Causer SYSMOD Summary Report, do not bypass the PRE, ID, REQ,

and IFREQ on the ACCEPT CHECK. The SMP/E root cause analysis identifies the cause of errors but not

warnings (SMP/E treats bypassed PRE, ID, REQ, and IFREQ conditions as warnings rather than errors).

Before you use SMP/E to load new distribution libraries, it is recommended that you set the ACCJCLIN

indicator in the distribution zone. In this way, you can save the entries that are produced from JCLIN in the

distribution zone whenever a SYSMOD that contains inline JCLIN is accepted. For more information about

the ACCJCLIN indicator, see the description of inline JCLIN in the SMP/E Commands book for details.

After you take actions that are indicated by the ACCEPT CHECK, remove the CHECK operand and run the

job again to perform the ACCEPT.

Note: The GROUPEXTEND operand indicates that SMP/E accepts all requisite SYSMODs. The requisite

SYSMODS might be applicable to other functions.

Expected Return Codes and Messages from ACCEPT CHECK: You will receive a return code of 0 if this

job runs correctly.

If PTFs that contain replacement modules are accepted, SMP/E ACCEPT processing will link-edit or bind the

modules into the distribution libraries. During this processing, the Linkage Editor or Binder might issue

messages that indicate unresolved external references, which will result in a return code of 4 during the

ACCEPT phase. You can ignore these messages, because the distribution libraries are not executable and

the unresolved external references do not affect the executable system libraries.

Expected Return Codes and Messages from ACCEPT: You will receive a return code of 0 if this job runs

correctly.

Run REPORT CROSSZONE

The SMP/E REPORT CROSSZONE command identifies requisites for products that are installed in separate

zones. This command also creates APPLY and ACCEPT commands in the SMPPUNCH data set. You can use

the APPLY and ACCEPT commands to install those cross-zone requisites that the SMP/E REPORT

CROSSZONE command identifies.

After you install Zowe, it is recommended that you run REPORT CROSSZONE against the new or updated

target and distribution zones. REPORT CROSSZONE requires a global zone with ZONEINDEX entries that

describe all the target and distribution libraries to be reported on.

For more information about REPORT CROSSZONE, see the SMP/E manuals.

Cleaning up obsolete data sets, paths, and DDDEFs

The web download data sets listed in DASD storage requirements are temporary data sets. You can delete

these data sets after you complete the SMP/E installation.

Activating Zowe

File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you

do not have to take further actions to activate Zowe.

Zowe customization

You can find the necessary information about customizing and using Zowe on the Zowe doc site.

For more information about how to customize Zowe, see Configuring Zowe after installation.

For more information about how to use Zowe, see Using Zowe.

https://docs.zowe.org/v2.2.x/user-guide/install-zowe-smpe/mvd-configuration
https://docs.zowe.org/v2.2.x/user-guide/install-zowe-smpe/zowe-getting-started-tutorial

Version: v2.2.x LTS

Installing Zowe SMP/E build with z/OSMF
workflow

z/OSMF workflow simplifies the procedure to create an SMP/E environment for Zowe. Register and execute

the Zowe SMP/E workflow to create SMP/E environment in the z/OSMF web interface. Perform the following

steps to register and execute the Zowe workflow in the z/OSMF web interface:

�. Log in to the z/OSMF web interface.

�. Select Workflows from the navigation tree.

�. Select Create Workflow from the Actions menu.

�. Enter the complete path to the workflow definition file in the Workflow Definition filed.

The workflow is located in the ZWEWRF01 member of the hlq.ZOWE.AZWE002.F4 data set.

�. (Optional) Enter the path to the customized variable input file that you prepared in advance.

The variable input file is located in ZWEYML01 member of the hlq.ZOWE.AZWE002 data set.

Create a copy of the variable input file. Modify the file as necessary according to the built-in comments.

Set the field to the path where the new file is located. When you execute the workflow, the values from

the variable input file override the workflow variables default values.

�. Select the system where you want to execute the workflow.

�. Select Next.

�. Specify the unique workflow name.

�. Select or enter an Owner Use ID and select Assign all steps to owner user ID.

��. Select Finish.

The workflow is registered in z/OSMF and ready to execute.

��. Select the workflow that you registered from the workflow list.

��. Execute the steps in order.

For general information about how to execute z/OSMF workflow steps, watch the z/OSMF Workflows

Tutorial.

��. Perform the following steps to execute each step individually:

i. Double-click the title of the step.

ii. Select the Perform tab.

iii. Review the step contents and update the input values as required.

iv. Select Next.

v. Repeat the previous two steps to complete all items until the option Finish is available.

vi. Select Finish.

After you execute each step, the step is marked as Complete. The workflow is executed.

After you complete executing all the steps individually, the Zowe SMP/E is created.

Activating Zowe

File system execution

If you mount the file system in which you have installed Zowe in read-only mode during execution, then you

do not have to take further actions to activate Zowe.

Zowe customization

You can find the necessary information about customizing and using Zowe on the Zowe doc site.

For more information about how to customize Zowe, see Configuring Zowe after installation.

For more information about how to use Zowe, see Using Zowe.

https://www.youtube.com/watch?v=KLKi7bhKBlE&feature=youtu.be
https://docs.zowe.org/v2.2.x/user-guide/mvd-configuration
https://docs.zowe.org/v2.2.x/user-guide/zowe-getting-started-tutorial

Version: v2.2.x LTS

Installing Zowe from a Portable Software
Instance

As a systems programmer, your responsibilities include acquiring, installing, maintaining, and configuring

mainframe products on your systems. z/OSMF lets you perform these tasks. z/OSMF lets you manage

software on your z/OS systems through a browser at any time, from any location. By streamlining some

traditional tasks and automating others, z/OSMF can simplify some areas of system management and also

reduce the level of expertise that is required for managing system activities. Experienced users can view,

define, and update policies that affect system behavior, monitor system performance, and manage their

z/OS software. As products and vendors adopt z/OSMF services, you can install and maintain all your

mainframe products in a common way according to industry best practices. After configuration is complete,

you can execute the product and easily provision new software instances for use on other systems

throughout your environment.

Prerequisites

To install Zowe using z/OSMF, ensure that you meet the following requirements:

z/OSMF 2.3 or higher

1.2GB of free space

READ access to data set names with the HLQ ZWE on the user ID you use to deploy the portable

package

Procedure

Refer to the following subpages to guide you through the installation procedure using z/OSMF.

Address z/OSMF Requirements

Provides information about z/OSMF general configuration and security requirements.

Acquire a z/OSMF Portable Software Instance

Provides the steps to acquire the product software by downloading the z/OSMF portable software

instance to the z/OSMF host. You must then register the portable software instance in z/OSMF.

Install Product Software Using z/OSMF Deployments

Provides the steps to install (deploy) the portable software instance to an LPAR using z/OSMF

Deployments. This step creates the SMP/E environment and runs the RECEIVE, APPLY, and ACCEPT

steps to prepare the software instance for SMP/E operations. This step also:

When these tasks are completed, you are ready to install preventive maintenance.

Version: v2.2.x LTS

Address z/OSMF Requirements

Before you install Zowe using IBM z/OSMF, address the following installation and security requirements. Your

systems programmers and security administrators can complete these tasks in parallel.

Apply required maintenance for Common Components and Services for z/OS (CCS) Version 15.0

(SO12499)

Role: Systems programmer

The CCS PTF installs load module stubs for select IBM products into your installed CCS library

hlq.ZWE0CALL. If you are prompted during installation for the data set name of a load library for an

IBM product that is not installed, specify your installed hlq.ZWE0CALL data set name.

Configure z/OSMF

Role: Systems programmer, security administrator, domain administrator

The IBM z/OS Management Facility Configuration Guide is your primary source of information

about how to configure z/OSMF. You can open the IBM documentation in a separate browser tab

for reference during installation of your products using z/OSMF Deployments. To prevent

configuration errors and to enable z/OSMF Software Update for maintenance, apply all z/OSMF

related maintenance before you begin the installation process.

Configure z/OSMF security

Role: Security administrator

Configure z/OSMF security for ACF2, Top Secret, or IBM RACF as applicable to authorize users and

resources. To prevent SSL handshake failures when importing product information into z/OSMF,

make sure that you have added the Digicert Intermediate CA certificate to the z/OSMF keyring. For

information, see Import Product Information into z/OSMF.

Confirm that the installer has read, create, update, and execute privileges in z/OS

Role: Security administrator

Write access is also required to the UNIX System Services (USS) directories that are used for the

installation process. To deploy a product that has USS components, the installer's user ID must

have access to the appropriate resource profiles in the UNIXPRIV class, access to the

BPX.SUPERUSER resource profile in the FACILITY class, or UID(0). For UNIXPRIV, read access is

required to SUPERUSER.FILESYS.CHOWN, SUPERUSER.FILESYS.CHGRP, and

SUPERUSER.FILESYS.MOUNT.

Address USS requirements

Role: Systems programmer, security administrator

Address the following USS requirements:

Create a USS directory to receive the z/OSMF pax file and to perform the unpack steps.

Confirm that you have write authority to the USS directories that are used for the z/OSMF pax

installation process.

Confirm that you have available USS file space.

To download and unpack the pax file, you need free space that is approximately 3.5 times the pax

file size in the file system that contains the pax directories. For example, to download and unpack a

14-MB pax file, you need approximately 49 MB of free space in the file system hosting your pax

directory. If you do not have sufficient free space, error messages like EZA1490I Error writing to

data set or EZA2606W File I/O error 133 can occur.

Configure SMP/E Internet Service Retrieval

Role: Systems programmer, security administrator

Configure SMP/E Internet Service Retrieval to receive and download maintenance on a regular

cadence or build custom maintenance packages (order PTFs, APARs, critical, recommended, all, or

just HOLDDATA). This step is our recommended best practice when installing maintenance and is

required to use the z/OSMF Software Update. For configuration details, see the Mainframe

Common Maintenance Procedures documentation.

After these requirements have been addressed, you are ready to acquire a z/OSMF Portable Software

Instance or Configure a Software Instance using z/OSMF Workflows.

Version: v2.2.x LTS

Acquire a z/OSMF Portable Software
Instance

As a systems programmer, you can acquire an IBM z/OSMF portable package for your product and then add

the portable software instance to z/OSMF. The product SMP/E environments are pre-built, backed up, and

made available for download as a z/OSMF portable software instance. After you acquire the portable

software instance, you can use z/OSMF Deployments to perform the installation and z/OSMF workflows to

perform post-install configuration.

When you complete the acquisition process, the product software is ready for installation using z/OSMF

Deployments.

Note: Before you begin the acquisition process, ensure that you address the z/OSMF requirements.

The z/OSMF product acquisition process consists of the following tasks.

�. Download the portable software instance from Zowe downloads and transfer it to the mainframe.

�. Register the portable software instance in z/OSMF.

Refer to the sections below for instructions.

Download the Portable Software Instance from Zowe
Downloads

To acquire the portable software instance, you download it from the Zowe Downloads page and transfer it to

a local z/OSMF host using a file transfer utility, such as FTP.

The portable software instance is a portable form of a software instance, including the SMP/E CSI data sets,

all associated SMP/E-managed target and distribution libraries, non-SMP/E-managed data sets, and meta-

data that is required to describe the product software instance.

�. Go to Zowe Downloads and find Zowe - Portable Software Instance.

�. Download the latest version of the package to your workstation.

�. Use an file transfer utility such as an FTP client to transfer the single pax file to the mainframe.

https://www.zowe.org/download.html

�. Execute the JCL to unpack the installation file and restore the individual pax files. Sample JCL follows:

//USSBATCH EXEC PGM=BPXBATCH

//STDOUT DD SYSOUT=* //STDERR DD SYSOUT=* //STDPARM DD * sh cd

/yourUSSpaxdirectory/;

pax -rvf yourpaxfilename.ZOSMF.pax.Z

/*

Customize the sample JCL as follows and then submit for execution:

USSBATCH can take several minutes to execute. A return code of zero is expected. Any other return

code indicates a problem.

After successful execution, the individual pax files are restored and ready for use. Go to Register Portable

Software Instance in z/OSMF.

Register Portable Software Instance in z/OSMF

After you have acquired and downloaded the portable software instance to a local z/OSMF host system, you

must log in to z/OSMF to register the product software and define the portable software instance to z/OSMF

as shown in the following procedure. When you complete these steps, the portable software instance is

registered in z/OSMF and ready for installation (deployment).

�. Log in to the z/OSMF web interface and select your user ID in the top or bottom right-hand corner to

switch between the Desktop Interface and Classic Interface.

�. Complete either of the following steps to display the Software Management page:

i. In the Desktop Interface, select Software Management.

ii. In the Classic Interface, select Software, Software Management.

�. Select Portable Software Instances to define your portable software instance to z/OSMF.

�. Select Add from the Actions menu and select From z/OSMF System.

The Add Portable Software Instance page displays.

�. Select or type the system name (destination LPAR) and UNIX directory (destination USS directory)

where the portable software instance files reside and select Retrieve.

�. Enter a name for the new portable software instance. You can also enter an optional description and

assign one or more categories that display existing packages.

�. Select OK.

The new portable software instance is now defined to z/OSMF.

The portable software instance is now registered in z/OSMF and ready to install (deploy).

Version: v2.2.x LTS

Install Product Software Using z/OSMF
Deployments

As a systems programmer, your responsibilities include installing product software in your z/OS environment.

After the portable software instance or software instance is registered in z/OSMF, you can use z/OSMF

Deployments to install the product software and create the product data sets (global, CSI, target libraries,

and distribution libraries) for the new software instance. The deployment jobs create a copy of the source

product data sets to create the product target runtime environment. Creating a copy of the SMP/E target

data sets keeps the SMP/E environment clean and it also isolates the product runtime environment for

maintenance activities. You can also perform z/OSMF workflows to customize the SMP/E data sets, mount

UNIX System Services (USS) files if necessary, and configure the new software instance on the target

system.

To install Zowe PSWI using z/OSMF and make the product software available for use on a system by users

and other programs, define a new deployment. This step defines the SMP/E environment name and the

prefix of the CSI data set in z/OSMF. You also specify data set allocation parameters for all SMP/E data sets,

target libraries, and distribution libraries. To define a new deployment, complete the deployment checklist

(specify the USS path, DSN, VOLSERs), and submit the deployment jobs through the z/OSMF user interface.

When the deployment is complete, you have a source and target copy of the software.

For more information about these tasks, see Deploying software in the IBM documentation.

Subsequent maintenance activities for the product update the SMP/E environment without affecting your

active product runtime environments. You decide when to redeploy the maintenance-updated SMP/E target

data sets to each of the product runtime environments.

Note: The installer requires read, create, update, and execute privileges in z/OS. Write access is also

required to the USS directories that are used for the installation process. To deploy a product that has USS

components, the installer's user ID must have access to the appropriate resource profiles in the UNIXPRIV

class, access to the BPX.SUPERUSER resource profile in the FACILITY class, or UID(0). For UNIXPRIV, read

access is required to SUPERUSER.FILESYS.CHOWN, SUPERUSER.FILESYS.CHGRP, and

SUPERUSER.FILESYS.MOUNT.

�. Display the Deployments table in z/OSMF (Software ManagementU, Deployments).

�. Define a new deployment by selecting New from the Actions menu.

The deployment checklist displays. You can also modify, view, copy, cancel, or remove existing

https://www.ibm.com/docs/en/zos/2.4.0?topic=task-deploying-software

deployments.

�. Complete the deployment checklist items as described in Defining new deployments in the IBM

documentation.

As you complete the deployment checklist, be sure to make the following selections:

The deployment process is complete. The new software instance is defined to z/OSMF. You are now ready to

Import Product Information into z/OSMF before you install product maintenance.

Version: v2.2.x LTS

Initializing the z/OS system

After you install the Zowe runtime, you must initialize Zowe with proper security configurations and complete

some configurations before you can start it. To do this, you run the zwe init command. This step is

common for installing and configuring Zowe from either a convenience build or from an SMP/E build.

About the zwe init command

The zwe init command is a combination of the following subcommands. Each subcommand defines a

configuration.

mvs : Copy the data sets provided with Zowe to custom data sets.

security : Create the user IDs and security manager settings.

apfauth : APF authorize the LOADLIB containing the modules that need to perform z/OS privileged

security calls.

certificate : Configure Zowe to use TLS certificates.

vsam : Configure the VSAM files needed to run the Zowe caching service used for high availability (HA)

stc : Configure the system to launch the Zowe started task.

You can type zwe init --help to learn more about the command or see the zwe init command

reference for detailed explanation, examples, and parameters.

zwe init command requires a Zowe configuration file to proceed. This configuration file instructs how

Zowe should be initialized. You must create and review this file before proceeding. If you don't have the file

already, you can copy from example-zowe.yaml located in the Zowe runtime directory.

TIP

The following zwe init arguments might be useful:

The --update-config argument allows the init process to update your configuration file based

on automatic detection and your zowe.setup settings. For example, if java.home and

node.home are not defined, they can be updated based on the information that is collected on

the system. The zowe.certificate section can also be updated automatically based on your

zowe.setup.certificate settings.

https://docs.zowe.org/v2.2.x/user-guide/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/v2.2.x/user-guide/initialize-zos-system/installandconfig#zowe-configuration-file

The --allow-overwrite argument allows you to rerun the zwe init command repeatedly

regardless of whether some data sets are already created.

The -v or --verbose argument provides execution details of the zwe command. You can

use it for troubleshooting purposes if the error message is not clear enough.

The -vv or --trace argument provides you more execution details than the --verbose

mode for troubleshooting purposes.

Procedure

To initialize the z/OS system and permissions that Zowe requires, run the following command.

Next steps

The zwe init command runs the subcommands in sequence automatically. If you have successfully ran

the above command, you can move on to start Zowe.

You can choose to run the subcommands one by one to define each step based on your need, or if you

encounter some failures with zwe init command, you can pick up the failed subcommands step

specifically and rerun it.

�. Prepare custom MVS data sets. Copy the data sets provided with Zowe to custom data sets.

�. Initialize Zowe security configurations. Create the user IDs and security manager settings.

If Zowe has already been launched on a z/OS system from a previous release of Zowe v2, you can skip

this security configuration step unless told otherwise in the release documentation.

�. APF authorize load libraries containing the modules that need to perform z/OS privileged security calls..

�. Configure Zowe to use TLS certificates.

�. (Required only if you are configuring Zowe for cross LPAR sysplex high availability): Create the VSAM

data sets used by the Zowe API Mediation Layer caching service.

�. Install Zowe main started tasks.

https://docs.zowe.org/v2.2.x/user-guide/start-zowe-zos
https://docs.zowe.org/v2.2.x/user-guide/initialize-mvs-datasets
https://docs.zowe.org/v2.2.x/user-guide/initialize-security-configuration
https://docs.zowe.org/v2.2.x/user-guide/apf-authorize-load-library
https://docs.zowe.org/v2.2.x/user-guide/configure-certificates-keystore
https://docs.zowe.org/v2.2.x/user-guide/initialize-vsam-dataset
https://docs.zowe.org/v2.2.x/user-guide/install-stc-members

To learn how to run the zwe init command step by step, type zwe init <sub-command> --help .

For example, zwe init stc --help .

Version: v2.2.x LTS

Initializing Zowe custom data sets

Learn how to intialize Zowe custom MVS data sets by using the zwe init mvs command.

Introduction

During the installation of Zowe, three data sets SZWEAUTH , SZWESAMP and SZWEEXEC are created and

populated with members copied across from the Zowe installation files. The contents of these data sets

represent the original files that were provided as part of the Zowe installation and are not meant to be

modified because they will be replaced during subsequent upgrades of Zowe version 2.

For modification and execution, you must create custom data sets by using the zwe init mvs command.

For detailed information about this command, see the zwe init mvs command reference.

The zowe.yaml section that contains the parameters for the data set names is:

The storage requirements for the three data sets are included here.

Library

DDNAME

Member

Type
zowe.yaml

Target

Volume
Type Org RECF

CUST.PARMLIB

PARM

Library

Members

zowe.setup.dataset.parmlib ANY U PDSE FB

CUST.JCLLIB
JCL

Members
zowe.setup.dataset.jcllib ANY U PDSE FB

CUST.ZWESAPL

CLIST

copy

utilities

zowe.setup.dataset.authPluginLib ANY U PDSE U

https://docs.zowe.org/v2.2.x/user-guide/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs

Procedure

To initialize Zowe custom data sets, run the following command:

Here is an example of running zwe init mvs .

Results

If this step is successful, there will be three custom data sets matching the values in

zowe.setup.dataset.parmlib , zowe.setup.dataset.jcllib and

zowe.setup.dataset.authPluginLib in the zowe.yaml file. The member ZWESIP00 will exist in

the CUST.PARMLIB and the JCLLIB and ZWESAPL will be empty.

In addition to the three custom data sets, the PDS SZWEAUTH is created. This may already exist. In this

case, you will receive the error message Error ZWEL0158E: IBMUSER.ZWEV2.SZWEAUTH already

exists . You can ignore this message, or you can use the --allow-overwritten option on the

command. For example, zwe init mvs -c zowe.yaml --allow-overwritten .

Version: v2.2.x LTS

Initialize Zowe security configurations

This security configuration step is required for first time setup of Zowe. If Zowe has already been launched

on a z/OS system from a previous release of Zowe v2, you can skip this step unless told otherwise in the

release documentation.

The JCL member .SZWESAMP(ZWESECUR) is provided to assist with the security configuration. Before

submitting the ZWESECUR JCL member, you should customize it to match site security rules. For script

driven scenarios, you can run the command zwe init security which uses ZWESECUR as a template

to create a customized member in .CUST.JCLLIB which contains the commands needed to perform the

security configuration.

Configuring with zwe init security command

The zwe init security command reads data from zowe.yaml and will construct a JCL member

using ZWESECUR as a template which is then submitted. This is a convenience step to assist with driving

Zowe configuration through a pipeline or when you prefer to use USS commands rather than directly edit

and customize JCL members.

Specify the parameter --security-dry-run to construct a JCL member containing the security

commmands without running it. This is useful for previewing commands and can also be used to copy and

paste commands into a TSO command prompt for step by step manual execution. Here is an example:

Configuring with ZWESECUR JCL

You may skip using zwe init security to prepare a JCL member to configure the z/OS system, and

edit ZWESECUR directly to make changes.

The JCL allows you to vary which security manager you use by setting the PRODUCT variable to be one of

RACF , ACF2 , or TSS .

If ZWESECUR encounters an error or a step that has already been performed, it will continue to the end, so

it can be run repeatedly in a scenario such as a pipeline automating the configuration of a z/OS environment

for Zowe installation.

It is expected that the security administrator at a site will want to review, edit where necessary, and either

execute ZWESECUR as a single job or else execute individual TSO commands one by one to complete the

security configuration of a z/OS system in preparation for installing and running Zowe.

The following video shows how to locate the ZWESECUR JCL member and execute it.

Undo security configurations

If you want to undo all of the z/OS security configuration steps performed by the JCL member ZWESECUR ,

Zowe provides a reverse member ZWENOSEC that contains the inverse steps that ZWESECUR performs.

This is useful in the following situations:

You are configuring z/OS systems as part of a build pipeline that you want to undo and redo

configuration and installation of Zowe using automation.

You have configured a z/OS system for Zowe that you no longer want to use and you prefer to delete

the Zowe user IDs and undo the security configuration settings rather than leave them enabled.

If you run ZWENOSEC on a z/OS system, then you will no longer be able to run Zowe until you rerun

ZWESECUR to reinitialize the z/OS security configuration.

Next steps

The ZWESECUR JCL does not perform the following initialization steps so after you run ZWESECUR , you

must complete these steps manually to further configure your z/OS environment.

Perform APF authorization of Zowe load libraries that require access to make privileged calls

Copy the JCL members for Zowe's started tasks to a PDS on proclib concatenation path

Create VSAM data sets used by the Zowe caching service

Grant users permission to access z/OSMF

Configure an ICSF cryptographic services environment

Configure multi-user address space (for TSS only)

The ZWESECUR JCL performs the following initialization steps so you do not need to perform them

manually if you have successfully run the JCL. However, if you prefer to manually configure the z/OS

environment, you must complete the following steps next.

User IDs and groups for the Zowe started tasks

Configure ZWESLSTC to run high availability instances under ZWESVUSR user ID

Configure the cross memory server for SAF

https://docs.zowe.org/v2.2.x/user-guide/apf-authorize-load-library
https://docs.zowe.org/v2.2.x/user-guide/install-stc-members
https://docs.zowe.org/v2.2.x/user-guide/initialize-vsam-dataset
https://docs.zowe.org/v2.2.x/user-guide/grant-user-permission-zosmf
https://docs.zowe.org/v2.2.x/user-guide/initialize-security-configuration/configure-zos-system#configure-an-icsf-cryptographic-services-environment
https://docs.zowe.org/v2.2.x/user-guide/initialize-security-configuration/configure-zos-system#configure-multi-user-address-space-for-tss-only
https://docs.zowe.org/v2.2.x/user-guide/initialize-security-configuration/configure-zos-system#user-ids-and-groups-for-the-zowe-started-tasks
https://docs.zowe.org/v2.2.x/user-guide/initialize-security-configuration/configure-zos-system#configure-zweslstc-to-run-under-zwesvusr-user-ID
https://docs.zowe.org/v2.2.x/user-guide/initialize-security-configuration/configure-zos-system#configure-the-cross-memory-server-for-saf

Version: v2.2.x LTS

Configuring the z/OS system for Zowe

Learn how to configure the z/OS system for Zowe. Before you begin, check the following table to understand

which steps you need to perform based on your settings.

Configuration step Purpose

Configure an ICSF

cryptographic services

environment

Required if you want to use Zowe desktop. This step will generate

random numbers for zssServer that the Zowe desktop uses.

Configure security

environment switching

Required if you want to allow users to log on to the Zowe desktop

through impersonation.

Configure address space

job naming

Required if you want to set the names for the different z/OS UNIX

address spaces for the Zowe runtime components.

Configure multi-user

address space for TSS only

Required for TSS only. A TSS FACILITY needs to be defined and assigned

to the ZWESLSTC started task.

Configure user IDs and

groups for the Zowe started

tasks

Required if you have not run ZWESECUR and are manually creating the

user ID and groups in your z/OS environment.

Configure ZWESLSTC to

run Zowe high availability

instances under

ZWESVUSR user ID

Required if you have not run ZWESECUR and are configuring your z/OS

environment manually. This step describes how to configure the started

task ZWESLSTC to run under the correct user ID and group.

Configure the cross

memory server for SAF

Required if you have not run ZWESECUR and are configuring your z/OS

environment manually. This step describes how to configure the cross

memory server for SAF to guard against access by non-priviledged

clients.

Configuration step Purpose

Configure main Zowe

server to use identity

mapping

Required for API Mediation Layer to map client certificate to a z/OS

identity.

Configure signed SAF

Identity tokens IDT

Required to configure SAF Identity tokens on z/OS so that they can be

used by Zowe components like zss or API Mediation Layer.

Configure an ICSF cryptographic services environment

The zssServer uses cookies that require random number generation for security. To learn more about the

zssServer, see the Zowe architecture. Integrated Cryptographic Service Facility (ICSF) is a secure way to

generate random numbers.

If you have not configured your z/OS environment for ICSF, see Cryptographic Services ICSF: System

Programmer's Guide for more information. To see whether ICSF has been started, check whether the started

task ICSF or CSF is active.

If you run Zowe high availability on a Sysplex, ICSF needs to be configured in a Sysplex environment to share

KDS data sets across systems in a Sysplex. For detailed information, see Running in a Sysplex Environment

The Zowe z/OS environment configuration JCL member ZWESECUR does not perform any steps related to

ICSF that is required for zssServer that the Zowe desktop uses. Therefore, if you want to use Zowe desktop,

you must perform the steps that are described in this section manually.

To generate symmetric keys, the ZWESVUSR user who runs Zowe server started task requires READ access

to CSFRNGL in the CSFSERV class.

Define or check the following configurations depending on whether ICSF is already installed:

The ICSF or CSF job that runs on your z/OS system.

The configuration of ICSF options in SYS1.PARMLIB(CSFPRM00) , SYS1.SAMPLIB ,

SYS1.PROCLIB .

Create CKDS, PKDS, TKDS VSAM data sets.

https://docs.zowe.org/v2.2.x/getting-started/zowe-architecture#zssserver
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/abstract.htm
https://www.ibm.com/docs/en/zos/2.3.0?topic=guide-running-in-sysplex-environment

Define and activate the CSFSERV class:

If you use RACF, issue the following commands:

If you use ACF2, issue the following commands (note that profile-prefix and profile-

suffix are user-defined):

(repeat for userids IKED, NSSD, and Policy Agent)

If you use Top Secret, issue the following command (note that profile-prefix and profile-

suffix are user defined):

(repeat for user-acids IKED, NSSD, and Policy Agent)

Notes:

Determine whether you want SAF authorization checks against CSFSERV and set

CSF.CSFSERV.AUTH.CSFRNG.DISABLE accordingly.

Refer to the z/OS 2.3.0 z/OS Cryptographic Services ICSF System Programmer's Guide: Installation,

initialization, and customization.

CCA and/or PKCS #11 coprocessor for random number generation.

Enable FACILITY IRR.PROGRAM.SIGNATURE.VERIFICATION and RDEFINE CSFINPV2 if

required.

Configure security environment switching

Typically, the user ZWESVUSR that the Zowe server started task runs under needs to be able to change the

security environment of its process to allow API requests to be issued on behalf of the logged on TSO user

ID, rather than the server's user ID. This capability provides the functionality that allows users to log on to the

Zowe desktop and use apps such as the File Editor to list data sets or USS files that the logged on user is

authorized to view and edit, rather than the user ID running the Zowe server. This technique is known as

impersonation.

To enable impersonation, you must grant the user ID ZWESVUSR associated with the Zowe server started

task UPDATE access to the BPX.SERVER and BPX.DAEMON profiles in the FACILITY class.

You can issue the following commands first to check whether you already have the impersonation profiles

defined as part of another server configuration, such as the FTPD daemon. Review the output to confirm

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csfb200/iandi.htm

that the two impersonation profiles exist and the user ZWESVUSR who runs the Zowe server started task

has UPDATE access to both profiles.

If you use RACF, issue the following commands:

If you use Top Secret, issue the following commands:

If you use ACF2, issue the following commands:

If the user ZWESVUSR who runs the Zowe server started task does not have UPDATE access to both

profiles follow the instructions below.

If you use RACF, complete the following steps:

i. Activate and RACLIST the FACILITY class. This may have already been done on the z/OS

environment if another z/OS server has been previously configured to take advantage of the ability

to change its security environment, such as the FTPD daemon that is included with z/OS

Communications Server TCP/IP services.

ii. Define the impersonation profiles. This may have already been done on behalf of another server

such as the FTPD daemon.

iii. Having activated and RACLIST the FACILITY class, the user ID ZWESVUSR who runs the Zowe

server started task must be given update access to the BPX.SERVER and BPX.DAEMON profiles in

the FACILITY class.

where <zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS

environment.

/ Activate these changes /

iv. Issue the following commands to check whether permission has been successfully granted:

If you use Top Secret, complete the following steps:

i. Define the BPX Resource and access for <zowe_stc_user>.

where <zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS

environment.

ii. Issue the following commands and review the output to check whether permission has been

successfully granted:

If you use ACF2, complete the following steps:

i. Define the BPX Resource and access for <zowe_stc_user>.

where <zowe_stc_user> is ZWESVUSR unless a different user ID is being used for the z/OS

environment.

ii. Issue the following commands and review the output to check whether permission has been

successfully granted:

Configure address space job naming

The user ID ZWESVUSR that is associated with the Zowe started task must have READ permission for the

BPX.JOBNAME profile in the FACILITY class. This is to allow setting of the names for the different z/OS

UNIX address spaces for the Zowe runtime components.

To display who is authorized to the profile, issue the following command:

Additionally, you need to activate facility class, permit BPX.JOBNAME , and refresh facility class:

For more information, see Setting up the UNIX-related FACILITY and SURROGAT class profiles in the "z/OS

UNIX System Services" documentation.

Configure multi-user address space (for TSS only)

The Zowe server started task ZWESLSTC is multi-user address space, and therefore a TSS FACILITY needs

to be defined and assigned to the started task. Then, all acids signing on to the started task will need to be

authorized to the FACILITY.

The following example shows how to create a new TSS FACILITY.

Example:

In the TSSPARMS, add the following lines to create the new FACILITY:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.bpxb200/fclass.htm

For more information about how to administer Facility Matrix Table, see How to Perform Facility Matrix Table

Administration.

To assign the FACILITY to the started task, issue the following command:

To authorize a user to sign on to the FACILITY, issues the following command:

Configure user IDs and groups for the Zowe started tasks

Zowe requires a user ID ZWESVUSR to execute its main z/OS runtime started task. This user ID must have a

valid OMVS segment.

Zowe requires a user ID ZWESIUSR to execute the cross memory server started task ZWESISTC . This

user ID must have a valid OMVS segment.

Zowe requires a group ZWEADMIN that both ZWESVUSR and ZWESIUSR should belong to. This group

must have a valid OMVS segment.

If you have run ZWESECUR , you do not need to perform the steps described in this section, because the

TSO commands to create the user IDs and groups are executed during the JCL sections of ZWESECUR .

If you have not run ZWESECUR and are manually creating the user ID and groups in your z/OS environment,

the commands are described below for reference.

To create the ZWEADMIN group, issue the following command:

To create the ZWESVUSR user ID for the main Zowe started task, issue the following command:

To create the ZWESIUSR group for the Zowe cross memory server started task, issue the following

command:

Configure ZWESLSTC to run Zowe high availability
instances under ZWESVUSR user ID

You need Zowe started task ZWESLSTC for Zowe high availability. When the Zowe started task ZWESLSTC

is started, it must be associated with the user ID ZWESVUSR and group ZWEADMIN . A different user ID and

group can be used if required to conform with existing naming standards.

https://techdocs.broadcom.com/content/broadcom/techdocs/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/using/protecting-facilities/how-to-perform-facility-matrix-table-administration.html

If you have run ZWESECUR , you do not need to perform the steps described in this section, because they

are executed during the JCL section of ZWESECUR .

If you have not run ZWESECUR and are configuring your z/OS environment manually, the following steps

describe how to configure the started task ZWESLSTC to run under the correct user ID and group.

If you use RACF, issue the following commands:

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands:

Configure the cross memory server for SAF

Zowe has a cross memory server that runs as an APF-authorized program with key 4 storage. Client

processes accessing the cross memory server's services must have READ access to a security profile

ZWES.IS in the FACILITY class. This authorization step is used to guard against access by non-

priviledged clients.

If you have run ZWESECUR you do not need to perform the steps described in this section.

If you have not run ZWESECUR and are configuring your z/OS environment manually, the following steps

describe how to configure the cross memory server for SAF.

Activate the FACILITY class, define a ZWES.IS profile, and grant READ access to the user ID ZWESVUSR .

This is the user ID that the main Zowe started task runs under.

To do this, issue the following commands that are also included in the ZWESECUR JCL member. The

commands assume that you run the Zowe server under the ZWESVUSR user.

If you use RACF, issue the following commands:

To see the current class settings, use:

To define and activate the FACILITY class, use:

To RACLIST the FACILITY class, use:

To define the ZWES.IS profile in the FACILITY class and grant Zowe's started task userid READ

access, issue the following commands:

where <zowe_stc_user> is the user ID ZWESVUSR under which the Zowe server started task

runs.

To check whether the permission has been successfully granted, issue the following command:

This shows the user IDs who have access to the ZWES.IS class, which should include Zowe's

started task user ID with READ access.

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands, where owner-acid can be IZUSVR or a

different ACID:

Notes:

The cross memory server treats "no decision" style SAF return codes as failures. If there is no covering

profile for the ZWES.IS resource in the FACILITY class, the request will be denied.

Cross memory server clients other than Zowe might have additional SAF security requirements. For

more information, see the documentation for the specific client.

Configure main Zowe server to use identity mapping

This security configuration is necessary for API ML to be able to map client certificate to a z/OS identity. A

user running API Gateway must have read access to the RACF general resource IRR.RUSERMAP in the

FACILITY class. To set up this security configuration, submit the ZWESECUR JCL member. For users

upgrading from version 1.18 and lower use the following configuration steps.

Using RACF

If you use RACF, verify and update permission in the FACILITY class.

Follow these steps:

�. Verify user ZWESVUSR has read access.

�. Add user ZWESVUSR permission to read.

�. Activate changes.

Using ACF2

If you use ACF2, verify and update permission in the FACILITY class.

Follow these steps:

�. Verify user ZWESVUSR has read access.

�. Add user ZWESVUSR permission to read.

Using TSS

If you use TSS, verify and update permission in FACILITY class.

Follow these steps:

�. verify user ZWESVUSR has read access.

�. Add user ZWESVUSR permission to read.

Configure signed SAF Identity tokens (IDT)

This section provides a brief description of how to configure SAF Identity tokens on z/OS so that they can be

used by Zowe components like zss or API Mediation layer (Implement a new SAF IDT provider)

General steps are:

�. Create PKCS#11 token

�. Generate a secret key for the PKCS#11 token (you can use the sample program ZWESECKG in the

SZWESAMP dataset)

�. Define a SAF resource profile under the IDTDATA SAF resource class

Details with examples can be found in documentation of external security products:

RACF - Signed and Unsigned Identity Tokens and IDT Configuration subsections in z/OS Security

Server RACROUTE Macro Reference book, link.

Top Secret - Maintain Identity Token (IDT) Records subsection in Administrating chapter, link.

ACF2 - IDTDATA Profile Records subsection in Administrating chapter, link.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/implement-new-saf-provider
https://www.ibm.com/docs/en/zos/2.4.0?topic=reference-activating-using-idta-parameter-in-racroute-requestverify
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-top-secret-for-z-os/16-0/administrating/maintaining-special-security-records/maintain-identity-token-(idt)-records.html
https://techdocs.broadcom.com/us/en/ca-mainframe-software/security/ca-acf2-for-z-os/16-0/administrating/administer-records/profile-records/idtdata-profile-records.html

A part of the Signed SAF Identity token configuration is a nontrivial step that has to generate a secret key for

the PKCS#11 token. The secret key is generated in ICSF by calling the PKCS#11 Generate Secret Key

(CSFPGSK) or Token Record Create (CSFPTRC) callable services. An example of the CSFPGSK callable

service can be found in the SZWESAMP dataset as the ZWESECKG job.

Version: v2.2.x LTS

Granting users permission to access z/OSMF

For every TSO user ID that is going to log on to Zowe and use services that require z/OSMF, it must have

permission to access the z/OSMF services that are used by Zowe. They should be added to the group with

appropriate z/OSMF privileges, IZUUSER or IZUADMIN by default.

This step is not included in the provided Zowe JCL because it must be done for every TSO user ID who

wants to access Zowe's z/OS services. The list of those user IDs will typically be the operators,

administrators, developers, or anyone else in the z/OS environment who is logging in to Zowe.

Note: You can skip this section if you use Zowe without z/OSMF. Zowe can operate without z/OSMF but

services that use z/OSMF REST APIs will not be available, specifically the USS, MVS, and JES Explorers and

the Zowe Command Line Interface files, jobs, workflows, tso, and console groups.

To grant permissions to the user ID to access z/OSMF,

If you use RACF, issue the following command:

If you use ACF2, issue the following commands:

If you use Top Secret, issue the following commands:

Version: v2.2.x LTS

APF authorize load libraries

Learn how to perform APF authorization of Zowe load libraries that require access to make privileged calls.

Zowe contains load modules that require access to make privileged z/OS security manager calls. These are

held in two load libraries which must be APF authorized. The command zwe init apfauth will read the

PDS names for the load libraries from zowe.yaml and perform the APF authority commands.

zowe.setup.dataset.authLoadLib specifies the user custom load library, containing the

ZWELNCH , ZWESIS01 and ZWESAUX load modules. These are the Zowe launcher, the ZIS cross

memory server and the auxiliary server.

zowe.setup.dataset.authPluginLib which references the load library for ZIS plugins.

Here is an example of running zwe init apfauth :

Specify --security-dry-run to have the command echo the commands that need to be run without

them being executed.

Version: v2.2.x LTS

Configuring PKCS12 certificates

Zowe is able to use PKCS12 certificates that are stored in USS. This certificate is used for encrypting TLS

communication between Zowe clients and the Zowe z/OS servers, as well as intra z/OS Zowe server to Zowe

server. Zowe uses a keystore directory to contain its external certificate, and a truststore directory

to hold the public keys of servers it communicate with (for example z/OSMF).

Using USS PKCS12 certificates is useful for proof of concept projects using a self signed certificates. For

production usage of Zowe it is recomended to work with certificates held in z/OS keystores. Working with

z/OS keystores may require system administrator priviledges and working with your z/OS security team, so

the self signed PKCS12 path is provided to assist with configuring and launching test and scratch Zowe

instances.

Use a PKCS12 certificate

When Zowe is launched details for the PKCS12 certificate used are specified in the zowe.yaml section

certificates . This contains information for the certificate name and its location, together with the

truststore location.

The two most common scenario for using a PKCS12 certtificate are where you have been given an existing

certificate and wish to configure Zowe to use it, or else you do not have a certificate and wish to generate a

new one. The zwe init certificate command supports both scenarios. The input parameters that

control certificate configuration are specified in the section zowe.setup.certificates

Create a self signed PKCS12 certificate

The following zowe.yaml example will generate:

A PKCS12 certificate, specified in zowe.setup.certificate.type

A keystore directory /global/zowe/keystore specified in

zowe.setup.certificate.pkcs12.directory .

A certificate name (or alias) localhost specified in zowe.setup.certificate.pkcs12.name

A certificate authority name local_ca specified in

zowe.setup.certificate.certificate.pkcs12.caAlias .

To assist with updating zowe.yaml the values to generate a self signed PKCS12 certificate are included in

the section beginning # >>>> Certificate setup scenario 1 . Other certificate scenarios lower

down in the zowe.yaml file are commented out.

The zwe init certificate command will generate a certificate based on the zowe.yaml values in

the zowe.setup.certificate section. These certificate values used at runtime are referenced in the

zowe.yanl section zowe.certificates . Specify --update-config for the zwe command to

update the runtime zowe.certificates section to reference the generated certificate generated from

the zowe.setup.certificate .

The follow command output shows generation of a self signed PKCS12 certificate using the default values.

Some detailed output messages have been omitted, but the flow can be viewed that creates the CA, creates

the keystore and adds the CA to it, create the certificate and adds that to the keystore, creates the

truststore, changes directory permissions to restrict access to the private key.

Because --update-config was specified the zowe.certificates section's values are updated to

reference the newly generated certificate. These updates are logged by the zwe init certificate

command output. Open the zowe.yaml file to check the references to the newly generated certificate

values, as shown below:

When using a self-signed certificate, you will be challenged by your browser when logging in to Zowe to

accept its untrusted certificate authority. Depending on the browser you are using there are different ways to

proceed.

Manually import a certificate authority into a web browser

To avoid the browser untrusted CA challenge, you can import Zowe's certificates into the browser to avoid

untrusted network traffic challenges. For more information, see Import the local CA certificate to your

browser.

To avoid requiring each browser to trust the CA that signed the Zowe certificate, you can use a public

certificate authority such as Symantec, Comodo, Let's Encrypt, or _GoDaddy_to create a certificate. These

certificates are trusted by all browsers and most REST API clients. This option, however, requires a manual

process to request a certificate and may incur a cost payable to the publicly trusted CA.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#import-the-local-ca-certificate-to-your-browser

Version: v2.2.x LTS

Configuring JCERACFS certificates in a key
ring

Zowe is able to work with certificates held in a z/OS Keyring.

The JCL member .SZWESAMP(ZWEKRING) contains the security commands to create a keyring named

` ZoweKeyring and manage the certificate and certificate authoritie (CA) used by Zowe's servers to

encrypt TLS communications. The JCL contains commands for three z/OS security managers: RACF,

TopSecret, and ACF/2.

There are two ways to configure and submit ZWEKRING .

Customize and submit the ZWEKRING JCL member.

Customize the zowe.setup.certificate section in zowe.yaml and use the zwe init

certificate command.

If you use the zwe init certificate command this will prepare a customized JCL member using

ZWEKRING as a template.

A number of keytring scenarios are supported

Creation of a local certificate authority (CA) which is used to sign a locally generated certificate, both of

which are placed into the ZoweKeyring .

Importing an existing certificate already held in z/OS to the ZoweKeyring for use by Zowe.

Creation of a locally generated certificated and signing it with an existing certificate authority, and

placing the certificate into the key ring.

Create a certificate authority and use it to self sign a certificate

The zwe init security command takes its input from the zowe.setup.security section in

zowe.yaml . To help with customizing the file there are five sections in the file

Create a self signed JCERACFKS certificate

The following zowe.yaml example will generate:

A JCERACFKS certificate, specified in zowe.setup.certificate.type

A keyring named ZoweKeyring specified in zowe.setup.certificate.keyring.name .

A certificate with the label localhost specified in zowe.setup.certificate.keyring.label

A certificate authority with the label localca specified in

zowe.setup.certificate.keyring.caLabel with a common name Zowe Service CA .

The follow command output shows generation of a self signed JCERACFKS certificate using the default

values. Some detailed output messages have been omitted.

When the command is run a customized JCL member name in created the CUST.JCLLIB data set. The

PDS name is defined in the zowe.setup.dataset.jcllib property. In the sample below the PDS

meember USER.ZWEV2.CUST.JCLLIB(ZW101431) is created that contains the security manager

commands and then submitted as a job ID ZWEKRING(JOB03054) .

Even though the job ends with code 0 there may be failures in the individual steps. It is advised to check the

job output. The security manager commands in the job will be generated based on the value of

zowe.security.product , and the job steps for each product are broken apart by security manager.

Because the --update-config parmarater was specified the runtime configuration section of

zowe.yaml is updated to match the values to the generated keystore, certificate, and certificate authority.

Version: v2.2.x LTS

Set up Zowe certificates using workflows

Zowe uses certificates that are held in z/OS Keyring.

You can use four z/OSMF workflows that enable you to manage keyring setup, certificates, certificate sign

requests and signatures, and load certificates to a keyring. Use the following workflows to set up certificates

for Zowe in your environment:

�. Set up a Zowe certificate and keyring using ZWEKRING.xml

The ZWEKRING.xml workflow sets up a Zowe certificate and keyring. The workflow helps you set up

the certificate and keyring and has the following features:

Generates a Zowe certificate that is signed by the Zowe local CA

Imports an existing certificate that is held in z/OS to the keyring for Zowe

Imports an external Zowe certificate from a data set in PKCS12 format

Connects a z/OSMF certificate authority to the Zowe keyring

The workflow includes the steps that you can see on the following image:

Based on the variable setup from the first step, the workflow can perform various certificate

configurations and connect certificates to a keyring in RACF, TSS, and ACF2 security systems.

�. Create a certificate sign request (CSR) using ZWECRECR.xml

The ZWECRECR.xml workflow creates a CSR request and has the following features:

Based on a variable setup, generates a certificate sign request.

You must define variables.

A CSR request is stored into a data set. Then the data set is automatically converted into a USS file.

You must specify the USS file path.

The workflow includes the steps that you can see on the following image:

Note: You can find links to the specific security systems (BCM, IBM) official documentation in the

instructions section of the workflow in related steps.

�. Sign a CSR request using ZWESIGNC.xml

The ZWESIGNC.xml workflow signs a CSR request.

After the successful workflow execution, the certificate is signed by the specified certificate authority

and is stored in USS.

The workflow includes the steps that you can see on the following image:

Fill in the fields, that you can see on the following image, to sign a CSR request. Ensure that the

workflow includes the following information:

A USS location path of the CSR file

A USS location path where a signed certificate is stored in pem format

�. Load the Signed Client Authentication Certificate into ESM using ZWELOADC.xml

The ZWELOADC.xml workflow loads a signed client authentication certificate into a specific ESM

under your ACID.

The workflow can load ASCII- or EBCDIC-encoded certificate into a data set. Then, based on the

variable setup, the workflow loads the certificate into a specific ESM.

The workflow includes the steps that you can see on the following image:

Version: v2.2.x LTS

Creating VSAM caching service datasets

Zowe can work in a high availability (HA) configuration where multiple instances of the Zowe launcher are

started, either on the same LPAR or different LPARs connected through sysplex distributor. If you are only

running a single Zowe instance on a single LPAR you do not need to create a caching service so you may

skip this step.

In an HA setup the different Zowe API Mediation Gateway servers share the same northbound port (by

default 7554), and client traffic to this port is distributed between separate gateways that in turn dispatch

their work to different services. When any of the services individually become unavailable the work can be

routed to available services, which means that the initial northbound request will be fulfilled.

There are different storage methods that can be used as as the caching service for Zowe. One of these is

VSAM and this chapter describes how to create the data sets if you are using VSAM as your caching

service. If you are using another caching service such as redis or infinispan then you do not need to

create any VSAM files and you can skip the step described in this chapter. For more information on the

different caching services see Configuring the Caching Service for HA.

Using zwe init vsam command

The command zwe init vsam uses the template JCL in SZWESAMP(ZWECSVSM) . You can edit and

submit this yourself, or else if use zwe init vsam which will copy the source template member from

zowe.setup.mvs.hlq.SZWESAMP(ZWECVCSM) and create a target JCL member in

zowe.setup.mvs.jcllib(ZWECVSCM) with values extracted from the zowe.yaml file.

zowe.components.caching-service.storage.vsam.name variable

This is the data set name that the ZWECSVSM JCL will create. This is used to replace all occurrences of

#dsname in the ZWECSVSM data set.

Note: The ZWECSVSM JCL defines the key length and record length of the VSAM instance. If the key

length and record length of this JCL is changed,

zowe.environments.CACHING_STORAGE_VSAM_KEYLENGTH and

zowe.environments.CACHING_STORAGE_VSAM_RECORDLENGTH must be set to the new values.

zowe.components.caching-service.storage.mode variable

https://docs.zowe.org/v2.2.x/user-guide/configure-caching-service-ha

This specifies whether you would like to use Record Level Sharing (RLS) for your VSAM data set. RLS

is recommended for Sysplex deployment. NONRLS is also an allowed value.

zowe.setup.vsam.storageClass variable

If you use the RLS mode, a storage class is required.

zowe.setup.vsam.volume variable

If you set to use the NONRLS mode, a storage volume is required.

If you want to preview the member before submitting it use the value --security-dry-run , otherwise

the command will submit the JCL and wait for its completion.

https://www.ibm.com/support/pages/vsam-record-level-sharing-rls-overview

Version: v2.2.x LTS

Installing Zowe main started tasks

The JCL members for each of Zowe's started tasks need to be present on the JES proclib concatenation

path. The command zwe init stc will copy these from the install source location .SZWESAMP to the

targted PDS specified in the zowe.setup.dataset.proclib value USER.PROCLIB . The three proclib

member names are specified in zowe.yaml arguments.

The zwe init stc command uses the CUST.JCL LIB data sets as a staging area to contain

intermediatory JCL which are transformed version of the originals that are shiped in .SZWESAMP with

paths, PDS locations, and other runtime data updated. If you wish to just generate the CUST.JCLLIB

members without having them copied to USER.PROCLIB , specify --security-dry-run . If the JCL

members are already in the target PROCLIB, specify --allow-overwritten .

Here is an example:

Version: v2.2.x LTS

Installing and configuring the Zowe cross
memory server (ZWESISTC)

The Zowe cross memory server, also known as ZIS, provides privileged cross-memory services to the Zowe

Desktop and runs as an APF-authorized program. The same cross memory server can be used by multiple

Zowe desktops. The cross memory server is needed to be able to log on to the Zowe desktop and operate

its apps such as the File Editor. If you wish to start Zowe without the desktop (for example bring up just the

API Mediation Layer), you do not need to install and configure a cross memory server and can skip this step.

To install and configure the cross memory server, you must define APF-authorized load libraries, program

properties table (PPT) entries, and a parmlib. This requires familiarity with z/OS.

PDS sample library and PDSE load library

Load module

APF authorize

Key 4 non-swappable

PARMLIB

PROCLIB

SAF configuration

Summary of cross memory server installation

Starting and stopping the cross memory server on z/OS

Zowe auxiliary service

When to configure the auxiliary service

Installing the auxiliary service

PDS sample library and PDSE load library

The cross memory server runtime artifacts, the JCL for the started tasks, the parmlib, and members

containing sample configuration commands are found in the SZWESAMP PDS sample library.

The load modules for the cross memory server and an auxiliary server it uses are found in the SZWEAUTH

PDSE.

Convenience Build The location of SZWESAMP and SZWEAUTH for a convenience build depends on

the value of the zowe.setup.dataset.prefix parameters in the zowe.yaml file used to

configure the zwe install command, see Install the MVS data sets.

SMP/E For an SMP/E installation, SZWESAMP and SZWEAUTH are the SMP/E target libraries whose

location depends on the value of the #thlq placeholder in the sample member

AZWE001.F1(ZWE3ALOC) .

The cross memory server is a long running server process that, by default, runs under the started task name

ZWESISTC with the user ID ZWESIUSR and group of ZWEADMIN .

The ZWESISTC started task serves the Zowe desktop that is running under the ZWESLSTC started task,

and provides it with secure services that require elevated privileges, such as supervisor state, system key, or

APF-authorization.

The user ID ZWESIUSR that is assigned to the cross memory server started tasks must have a valid OMVS

segment and read access to the load library SZWEAUTH and PARMLIB data sets. The cross memory server

loads some functions to LPA for its PC-cp services.

To install the cross memory server, enable the PROCLIB, PARMLIB, and load module. This topic describes

the steps to do this manually.

Load module

The cross memory server load module ZWESIS00 is installed by Zowe into a PDSE SZWEAUTH . For the

cross memory server to be started, the load module needs to be APF-authorized and the program needs to

run in key(4) as non-swappable.

APF authorize

APF authorize the PDSE SZWESAUTH . This allows the SMP/E APPLY and RESTORE jobs used for applying

maintenance to be operating on the runtime PDSE itself when PTF maintenance is applied.

Do not add the SZWEAUTH data set to the system LNKLIST or LPALST concatenations.

To check whether a load library is APF-authorized, you can issue the following command:

https://docs.zowe.org/v2.2.x/user-guide/install-zowe-zos-convenience-build#step-5-install-the-mvs-data-sets

where the value of DSNAME is the name of the SZWEAUTH data set as created during Zowe installation that

contains the ZWESIS01 load module.

Issue one of the following operator commands to dynamically add the load library to the APF list (until next

IPL), where the value of DSNAME is the name of the SZWEAUTH data set, as created during Zowe

installation.

If the load library is not SMS-managed, issue the following operator command, where volser is the

name of the volume that holds the data set:

If the load library is SMS-managed, issue the following operator command:

Configuring using zwe init apfauth

If you are using the zwe init command to configure your z/OS system, the step zwe init apfauth

can be used to generate the SETPROG commands and execute them directly. This takes the input

parameters zowe.setup.mvs.authLoadLib for the SZWEAUTH PDS location, and

zowe.setup.mvs.authPluginLib for the location of the PDS that is used to contain plugins for the

cross memory server. For more information on zwe init apfauth see, APF Authorize Load Libraries.

Making APF auth be part of the IPL

Add one of the following lines to your active PROGxx PARMLIB member, for example

SYS1.PARMLIB(PROG00) , to ensure that the APF authorization is added automatically after next IPL. The

value of DSNAME is the name of the SZWEAUTH data set, as created during Zowe installation:

If the load library is not SMS-managed, add the following line, where volser is the name of the

volume that holds the data set:

If the load library is SMS-managed, add the following line:

The PDS member SZWESAMP(ZWESIMPRG) contains the SETPROG statement and PROGxx update for

reference.

Key 4 non-swappable

The cross memory server load module ZWESIS01 must run in key 4 and be non-swappable. For the server

to start in this environment, add the following PPT entries for the server and address spaces to the SCHEDxx

member of the system PARMLIB.

https://docs.zowe.org/v2.2.x/user-guide/apf-authorize-load-library

The PDS member SZWESAMP(ZWESISCH) contains the PPT lines for reference.

Then, issue the following command to make the SCHEDxx changes effective:

PARMLIB

The ZWESISTC started task must find a valid ZWESIPxx PARMLIB member in order to be launched

successfully. The SZWESAMP PDS created at installation time contains the member ZWESIP00 with

default configuration values. You can copy this member to another data set, for example your system

PARMLIB data set, or else leave it in SZWESAMP .

If you choose to leave ZWESIPxx in the installation PDS SZWESAMP used at installation time, this has

advantages for SMP/E maintenance because the APPLY and RESTORE jobs will be working directly against

the runtime library.

Wherever you place the ZWESIP00 member, ensure that the data set is listed in the PARMLIB DD

statement of the started task ZWESISTC .

PROCLIB

For the cross memory server to be started, you must move the JCL PROCLIB ZWESISTC member from the

installation PDS SAMPLIB SZWESAMP into a PDS that is on the JES concatenation path.

You need to update the ZWESISTC member in the JES concatenation path with the location of the load

library that contains the load module ZWESIS01 by editing the STEPLIB DD statement of ZWESISTC . Edit

the PARMLIB DD statement to point to the location of the PDS that contains the ZWESIP00 member.

For example, the sample JCL below shows ZWESISTC where the APF-authorized PDSE containing

ZWESIS01 is IBMUSER.ZWEV2.SZWEAUTH(ZWESIS01) and the PDS PARMLIB containing ZWESIP00 is

IBMUSER.ZWEV2.SZWESAMP(ZWESIP00) .

SAF configuration

Because the ZIS server makes z/OS security calls it restrits which clients are able to use it services, by

requiring them to have READ access to a security profile ZWES.IS in the FACILITY class.

The Zowe launcher started task ZWESLSTC needs to be able to access the ZIS server, which requires that

the user ID ZWESVUSR has access to ZWES.IS . The steps to do this are desribed in Configure the cross

memory server for SAF.

Summary of cross memory server installation

You can start the cross memory server using the command /S ZWESISTC once the following steps have

been completed.

JCL member ZWESVSTC is copied from SZWESAMP installation PDS to a PDS on the JES

concatenation path.

The PDSE Load Library SZWEAUTH is APF-authorized, or Load module ZWESI00 is copied to an

existing APF Auth LoadLib.

The JCL member ZWESVSTC DD statements are updated to point to the location of ZWESI00 and

ZWESIP00 .

The load module ZWESI00 must run in key 4 and be non-swappable by adding a PPT entry to the

SCHEDxx member of the system PARMLIB PPT PGMNAME(ZWESI00) KEY(4) NOSWAP .

Starting and stopping the cross memory server on z/OS

The cross memory server is run as a started task from the JCL in the PROCLIB member ZWESISTC . It

supports reusable address spaces and can be started through SDSF with the operator start command with

the REUSASID=YES keyword:

The ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task

manually.

To end the Zowe cross memory server process, issue the operator stop command through SDSF:

Note:

The starting and stopping of the ZWESVSTC started task for the main Zowe servers is independent of the

ZWESISTC cross memory server, which is an angel process. If you are running more than one ZWESVSTC

instance on the same LPAR, then these will be sharing the same ZWESISTC cross memory server. Stopping

ZWESISTC will affect the behavior of all Zowe servers on the same LPAR that use the same cross-memory

server name, for example ZWESIS_STD. The Zowe Cross Memory Server is designed to be a long-lived

address space. There is no requirement to recycle regularly. When the cross-memory server is started with a

https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system#configure-the-cross-memory-server-for-saf

new version of its load module, it abandons its current load module instance in LPA and loads the updated

version.

To diagnose problems that may occur with the Zowe ZWESVSTC not being able to attach to the

ZWESISTC cross memory server, a log file zssServer-yyyy-mm-dd-hh-mm.log is created in the log

directory each time ZIS is started. More details on diagnosing errors can be found in Zowe Application

Framework issues.

Zowe auxiliary service

Under some situations in support of a Zowe extension, the cross memory server will start, control, and stop

an auxiliary address space. This run as a ZWESASTC started task that runs the load module ZWESAUX .

When to configure the auxiliary service

Under normal Zowe operation, you will not see any auxiliary address spaces started. However, if you have

installed a vendor product running on top of Zowe, this may use the auxiliary service so it should be

configured to be launchable. A vendor product documentation will specify whether it needs the Zowe

auxiliary service to be configured so ensure that it is needed before attempting the configuration steps.

If you are just using core Zowe functionality, you do not need to configure the auxiliary service. Even with the

Zowe auxiliary service configured, there is no situation under which you should manually start the

ZWESASTC started task.

Installing the auxiliary service

To install the auxiliary service to allow it to run, you take similar steps to install and configure the cross

memory server as described above, but with a different JCL PROBLIC member and a different load module.

There is no PARMLIB for the auxiliary service.

JCL member ZWESASTC is copied from SZWESAMP installation PDS to a PDS on the JES

concatenation path.

The PDSE load library SZWEAUTH is APF-authorized, or load module ZWESAUX is copied to an existing

APF Auth LoadLib.

The load module ZWESAUX must run in key 4 and be non-swappable by adding a PPT entry to the

SCHEDxx member of the system PARMLIB PPT PGMNAME(ZWESAUX) KEY(4) NOSWAP .

Important!

https://docs.zowe.org/v2.2.x/troubleshoot/app-framework/app-troubleshoot#cannot-log-in-to-the-zowe-desktop

The cross memory ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the

ZWESASTC task manually.

Version: v2.2.x LTS

Zowe Auxiliary Address space

The cross memory server runs as a started task ZWESISTC that uses the load module ZWESIS01 .

In some use cases, the Zowe cross memory server has to spawn child address spaces, which are known as

auxiliary (AUX) address spaces. The auxiliary address spaces run as the started task ZWESASTC using the

load module ZWESAUX and are started, controlled, and stopped by the cross memory server.

An example of when an auxiliary address space is used is for a system service that requires supervisor state

but cannot run in cross-memory mode. The service can be run in an AUX address space which is invoked by

the Cross Memory Server acting as a proxy for unauthorized users of the service.

Do not install the Zowe auxiliary address space unless a Zowe extension product's installation guide

explicitly asks for it to be done. This will occur if the extension product requires services of Zowe that cannot

be performed by the cross memory server and an auxiliary address space needs to be started.

A default installation of Zowe does not require auxiliary address spaces to be configured.

You do not start or stop the ZWESASTC manually.

Version: v2.2.x LTS

Configure Zowe with z/OSMF Workflows

As a system programmer, after you install Zowe, you can register and execute the z/OSMF workflows in the

web interface to complete the Zowe configuration. z/OSMF helps to simplify the Zowe configuration tasks

and reduce the level of expertise that is needed for Zowe configuration.

Ensure that you meet the following requirements before you start the Zowe configuration:

Install and configure z/OSMF

Install Zowe with an SMP/E build, PSWI, or a convenience build

You can complete the following tasks with the z/OSMF workflow:

Configure the Zowe instance directory

Enable the API ML gateway

Enable the metrics service

Enable the API catalog

Enable automatic discovery

Enable a caching service

Enable an application server

Enable the ZSS component

Enable the jobs API

Enable the files API

Enable JES Explorer

Enable MVS Explorer

Enable USS Explorer

You can execute the Zowe configuration workflow either from a PSWI during deployment or later from a

created software instance in z/OSMF. Alternatively, you can execute the configuration workflow z/OSMF

during the workflow registration process.

Configure the Zowe instance directory

The Zowe instance directory contains configuration data that is required to launch a Zowe runtime. This

includes port numbers, location of dependent runtime such as Java, Node, z/OSMF, as well as log files.

When Zowe is started, configuration data is read from files in the instance directory and logs will be written

to files in the instance directory. Zowe has three runtime systems: the z/OS Service microservice server, the

Zowe Application Server, and the Zowe API Mediation Layer microservices.

Register the ZWECONF.xml workflow definition file in the z/OSMF web interface to create a Zowe instance

directory and start the Zowe started task. The path to the workflow definition file is

<pathPrefix>/workflows/

After you register the workflow definition file, perform the following steps to complete the process:

�. Define variables

The workflow includes the list of instance configuration and the Zowe variables. Enter the values for

variables based on your mainframe environment, Zowe instance configuration, and wanted

components.

�. Create configuration

Execute the step to create a configuration zowe.yaml file with the variable setup that was defined in step

1.

�. Run Zowe install

Execute the zwe install command with the previously stored zowe.yaml file as a parameter.

If you receive an error message (such as RC higher than 0), ensure that you edit incorrect input values

or system setup before you re-run the zwe install command. To overwrite changed output, edit

the step by adding the --allow-overwritten tag to the install command.

Example: Command that re-runs the installation

�. Run Zowe init

Execute the zwe init command with the previously stored zowe.yaml file as a parameter.

Note: Messages and error codes from the subsequent JOBS command are not forwarded back to

z/OSMF.

The zwe init command is a combination of the following sub-commands that define configuration:

mvs: Copies the data sets that are provided with Zowe to custom data sets.

security: Creates user IDs and security manager settings.

apfauth: APF authorizes the LOADLIB that contains the modules that perform priviledged security

calls on z/OS.

certificate: Configures Zowe to use TLS certificates.

vsam: Configures the VSAM files that help run the Zowe caching service for high availability (HA)

stc: Configures the system to launch the Zowe started task.

If you execute the init step again, either manually delete failed artifacts that are created from previous

init steps or edit the step by adding the --allow-overwritten tag to the init command.

Example: Command that re-runs init

After you execute each step, the step is marked as complete. After completing the workflow execution, you

can view the Zowe started task.

Execute the configuration workflow

You can use the following methods to execute the configuration workflow:

Directly from a PSWI during deployment

From a deployed software instance (SI)

From the Workflows tab in the z/OSMF web UI

Execute workflow from PSWI

In the PSWI deployment phase, you are presented with the checklist that helps guide you during the

deployment process.

The perform workflows step enables you to run either all attached workflows or just the mandatory one —

the post-deployment workflow for mounting.

Execute workflow from software instance

Software instance is created after PSWI deployment is complete. Execute a workflow from an SI.

Follow these steps:

�. Log in to z/OSMF.

�. Select the Software Management panel.

�. In the displayed table, select Software Instances.

�. Select the checkbox next to the Software Instance Name column for the instance you want to execute

the workflow against.

�. Select the Perform Workflows option from the Actions menu.

The Software Management Software Instances Perform Workflows dialog opens.

�. Select the Create Workflow option from the Actions menu.

�. In the displayed table, click on the name of the workflow you want to execute.

�. Click OK.

The Workflows tab with the previously selected workflow opens.

�. Execute the workflow steps.

You have successfully executed a workflow from a software instance.

Register and execute workflow in the z/OSMF web
interface

z/OSMF workflow simplifies the procedure to configure and start Zowe. Execute the following steps to

register and execute the workflow in the z/OSMF web interface:

�. Log in to the z/OSMF web interface and select Use Desktop Interface.

�. Select the Workflows File.

�. Select Create Workflow from the Actions menu.

The Create Workflow panel appears.

�. Enter the complete USS path to the workflow you want to register in the Workflow Definition File field.

If you installed Zowe with the SMP/E build, the workflow is located in the SMP/E target zFS file

system that was mounted during the installation.

(Optional) Enter the complete USS path to the edited workflow properties file in the Workflow

Variable Input File field. Use this file to customize product instances and automate workflow

execution, saving time and effort when deploying multiple standardized Zowe instances. The

values from this file override the default values for the workflow variables.

The sample properties file is located in the same directory with the workflow definition file. Create a

copy of this file, and then modify as described in the file. Set the field to the path where the new file

is located.

Note: If you use the convenience build, the workflows and variable input files are located in the

USS runtime folder in files/workflows.

�. Select the System where the workflow runs.

�. Select Next.

�. Specify a unique Workflow name.

�. Select or enter an Owner user ID, and select Assign all steps to owner user ID.

�. Select Finish.

The workflow is registered in z/OSMF. The workflow is available for execution to deploy and configure

the Zowe instance.

��. Perform the following steps to execute each step individually:

a. Double-click the title of the step.

b. Select the Perform tab.

c. Review the step contents and update the input values.

d. Select Next.

Repeat the previous two steps to complete all items until the Finish option is available.

��. Select Finish.

After you execute each step, the step is marked as Complete. The workflow is executed.

Version: v2.2.x LTS

Overview

Zowe has high availability feature built-in. This doc guides you through the configuration steps to enable this

feature.

Enable high availability when Zowe runs in Sysplex

Sysplex is required to make sure multiple Zowe instances can work together. Check Configuring Sysplex

for high availability for more details.

z/OSMF is an optional prerequisite of Zowe. If your Zowe instance works with z/OSMF, it's

recommended to configure z/OSMF for high availability in Sysplex.

The haInstances section must be defined in the Zowe YAML configuration. Check Zowe YAML

Configuration File Reference for more details.

Zowe caching service is required to convert stateful component to stateless component. Check

Configuring the Caching Service for HA for details.

Known limitations

To allow Sysplex Distributor to route traffic to the Gateway, you can only start one Gateway in each

LPAR within the Sysplex. All Gateways instances should be started on the same port configured on

Sysplex Distributor.

Zowe App Server should be accessed through the Gateway with a URL like https://<dvipa-

domain>:<external-port>/zlux/ui/v1 .

Enable high availability when Zowe runs in Kubernetes

If you deploy Zowe into Kubernetes, all components can also achieve high availability if you enable more

than one replicas for each component.

HorizontalPodAutoscaler is recommanded to let Kubernetes scales the component based on

workdload.

PodDisruptionBudget is recommended to let Kubernetes automatically handles disruptions like

upgrade.

https://docs.zowe.org/v2.2.x/user-guide/zowe-ha-overview/configure-sysplex
https://docs.zowe.org/v2.2.x/user-guide/zowe-ha-overview/systemrequirements-zosmf-ha
https://docs.zowe.org/v2.2.x/appendix/zowe-yaml-configuration
https://docs.zowe.org/v2.2.x/user-guide/zowe-ha-overview/configure-caching-service-ha
https://docs.zowe.org/v2.2.x/user-guide/zowe-ha-overview/k8s-config#horizontalpodautoscaler
https://docs.zowe.org/v2.2.x/user-guide/zowe-ha-overview/k8s-config#poddisruptionbudget

Version: v2.2.x LTS

Configuring Sysplex for high availability

To deploy Zowe high availability, you must set up the Parallel Sysplex® environment. A Parallel Sysplex is a

collection of z/OS® systems that cooperatively use certain hardware and software components to achieve a

high-availability workload processing environment.

Sysplex environment requirements

Zowe high availability instances require a Sysplex environment that consists of the following:

One or more central processor complexes (CPCs) that can attach to a coupling facility

At least one coupling facility

At least one Sysplex timer

Connection to shared DASD

Shared SAF database, see Sharing a database with sysplex communication in data sharing mode

Sysplex Distributor with configured Dynamic VIPA TCP/IP address, see Configuring Sysplex Distributor

for instructions

VSAM record-level sharing (RLS), see Preparing for VSAM record-level sharing

USS Shared file system, see How to share file systems in a Sysplex

JESPlex/JES2 Multi-Access Spool (MAS) environment

z/OSMF high availability, see Configuring z/OSMF high availability in Sysplex

Node.js v14.x (except v14.17.2) or v16.x

Note: It is highly recommended that Node.js installed on a shared file system.

Configuring Sysplex Distributor

https://www.ibm.com/docs/en/zos/2.1.0?topic=sd-sharing-database-sysplex-communication-in-data-sharing-mode
https://www.ibm.com/docs/en/zos/2.4.0?topic=sharing-preparing-vsam-record-level
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zosmf-ha

The following example DVIPA configuration ensures the availability of Zowe in Hot-Standby mode. For

example, suppose that you have a Sysplex of two z/OS systems: A, B.

�. Enable dynamic XCF on each host by adding the following TCP/IP definitions:

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.A 255.255.255.0 1 for SYSA

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.B 255.255.255.0 1 for SYSB

�. Define a DVIPA for both systems:

where,

x.x.x.A is the home address for SYSA.

x.x.x.B is the home address for SYSB.

x.x.x.V is Dynamic VIP Address.

7554 is the port number of you Zowe API Mediation Layer Gateway. This should be the same port

number you configured for zowe.externalPort in zowe.yaml . See Zowe YAML

configuration file reference to learn more about zowe.yaml .

The VIPADISTRIBUTE statement with PREFERRED and BACKUP settings is used to enable automatic

dynamic VIPA takeover to occur, if needed.

All Zowe instances are bound to the DVIPA x.x.x.V. With both z/OS systems active in the Sysplex, the

preferred Zowe instance, SYSA receives all new incoming requests. If SYSA fails, new work requests to Zowe

are routed to the server on SYSB. When SYSA resumes normal operations, new work requests for Zowe are

routed to SYSA again. This is the default behavior because the AUTOSWITCHBACK parameter of the

VIPADISTRIBUTE statement is in effect by default.

If you do not want the distributor to switch back to the preferred target when it becomes available, you can

specify the NOAUTOSWITCHBACK parameter for the VIPADISTRIBUTE statement.

https://docs.zowe.org/v2.2.x/user-guide/appendix/zowe-yaml-configuration

Version: v2.2.x LTS

Configuring z/OSMF for high availability in
Sysplex

z/OSMF high availability (HA) should be configured in Hot Standby mode to ensure availability of REST

services. The goal of this configuration is to ensure that one z/OSMF server is always available to provide the

REST services.

In Hot Standby mode, there is at least one backup (hot-standby) server and a preferred target server. Both

targets are active, and both z/OSMF servers are bound to the DVIPA. The preferred z/OSMF server receives

all new incoming requests. When the preferred z/OSMF server fails or the system becomes down, new

requests are routed to the backup (hot-standby) server. The distributing DVIPA does not perform load

balancing of requests across multiple systems. For more information, read the following articles in IBM

Documentation:

Configuring z/OSMF for availability

Configuring z/OSMF for high availability

Sysplex environment requirements

Before you begin, ensure that the Sysplex environment meets the following requirements for z/OSMF REST

services:

Shared SAF database. See Sharing a database with sysplex communication in data sharing mode in IBM

Documentation.

USS Shared file system. See How to share file systems in a Sysplex in IBM Documentation.

JESPlex/JES2 Multi-Access Spool (MAS) environment

Sysplex distributor, configured Dynamic VIPA TCP/IP address

Extended MCS console (EMCS)

Setting up z/OSMF nucleus

This information is intended for a first-time z/OSMF setup. Follow these high-level steps to create a

z/OSMF nucleus on your system.

https://www.ibm.com/docs/en/zos/2.2.0?topic=environment-configuring-zosmf-availability
https://www.ibm.com/docs/en/zos/2.4.0?topic=configurations-configuring-zosmf-high-availability
https://www.ibm.com/docs/en/zos/2.1.0?topic=sd-sharing-database-sysplex-communication-in-data-sharing-mode
https://www.ibm.com/docs/en/zos/2.4.0?topic=planning-sharing-file-systems-in-sysplex

For detailed information about each step, see Create a z/OSMF nucleus on your system in IBM

Documentation.

�. Create the z/OSMF security authorizations by running the sample JCL SYS1.SAMPLIB(IZUSEC).

z/OSMF security authorizations will be used by all z/OSMF servers across multiple systems.

�. Create a shared file system per z/OSMF server by running the sample JCL SYS1.SAMPLIB(IZUMKFS).

It holds configuration settings and the persistence data.

�. Copy the Sample Parmlib Member SYS1.SAMPLIB(IZUPRM00) to PARMLIB and modify it according to

requirements of z/OSMF HA parmlib member in Sysplex. Each system uses a different IZUPRMxx

member. For example, IZUPRM0A and IZUPRM0B.

�. Copy the following z/OSMF procedures from SYS1.PROCLIB into your JES concatenation:

IZUSVR1 (Each z/OSMF server should use the different started procedure. For example, IZUSVRA

and IZUSVRB.)

IZUANG1

IZUFPROC

�. Define different STARTED profiles for z/OSMF servers.

Requirements of z/OSMF HA parmlib member in Sysplex

AUTOSTART_GROUP, more than one z/OSMF server (independent z/OSMF instances) is to be

autostarted in a Sysplex. For instance, System A will autostart a server and similarly, System B will

autostart the second z/OSMF server.

z/OSMF has a default autostart group (IZUDFLT) which is used in monoplex or single z/OS image. To

have more z/OSMF servers autostarted in a Sysplex, you must associate each server and the systems it

serves with a unique autostart group name. For example, AUTOSTART_GROUP('IZUDFLA') for

System A and AUTOSTART_GROUP('IZUDFLB') for System B

AUTOSTART(LOCAL) should be used by all z/OSMF instances.

HOSTNAME, the DVIPA address will be used as the z/OSMF host name for all instances.

HTTP_SSL_PORT, all servers are listening on the same port.

KEYRING_NAME, all servers should use the same key ring such as IZUKeyring.IZUDFLT .

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.izua300/izulite_CreateTheNucleus.htm

SERVER_PROC, each z/OSMF server should use the different started procedure. For example, IZUSVRA

and IZUSVRB.

ANGEL_PROC, all z/OSMF servers can connect to the same z/OSMF angel process such as IZUANG1.

SAF_PREFIX, they should use the same SAF profile prefix such as IZUDFLT.

USER_DIR, each instance uses a shared file system with a unique mount point for each AUTOSTART

group that be automatically started. For example, /global/zosmf/zosmfa and

/global/zosmf/zosmfb .

Configuring z/OSMF for high availability

The following DVIPA configuration ensures the availability of z/OSMF for Hot-Standby. For example, suppose

that you have a Sysplex of two z/OS systems: A, B.

�. Enable dynamic XCF on each host by adding the following TCP/IP definitions:

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.A 255.255.255.0 1 for SYSA

IPCONFIG SYSPLEXROUTING DYNAMICXCF x.x.x.B 255.255.255.0 1 for SYSB

�. Define a dynamic VIPA (DVIPA) for both systems:

where,

x.x.x.A is the home address for SYSA.

x.x.x.B is the home address for SYSB.

x.x.x.V is Dynamic VIP Address.

The VIPADISTRIBUTE statement with PREFERRED and BACKUP settings is used to enable automatic

dynamic VIPA takeover to occur, if needed.

Both z/OSMF servers are bound to the DVIPA x.x.x.V. With both z/OS systems active in the Sysplex, the

preferred z/OSMF server, SYSA receives all new incoming requests. If SYSA fails, new work requests for

z/OSMF are routed to the server on SYSB. When SYSA resumes normal operations, new work requests for

z/OSMF are routed to SYSA again. This is the default behavior because the AUTOSWITCHBACK parameter

of the VIPADISTRIBUTE statement is in effect by default.

If you do not want the distributor to switch back to the preferred target when it becomes available, you can

specify the NOAUTOSWITCHBACK parameter for the VIPADISTRIBUTE statement.

Version: v2.2.x LTS

Configuring the Caching Service for HA

Zowe uses the Caching Service to centralize the state data persistent in high availability (HA) mode. If you

are runnning the caching service on z/OS there are three storage methods: inMemory , infinispan or

VSAM . If you are running the caching service off platform, such as a linux or windows container image, it is

also possible to specify redis or infinispan .

To learn more about Caching Service, see Using the Caching Service.

For users

inMemory

This storage method is designed for quick start of the service and should be used only for single

instance scenario and development or test purpose. Do not use it in production or high availability

scenario.

To use this method, set the zowe.components.caching-service.storage.mode value to

inMemory in the zowe.yaml configuration file. When this method is enabled, the Caching Service

will not persist any data.

VSAM

To use this method,

i. Set the value of zowe.components.caching-service.storage.mode value to VSAM in the

zowe.yaml configuration file.

ii. Create a VSAM data set. See Initialize VSAM data set for instructions. There are two ways to create

the data set, either using the JCL member SZWESAMP(ZWECVSEM) where the data set name is

defined in the #dsname variable.

iii. In zowe.yaml , configure zowe.components.caching-sevice.storage.vsam.name with

the VSAM data set name. If in step 2 you used zwe init vsam to create the VSAM data set

then the values will already be set.

redis

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-caching-service
https://docs.zowe.org/v2.2.x/user-guide/initialize-vsam-dataset

Redis is not available if you are running the API Mediation Layer on z/OS under unix system services. Its

usage is for when the APIML is running off platform, such as in a linux or windows container as part of a

hybrid cloud deployment.

To enable this method, set the value of zowe.components.caching-service.storage.mode to

redis in the zowe.yaml configuration file. There are a number of values to control the redis nodes,

sentinel and ssl properties that will need to be set in the zowe.yaml file. For more information on

these properties and their values see Redis configuration.

infinispan

Infinispan is designed to be run mainly on z/OS since it offers good performance. To enable this

method, set the value of zowe.components.caching-service.storage.mode to infinispan

in the zowe.yaml configuration file. Infinispan environment variables are not currently following the v2

naming convention, so they must be defined into zowe.environments section. For more information

on these properties and their values see Infinispan configuration.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-redis#redis-configuration
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-infinispan#infinispan-configuration

Version: v2.2.x LTS

Starting and stopping Zowe

Zowe consists 3 main started tasks:

ZWESLSTC as Zowe main started task,

ZWESISTC as Zowe cross memory server

and ZWESASTC as Zowe cross memory auxiliary server.

Starting and stopping the cross memory server ZWESISTC
on z/OS

The cross memory server is run as a started task from the JCL in the PROCLIB member ZWESISTC . It

supports reusable address spaces and can be started through SDSF with the operator start command with

the REUSASID=YES keyword:

The ZWESISTC task starts and stops the ZWESASTC task as needed. Do not start the ZWESASTC task

manually.

To end the Zowe cross memory server process, issue the operator stop command through SDSF:

Note:

The starting and stopping of the ZWESLSTC started task for the main Zowe servers is independent of the

ZWESISTC cross memory server, which is an angel process. If you are running more than one ZWESLSTC

instance on the same LPAR, then these will be sharing the same ZWESISTC cross memory server. Stopping

ZWESISTC will affect the behavior of all Zowe servers on the same LPAR that use the same cross-memory

server name, for example ZWESIS_STD . The Zowe Cross Memory Server is designed to be a long-lived

address space. There is no requirement to recycle regularly. When the cross-memory server is started with a

new version of its load module, it abandons its current load module instance in LPA and loads the updated

version.

Starting and stopping the cross memory auxiliary server
ZWESASTC on z/OS

This is handled automatically by Zowe cross memory server. You don't need to manually start or stop this

started task.

Starting and stopping Zowe main server ZWESLSTC on z/OS
with zwe server command

Zowe ships zwe start and zwe stop commands to help you start and stop Zowe main server.

To start Zowe, run zwe start --config /path/to/my/zowe.yaml command. It will issue S

command to Zowe ZWESLSTC .

Here is an example:

Job name ZWE1SV can be customized with zowe.job.name in your Zowe configuration file.

You can use zwe start command to start a Zowe high availability instance defined on other LPAR within

the Sysplex. For example, zwe start --config /path/to/my/zowe.yaml --ha-instance

hainst2 . This requires these information be defined in Zowe configuration file:

zwe start command will use ROUTE command to send S ZWESLSTC command to LPAR2 system.

To stop Zowe, run zwe stop --config /path/to/my/zowe.yaml command. It will issue P

command to Zowe job.

Here is an example:

Starting and stopping Zowe main server ZWESLSTC on z/OS
manually

To start Zowe main server, you can issue S ZWESLSTC command. Same as normal JES S command, you

can customize JOBNAME . For example, S ZWESLSTC,JOBNAME=ZWE1SV .

If you have Zowe high availability instance defined and want to start a specific HA instance, for example

myinst1 , you can pass with HAINST parameter. Here is an example: S

ZWESLSTC,HAINST=myinst1,JOBNAME=ZWE1SV1 . Zowe high availability instance name is case

insensitive. HAINST=myinst1 and HAINST=MYINST1 are same.

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-start
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-stop

If you are starting Zowe high availability instance for another LPAR in the Sysplex, you can use ROUTE

command to route the S command to the target system. For example, I'm working on SYSNAME LPAR1

and want to start HA instance myinst2 on LPAR2 , you can issue RO LPAR2,S

ZWESLSTC,HAINST=myinst2,JOBNAME=ZWE1SV2 .

To stop Zowe main server, you can issue P <jobname> command.

CAUTION

With Zowe version 1, you can issue C command to stop Zowe main server. This is not supported in

version 2 anymore. A P command is required to make sure Zowe components can be shuted down

properly.

Stopping and starting a Zowe component without restarting
Zowe main server

You can restart a Zowe component with JES modify command without restarting the whole Zowe main

server. You need to know these information before issuing the modify command:

Your Zowe main server job name. By default, it is configured as ZWE1SV . You can find your customized

value by checking zowe.job.name defined in Zowe configuration file.

The component name you want to stop or start. You can find a full list of installed components by listing

<RUNTIME>/components directory and Zowe extension directory.

To stop a running Zowe component, issue F <zowe-job>,APPL=STOP(<component-name>) command.

For example, if you want to stop app-server , issue F ZWE1SV,APPL=STOP(app-server) .

To start a stopped Zowe component, issue F <zowe-job>,APPL=START(<component-name>)

command. For example, if you want to start app-server , issue F ZWE1SV,APPL=START(app-

server) .

Note, please be aware that not all components can be restarted with this method. Some components may

rely on another and you may need to restart affected components as well.

Version: v2.2.x LTS

Verifying Zowe installation on z/OS

After the Zowe™ started task ZWESLSTC is running, follow the instructions in the following sections to

verify that the components are functional.

Verifying Zowe Application Framework installation

Verifying API Mediation installation

Verifying z/OS Services installation

Note: Not all components may have been started. Which components have been started depends on your

setting of the component enabled status in Zowe configuration file (usually zowe.yaml). If you set

enabled to be true for gateway , discovery and api-catalog , the API Mediation Layer and

z/OS Services are started. If you set enabled to be true for app-server and zss , the Zowe

Application Framework (also known as Zowe desktop) are started. Those using containerization may only

have ZSS started. For more information, see reference of YAML configurations - components.

Verifying Zowe Application Framework installation

If the Zowe Application Framework is installed correctly, you can open the Zowe Desktop from a supported

browser.

From a supported browser, open the Zowe Desktop at https://myhost:httpsPort

where,

myHost is the host on which you installed the Zowe Application Server.

httpsPort is the port number value components.app-server.port in zowe.yaml . For more

information, see Configure component app-server.

For example, if the Zowe Application Server runs on host myhost and the port number that is assigned

to components.app-server.port is 12345, you specify https://myhost:12345 . The web

desktop uses page direct to the actual initial page which is

https://myhost:12345/ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html . If the

redirect fails, try the full URL.

https://docs.zowe.org/v2.2.x/user-guide/appendix/zowe-yaml-configuration#yaml-configurations---components
https://docs.zowe.org/v2.2.x/user-guide/appendix/zowe-yaml-configuration#configure-component-app-server

If the desktop appears but you are unable to log on, check Cannot log into the Zowe desktop for

troubleshooting tips.

Verifying API Mediation installation

Use your preferred REST API client to review the value of the status variable of the API Catalog service that

is routed through the API Gateway using the following URL:

where,

myHost is the host on which you installed the Zowe API Mediation Layer.

httpsPort is the port number value zowe.externalPort in zowe.yaml . For more information, see

Domain and port to access Zowe.

Example:

The following example illustrates how to use the curl utility to invoke API Mediation Layer endpoint and the

grep utility to parse out the response status variable value

The response UP confirms that API Mediation Layer is installed and is running properly.

Verifying z/OS Services installation

Zowe z/OS services usually are registered with Zowe APIML Discovery and exposed with certain service url

like /<service>/api/v1 .

Here we give an example of verifying jobs-api shipped with Zowe. Please be aware that jobs-api is

not enabled by default if you created your Zowe configuration file from example-zowe.yaml . To enable

jobs-api , you need to set components.jobs-api.enabled to be true and restart Zowe. You can

verify the installation of jobs-api service from an internet browser by entering the following case-

sensitive URL:

where,

gatewayPort is the port number that is assigned to zowe.externalPort in the zowe.yaml file used

to launch Zowe. For more information, see Domain and port to access Zowe.

https://docs.zowe.org/v2.2.x/troubleshoot/app-framework/app-troubleshoot#cannot-log-in-to-the-zowe-desktop
https://docs.zowe.org/v2.2.x/user-guide/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe
https://docs.zowe.org/v2.2.x/user-guide/appendix/zowe-yaml-configuration#domain-and-port-to-access-zowe

The above link should prompt you to login. After you input correct user name and password of your target

z/OS system, you should see JSON format data of all jobs running on the system.

Version: v2.2.x LTS

Introduction

Zowe (server) containers are available for download as an alternative to running Zowe servers on z/OS

through the Zowe convenience and SMP/E builds. You can choose the appropriate installation type for your

use case. There are several advantages of using containers wherein you can:

Run Zowe servers on other platforms including Linux on Z and your PC

Run Zowe servers local to your system for rapid development

Run redundant copies of servers for scaling capacity to meet workload requirements

Leverage container monitoring tools

If you are new to containers, you can learn about the concepts from the Kubernetes website.

The Zowe containers are designed to be run together with extensions and Zowe utilities and therefore are

built for orchestration software that can manage the relationship and lifecycle of the containers. The

following topics guide you to set up and use Zowe's containers with the Kubernetes orchestration software.

�. Prerequisites

�. Downloading and installing

�. Configuring the Zowe container environment

�. Starting, stopping, and monitoring

�. Known limitations

Known limitations

You may encounter an issue that some plugins are not showing up in Zowe Desktop. You can try

Refresh Applications icon showing up in Desktop start menu.

You may encounter an issue that some services are not showing up in Zowe API Catalog. You can try

Refresh Static APIs button showing up in top-right corner of API Catalog web page.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.zowe.org/v2.2.x/user-guide/k8s-prereqs
https://docs.zowe.org/v2.2.x/user-guide/k8s-downloading
https://docs.zowe.org/v2.2.x/user-guide/k8s-config
https://docs.zowe.org/v2.2.x/user-guide/k8s-using

Version: v2.2.x LTS

Prerequisites

Before you install the Zowe server container, make sure that you have the required software and

environments.

Zowe installed on z/OS for users of ZSS and ZIS (default when you use the Zowe Application

Framework app-server , the Zowe Desktop, or products that are based on them)

z/OSMF installed on z/OS for users of it (default when you use gateway , API Mediation Layer, Web

Explorers, or products that are based on them)

A container runtime, such as:

Docker

CRI-O

containerd

Kubernetes Cluster software

kubectl, for initial setup and management of the cluster

Note: This documentation uses container terminology that may be explained within the Kubernetes

Glossary.

Kubernetes cluster

The Zowe containerization solution is compatible with Kubernetes v1.19+ or OpenShift v4.6+.

You can prepare a Kubernetes cluster based on your requirements in many different ways.

For development purposes, you can set up a Kubernetes cluster on your local computer in one of the

following ways:

Enable Kubernetes shipped with Docker Desktop

Set up minikube

Attention! You must make sure that the Kubernetes cluster you have created has a minimum RAM of

3GB in order for Zowe to start.

https://docs.zowe.org/v2.2.x/user-guide/install-zos
https://kubernetes.io/docs/setup/production-environment/container-runtimes/
https://kubernetes.io/docs/reference/glossary/?fundamental=true
https://docs.docker.com/desktop/kubernetes/
https://minikube.sigs.k8s.io/docs/start/

For production purposes, you can set up a Kubernetes cluster in one of the following ways:

Bootstrap your own cluster by following instructions in Installing Kubernetes with deployment tools

in the Kubernetes documentation.

Provision a Kubernetes cluster from popular Cloud vendors:

Amazon Elastic Kubernetes Service

Microsoft Azure Kubernetes Service

IBM Cloud Kubernetes Service

Google Cloud Kubernetes Engine

kubectl tool

You need kubectl CLI tool installed on your local computer where you want to manage the Kubernetes

cluster. For instructions on how to install the kubectl tool, see Install Tools in the Kubernetes documentation.

https://kubernetes.io/docs/setup/production-environment/tools/
https://aws.amazon.com/eks/
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://www.ibm.com/ca-en/cloud/kubernetes-service
https://cloud.google.com/kubernetes-engine
https://kubernetes.io/docs/tasks/tools/

Version: v2.2.x LTS

Downloading and installing

Learn how to download and install Zowe's containers.

Downloading

You can download Zowe's containers in one of the following ways:

Downloading configuration samples

Downloading container images

Downloading configuration samples

The easiest way to install and run Zowe's containers is by using the configuration samples that are provided

on Zowe's website. If you don't already have these samples, you can download them by completing the

following tasks:

�. Download Zowe containerization build from zowe.org.

�. Extract the compressed file to the system where you will run the Zowe containers.

�. Find the samples within the extracted folder kubernetes .

Downloading container images

Downloading Zowe's container images manually is not required because this can be done automatically

when applying a Kubernetes deployment configuration.

If wanted, you can download Zowe's container images manually by using the docker pull commands.

This allows you to get an image from a registry or attach an image that you have downloaded directly. You

can find Zowe's container images in https://zowe.jfrog.io/ui/repos/tree/General/docker-release%2Fompzowe:

Registry: zowe-docker-release.jfrog.io

Organization: ompzowe

Full image addresses include,

zowe-docker-release.jfrog.io/ompzowe/gateway-service:latest-ubuntu

https://www.zowe.org/download.html
https://zowe.jfrog.io/ui/repos/tree/General/docker-release%2Fompzowe

zowe-docker-release.jfrog.io/ompzowe/app-server:latest-ubuntu

zowe-docker-release.jfrog.io/ompzowe/explorer-jes:latest-ubuntu

Therefore, you can download these manually with the docker pull commands. For example,

docker pull zowe-docker-release.jfrog.io/ompzowe/app-server:latest-ubuntu

Installing

You do not need to install the Zowe containers if you use Zowe's Kubernetes configuration samples. By

default, these sample configurations will pull Zowe component images from the public Zowe docker release

registry zowe-docker-release.jfrog.io directly and then start them. Your Kubernetes nodes require

an Internet connection that can reach this registry.

An image could be considered "installed" when it is findable by Kubernetes. Just like downloading, this is

done automatically by Kubernetes but commands such as docker pull or docker load

accomplishes the same task.

Upgrading

Upgrade is an automatic process when you apply Kubernetes deployment configuration. The configuration

files tell Kubernetes to automatically download the latest version of Zowe. Here, latest is the keyword for

constantly updated version. For example zowe-docker-release.jfrog.io/ompzowe/gateway-

service:latest-ubuntu .

Note: Automatic upgrades can fail if you have changed the workload configuration files to use a specific

Zowe version. In that case, you must enter the latest version manually in the configuration file such as

zowe-docker-release.jfrog.io/ompzowe/gateway-service:2.0.0-ubuntu .

If your Kubernetes nodes do not have an Internet connection, you can follow the instruction of the previous

step to manually pull all images into all your Kubernetes nodes. After you have done this, you need to modify

all occurrences of imagePullPolicy: Always in the sample configurations and replace them with

imagePullPolicy: Never before applying them.

Version: v2.2.x LTS

Configuring

Zowe provides sample configurations that make it easy for you to run Zowe in Kubernetes. You can use them

directly or as a reference.

You can customize the configuration or make your own. If you do so, note the following objects that are

expected by the container deployments:

Kind Name Note

Namespace zowe

ServiceAccount zowe-sa

ConfigMap
zowe-

certificates-cm

Contains zowe-certificates.env with the same

format as seen on z/OS keystore

Secret

zowe-

certificates-

secret

Contains the base64 PEM and P12 data for keystore and

truststore

Ingress
discovery-

ingress
Used for external access to the Discovery service

Ingress
gateway-

ingress
Used for external access to the Gateway service

Route discovery Used for external access to the Discovery service

Route gateway Used for external access to the Gateway service

Service
discovery-

service

Used for internal or external access to the Discovery

service

Service
gateway-

service
Used for external access to the Gateway service

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/

Kind Name Note

Service
catalog-

service
Used for access to the Catalog service

PersistentVolumeClaim

zowe-

workspace-

pvc

HorizontalPodAutoscaler * Autoscalers exist for the various pods

PodDisruptionBudget * Disruption budgets exist for the various pods

To configure the Zowe container environment, complete the following procedure.

1. Create namespace and service account

Run the following commands to create Zowe's Namespace zowe with Service Account zowe-sa .

Note that by default, zowe-sa service account has automountServiceAccountToken disabled for

security purposes.

To verify, check the following configurations.

kubectl get namespaces should show a Namespace zowe .

This displays the default Namespace zowe, if not set.

kubectl get serviceaccounts --namespace zowe should show a ServiceAccount zowe-sa .

This displays the default ServiceAccount zowe-sa, if not set.

2. Create Persistent Volume Claim (PVC)

Zowe's PVC has a default StorageClass value that may not apply to all Kubernetes clusters. Check and

customize the storageClassName value of samples/workspace-pvc.yaml as needed. You can use

kubectl get sc to confirm which StorageClass you can use.

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

After you customize the storageClassName value, apply the result by issuing the following commands:

To verify, run the following commands and check if the STATUS of line item zowe-workspace-pvc

shows as Bound .

IMPORTANT, zowe-workspace-pvc PersistentVolumeClaim must be declared in access mode

ReadWriteMany to allow the workspace be shared by all Zowe components.

In some Kubernetes environment, you may need to define PeristentVolume and define volumeName

in PersistentVolumeClaim instead of defining storageClassName . Please consult your Kubernetes

administrator to confirm the appropriate way for your environment. This is an example to configure

PersistentVolumeClaim with pre-configured zowe-workspace-pv PeristentVolume .

3. Create and modify ConfigMaps and Secrets

Similarly, to run Zowe services on z/OS, you can use the Zowe zowe.yaml configuration file to customize

Zowe in Kubernetes.

You can modify samples/config-cm.yaml and samples/certificates-secret.yaml directly. Or

more conveniently, if you have Zowe ZSS/ZIS running on z/OS, the Kubernetes environment can reuse

instance and keystore configuration from that installation. Ensure that the verify certificate setting of your

existing keystore configuration is set to STRICT mode. Otherwise, update your zowe.yaml configuration

file to change the setting to STRICT mode and generate a new set of certificates.

If you want to manually create, or later customize the ConfigMaps and Secrets, see Customizing or manually

creating ConfigMaps and Secrets for details.

To create and modify ConfigMaps and Secrets by using the migrate configuration script, complete the

following steps:

a. To make Zowe v2 certificates work in Kubernetes, in your zowe.yaml (in runtime directory), you need

to:

set zowe.verifyCertificate to STRICT mode.

set zowe.setup.certificate.pkcs12.caAlias . Default alias is local_ca .

set zowe.setup.certificate.pkcs12.caPassword . Default CA password is

local_ca_password .

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

make sure the certificate that you are using have defined the following domains in certificate Subject Alt

Name (SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster

*.<k8s-namespace>.svc.<k8s-cluster-name>

*.discovery-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.gateway-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.<k8s-namespace>.pod.<k8s-cluster-name>

where,

<k8s-namespace> is the Kubernetes Namespace you installed Zowe into

<k8s-cluster-name> is the Kubernetes cluster name, which usually should be

cluster.local . Note that the following command will automatically add the k8s internal

domain into SAN.

Next, on z/OS, run the following command:

For more detailed explaination of zwe migrate command parameters, see zwe migrate for kubernetes.

As a result, it displays ConfigMaps zowe-config and Secrets (zowe-certificates-secret)

Kubernetes objects which are based on the Zowe instance and keystore used. The content looks similar to

samples/config-cm.yaml and samples/certificates-secret.yaml but with real values.

b. Follow the instructions in the script output to copy the output and save it as a YAML file configs.yaml

on your computer where you manage Kubernetes.

c. Apply the file into Kubernetes:

d. Remove the previously saved configs.yaml file from all systems for security.

To verify:

kubectl get configmaps --namespace zowe

This command must display the two ConfigMaps zowe-config and zowe-certificates-cm .

kubectl get secrets --namespace zowe

This command must display a Secret zowe-certificates-secret .

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes

4. Expose API Mediation Layer components

This step makes Zowe's Gateway, Discovery, and API Catalog servers available over a network.

The Gateway is always required to be externally accessible, and depending upon your environment the

Discovery service may also need to be externally accessible.

The actions you need to take in this step vary depending upon your Kubernetes cluster configuration. If you

are uncertain about this section, please contact your Kubernetes administrator or the Zowe community.

4a. Create service

You can set up either a LoadBalancer or NodePort type Service.

Note: Because NodePort cannot be used together with NetworkPolicies , LoadBalancer and

Ingress is preferred configuration option.

Review the following table for steps you may take depending on the Kubernetes provider you use. If you

don't need additional setups, you can skip steps 4b, 4c and jump directly to the Apply zowe section.

Kubernetes

provider
Service Additional setups required

minikube
LoadBalancer or

NodePort

Port Forward (on next section Starting, stopping, and

monitoring)

docker-desktop LoadBalancer none

bare-metal
LoadBalancer or

NodePort
Create Ingress

cloud-vendors LoadBalancer none

OpenShift
LoadBalancer or

NodePort
Create Route

Defining api-catalog service

https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.zowe.org/v2.2.x/user-guide/k8s-using

api-catalog-service is required by Zowe, but not necessarily exposed to external users. Therefore,

api-catalog-service is defined as type ClusterIP .

To define this service, run the command:

Upon success, you should see the following output:

Then, you can proceed with creating the Gateway and Discovery services according to your environment.

Applying Gateway Service

If using LoadBalancer , run the command:

Or if using NodePort instead, first check spec.ports[0].nodePort as this will be the port to be

exposed to external. In this case, the default gateway port is not 7554 but 32554. You will need to use

https://<your-k8s-node>:32554/ to access APIML Gateway. To apply NodePort type gateway-

service , run the following command:

To verify either case, run the following command and check that the command displays the service

gateway-service .

Applying Discovery service

Exposing the Discovery service is only required when there is a Zowe service or extension which needs to be

registered to the API Mediation Layer but is running outside of Kubernetes, such as on z/OS. Otherwise, the

discovery service can remain accessible only within the Kubernetes environment.

Optional: To set up the discovery service without exposing it externally, edit samples/discovery-

service-lb.yaml if using LoadBalancer type services, or samples/discovery-service-

np.yaml if using NodePort type services. In either file, specify ClusterIP as the type, replacing the

NodePort or LoadBalancer value.

To enable the service externally when using LoadBalancer services, run the command:

Or if using NodePort instead, first check spec.ports[0].nodePort as this will be the port to be

exposed to external. In this case, the default discovery port is not 7553 but 32553. And you will need to use

https://<your-k8s-node>:32553/ to access APIML Discovery. To apply NodePort type

discovery-service , run the following command:

To verify either case, run the following command and check that this command displays the service

discovery-service :

kubectl get services --namespace zowe

Upon completion of all the preceding steps in this a. Create service section, you may need to run additional

setups. Refer to "Additional setups required" in the table. If you don't need additional setups, you can skip

4b, 4c, 4d, and jump directly to Apply Zowe section.

4b. Create Ingress (Bare-metal)

An Ingress gives Services externally-reachable URLs and may provide other abilities such as traffic load

balancing.

To create Ingress, perform the following steps:

a. Edit samples/gateway-ingress.yaml and samples/discovery-ingress.yaml before applying

them, by uncommenting the lines (19 and 20) for defining spec.rules[0].host and http: , and then

commenting out the line below, - http:

b. Run the following commands:

To verify, run the following commands:

kubectl get ingresses --namespace zowe

This command must display two Ingresses gateway-ingress and discovery-ingress .

Upon completion, you can finish the setup by applying zowe and starting it.

4c. Create Route (OpenShift)

If you are using OpenShift and choose to use LoadBalancer services, you may already have an external

IP for the service. You can use that external IP to access Zowe APIML Gateway. To verify your service

external IP, run:

If you see an IP in the EXTERNAL-IP column, that means your OpenShift is properly configured and can

provision external IP for you. If you see <pending> and it does not change after waiting for a while, that

means you may not be able to use LoadBalancer services with your current configuration. Try

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://docs.zowe.org/v2.2.x/user-guide/k8s-config/k8s-using

ClusterIP services and define Route . A Route is a way to expose a service by giving it an externally

reachable hostname.

To create a route, perform the following steps:

a. Check and set the value of spec.port.targetPort in samples/gateway-route.yaml and

samples/discovery-route.yaml before applying the changes.

b. Run the following commands:

To verify, run the following commands:

oc get routes --namespace zowe

This command must display the two Services gateway and discovery .

Upon completion, you can finish the setup by applying zowe and starting it.

Customizing or manually creating ConfigMaps and
Secrets

The z/OS to k8s convert tool can automatically create a config map and secret. However, if you want to

customize or create your own, review the instructions in this section.

To make certificates work in Kubernetes, make sure the certificate you are using have defined the following

domains in certificate Subject Alt Name (SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster

*.<k8s-namespace>.svc.<k8s-cluster-name>

*.discovery-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.gateway-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.<k8s-namespace>.pod.<k8s-cluster-name>

<k8s-namespace> is the Kubernetes Namespace you installed Zowe into. And <k8s-cluster-name>

is the Kubernetes cluster name, which usually should be cluster.local .

Without the additional domains in SAN, you may see warnings/errors related to certificate validation.

https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/routes.html
https://docs.zowe.org/v2.2.x/user-guide/k8s-config/k8s-using

CAUTION

It's not recommended to disable zowe.verifyCertificates .

Notes: When the following conditions are true, this migration script will regenerate a new set of certificates

for you with proper domain names listed above.

You use zwe init command to initialize Zowe

You use PKCS#12 format keystore by defining zowe.setup.certificate.type: PKCS12

You did not define zowe.setup.certificate.pkcs12.import.keystore and let zwe

command to generate PKCS12 keystore for you

You enabled STRICT mode zowe.verifyCertificates

To manually create the ConfigMaps and Secrets used by Zowe containers, you must create the following

objects:

�. A ConfigMap, with values based upon a Zowe configuration zowe.yaml and similar to the example

samples/config-cm.yaml with the following differences to the values seen on a z/OS installation:

zowe.setup and haInstances are not needed for Zowe running in Kubernetes and will be

ignored. You can remove them.

java.home and node.home are not usually needed if you are using Zowe base images.

zowe.runtimeDirectory must be set to /home/zowe/runtime .

zowe.externalDomains is suggested to define as a list of domains you are using to access

your Kubernetes cluster.

zowe.externalPort must be the port you expose to end-user. This value is optional if it's same

as default APIML Gateway service port 7554 . With default settings,

if you choose LoadBalancer gateway-service , this value is optional, or set to 7554 ,

if you choose NodePort gateway-service and access the service directly, this value

should be same as spec.ports[0].nodePort with default value 32554 ,

if you choose NodePort gateway-service and access the service through port

forwarding, the value should be the forwarded port you set.

components.discovery.replicas should be set to same value of spec.replicas defined

in workloads/discovery-statefulset.yaml .

All components running in Kubernetes should use default ports:

components.api-catalog.port is 7552 ,

https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/secret/

components.discovery.port is 7553 ,

components.gateway.port is 7554 ,

components.caching-service.port is 7555 ,

components.jobs-api.port is 7600 ,

components.files-api.port is 7559 ,

components.app-server.port is 7556 .

components.caching-service.storage.mode should NOT be set to VSAM . redis is

suggested. Follow Redis configuration documentation to customize other Redis related variables.

Leave the value to empty for debugging purposes.

Must append and customize these 2 values into zowe.environments section:

ZWED_agent_host=<ZOWE_ZOS_HOST>

ZWED_agent_https_port=<ZOWE_ZSS_SERVER_PORT>

�. A Secret, with values based upon a Zowe keystore's files, and similar to the example

samples/certificates-secret.yaml .

You need 2 entries under the data section:

keystore.p12 : which is base64 encoded PKCS#12 keystore,

truststore.p12 : which is base64 encoded PKCS#12 truststore.

And 3 entries under stringData section:

keystore.key : is the PEM format of certificate private key,

keystore.cer : is the PEM format of the certificate,

ca.cer : is the PEM format of the certificate authority.

PodDisruptionBudget

Zowe provides optional PodDisruptionBudget which can provide high availability during upgrade. By

default, Zowe defines minAvailable to be 1 for all deployments. This configuration is optional but

recommended. To apply PodDisruptionBudget , run this command:

To verify this step, run:

This should show you a list of PodDisruptionBudget like this:

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-redis/#redis-configuration

HorizontalPodAutoscaler

Zowe provides optional HorizontalPodAutoscaler which can automatically scale Zowe components

based on resource usage. By default, each workload has a minimum of 1 replica and a maximum of 3 to 5

replicas based on CPU usage. This configuration is optional but recommended.

HorizontalPodAutoscaler relies on Kubernetes Metrics server monitoring to provide metrics through

the Metrics API. To learn how to deploy the metrics-server, see the metrics-server documentation. Please

adjust the HorizontalPodAutoscaler definitions based on your cluster resources, then run this

command to apply them to your cluster:

To verify this step, run:

This should show you a list of HorizontalPodAutoscaler like this:

Kubernetes v1.21+

If you have Kubernetes v1.21+, several optional changes are recommended based on Deprecated API

Migration Guide.

Kind CronJob : change apiVersion: batch/v1beta1 to apiVersion: batch/v1 on

workloads/zowe-yaml/cleanup-static-definitions-cronjob.yaml and

workloads/instance-env/cleanup-static-definitions-cronjob.yaml . apiVersion:

batch/v1beta1 will stop working on Kubernetes v1.25.

Kind PodDisruptionBudget : change apiVersion: policy/v1beta1 to apiVersion:

policy/v1 on all files in samples/pod-disruption-budget/ . apiVersion:

policy/v1beta1 will stop working on Kubernetes v1.25.

https://github.com/kubernetes-sigs/metrics-server
https://github.com/kubernetes/metrics
https://github.com/kubernetes-sigs/metrics-server#deployment
https://kubernetes.io/docs/reference/using-api/deprecation-guide/

Version: v2.2.x LTS

Starting, stopping, and monitoring

After Zowe's containers are installed and configured, you can refer to the following topics that help you

manage your installation.

Starting Zowe containers

The Kubernetes cluster will automatically start as many containers as needed per service according to the

Deployment configuration.

To apply the deployment files, run this command:

Port forwarding (for minikube only)

Kubectl port-forward allows you to access and interact with internal Kubernetes cluster processes from your

localhost. For debugging or development, you might want to port forward to make Zowe gateway or

discovery service available externally quickly.

Before issuing port forward commands, make sure that gateway and discovery services pods are running.

You can run kubectl get pods -n zowe and check if the STATUS of both discovery-* and

gateway-* is RUNNING . If not, you may have to wait.

Once both STATUS shows RUNNING , run the following command to port forward:

The & sign at the command will run the command as a background process. Otherwise, the port forward

process will occupy the terminal indefinitely until canceled as a foreground service.

Verifying Zowe containers

The containers will start soon after applying the deployments.

To verify:

�. kubectl get deployments --namespace zowe

https://kubernetes.io/docs/tasks/access-application-cluster/port-forward-access-application-cluster/

This command must show you a list of deployments including explorer-jes , gateway-service ,

app-server , etc. Each deployment should show 1/1 in READY column. It could take a moment

before all deployments say 1/1 .

�. kubectl get statefulsets --namespace zowe

This command must show you a StatefulSet discovery which READY column should be 1/1 .

�. kubectl get cronjobs --namespace zowe

This command must show you a CronJob cleanup-static-definitions which SUSPEND should

be False .

Monitoring Zowe containers

You can monitor Zowe containers using a UI or CLI.

Monitoring Zowe containers via UI

Kubernetes provides a container that allows you to manage your cluster through a web browser. When using

Docker Desktop, it is already installed in the namespace kubernetes-dashboard . See the Kubernetes

website for install instructions.

Metrics Server is also recommended and is required if you want to define Horizontal Pod Autoscaler. Check

if you have metrics-server Service in kube-system namespace with this command kubectl

get services --namespace kube-system . If you don't have it, you can follow this Installation

instruction to install it.

Monitoring Zowe containers via CLI

kubectl allows you to see the status of any kind of object with the get command. This applies to the

table in the configuring section but also for the pods that run the Zowe containers.

Here are a few commands you can use to monitor your environment:

kubectl get pods -n zowe lists the status of the components of Zowe.

kubectl describe pods -n zowe <podid> can see more details about each pod.

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://github.com/kubernetes-sigs/metrics-server
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://github.com/kubernetes-sigs/metrics-server#installation

kubectl logs -n zowe <podid> will show you the terminal output of a particular pod, with -f

allowing you to keep the logs open as new messages are added.

kubectl get nodes -n zowe -owide will tell you more about the environment you're running.

Stopping, pausing or removing Zowe containers

To temporarily stop a component, locate the Deployment component and scale down to 0 . For example,

if you want to stop the jobs-api container, run this command:

You can later re-enable a component by scaling the component back to 1 or more.

If you want to permanently remove a component, you can delete the component Deployment . To use

jobs-api as an example, run this command:

Version: v2.2.x LTS

Installation checklist

The following checklists summarize the required steps for a base installation (first-time installation) in the

order you should perform them. The checklist includes a brief description of the steps, with links to the

comprehensive information required for the installation. The checklist also identifies the roles that are

typically required to complete the step, which enables the pre-installation planning team (systems

administrator, DevOps architect, application developer, and so on) to focus on the tasks for which they are

responsible.

Addressing the prerequisites

To plan your Zowe CLI installation, review the following checklist.

Step Description Role
Time

Estimate
Status

Review the

Zowe CLI

information

roadmap

Learn about various Zowe

CLI topics

Systems administrator,

application developer,

systems programmer,

DevOps architect

.25 hrs
Complete,

TBD, NA

Review the

release notes

Read about new features

and enhancements included

with this release of Zowe CLI

Systems administrator,

DevOps architect

.25

hours

Complete,

TBD, NA

Address the

requirements

Install the client-side and

host-side software, and

ensure that there is

sufficient free disk space

Systems administrator
See

Note-1

Complete,

TBD, NA

(Optional)

Install API

Mediation

Layer

Install the Zowe Runtime,

which includes API

Mediation Layer]

Systems administrator 8 hrs
Complete,

TBD, NA

https://docs.zowe.org/v2.2.x/getting-started/user-roadmap-zowe-cli
https://docs.zowe.org/v2.2.x/getting-started/overview
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-cli
https://docs.zowe.org/v2.2.x/user-guide/install-zos

Step Description Role
Time

Estimate
Status

Install z/OSMF
Follow the steps to install

z/OSMF
Systems administrator

See

Note-2

Complete,

TBD, NA

Determine the

profile types

that you want

to use

Learn about configuration

and how to use team profiles

Systems administrator,

DevOps architect
.25 hrs

Complete,

TBD, NA

Note-1: Allow .25 hours to install the client-side software. The amount of time to install the host-side

software depends upon your site's implementation. For example, do you require z/OSMF, REST APIs to

support the Mediation Layer, or both? See the information for the specific server-side software that you

require to determine how much time to allow for complete server-side installation and configuration.

Note-2: Allow 15 to 25 hours to install and configure z/OSMF. The length of time varies depending on the

External Security Manager (ESM) that you are running in your site.

You are now ready to install Zowe CLI!

Installing Zowe CLI

To install Zowe CLI, review the following checklist.

Step Description Role
Time

Estimate
Status

Install

Zowe CLI

Install Zowe CLI from an online registry or a

local package

Systems

administrator
.5 hrs

Complete,

TBD, NA

Install

Zowe CLI

(quick

start)

Use the Quick Start method if you possess

prerequisite knowledge of command line tools

and writing scripts, and you want to get

started with Zowe CLI quickly and easily.

Systems

administrator
.25 hrs

Complete,

TBD, NA

https://www.ibm.com/docs/en/zos/2.3.0?topic=configuration-setting-up-zosmf-first-time
https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-installcli
https://docs.zowe.org/v2.2.x/getting-started/cli-getting-started

Step Description Role
Time

Estimate
Status

(Optional)

Install

Zowe CLI

plug-ins

Install Zowe CLI plug-ins from an online

registry or a local package.

Systems

administrator
.25 hrs

Complete,

TBD, NA

You are now ready to configure Zowe CLI!

Configuring Zowe CLI

To configure Zowe CLI, review the following checklist.

Step Description Role
Time

Estimate
Status

Configure

environment

variables

Learn how to store configuration

options that are common to

your environment.

Systems administrator,

DevOps architect,

application developer

.25 hrs
Complete,

TBD, NA

Configure

Zowe

profiles

Learn how to configure Zowe

team profiles and user profiles.

Systems administrator,

DevOps architect,

application developer

.25 hrs
Complete,

TBD, NA

Configure

daemon

mode

Learn how to configure Zowe

CLI to run as persistent

background process (daemon).

Systems administrator,

DevOps architect,

application developer

.25 hrs
Complete,

TBD, NA

https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins
https://docs.zowe.org/v2.2.x/user-guide/cli-configuringcli-ev
https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-daemon-mode

Version: v2.2.x LTS

System requirements

Before installing Zowe CLI, ensure that your environment meets the prerequisites that are described in this

article.

Client-side requirements

Zowe CLI is supported on Windows, Linux, and Mac operating systems. Meet the following requirements

before you install the CLI:

Node.js: Install a currently supported version of Node.js LTS. For a complete list of supported LTS

versions, see Nodejs Releases.

Note: You might need to restart the command prompt after installing Node.js. Issue the following

command to verify that Node.js is installed.

Important! If you are installing Zowe CLI with Node.js 16 on a Windows operating system, see Installing

Zowe CLI with Node.js 16 on Windows.

npm: Install a version of Node Package Manager (npm) that is compatible with your version of Node.js.

npm is included with most Node.js installations. Issue the following command to determine your

currently installed version of npm.

See Node.js release matrix to verify that the versions are compatible.

Important! If you are running npm version 8.11.0 or 8.12.0 and you are installing Zowe CLI on a

computer that cannot access the Internet or has restricted Internet access, your Zowe CLI installation

appears to complete successfully. However, when you issue Zowe commands that access the secure

credential store, the commands return error messages. To circumvent this problem, install npm 8.12.1 or

later on your computer. If you cannot upgrade to 8.12.1 or later, see Zowe Commands Fail with Secure

Credential Errors in Known Zowe CLI issues.

Secure Credential Store: On Linux systems, you must install the packages gnome-keyring and

libsecret (or libsecret-1-0 on Debian and Ubuntu).

https://nodejs.org/en/
https://nodejs.org/en/about/releases/
https://docs.zowe.org/v2.2.x/user-guide/cli-install-cli-nodejs-windows
https://nodejs.org/en/download/releases/
https://docs.zowe.org/v2.2.x/troubleshoot/cli/known-cli

Note: For information about how to configure Secure Credential Store on headless Linux and z/Linux,

see Configure Secure Credential Store on headless Linux operating systems.

Plug-in client requirements: If you plan to install plug-ins, review the Software requirements for CLI

plug-ins.

Important! Ensure that you meet the client-side requirements for the IBM Db2 plug-in before you

install it.

Host-side requirements

Zowe CLI requires the following mainframe configuration:

IBM z/OSMF configured and running: You do not need to install the full Zowe solution to install and

use Zowe CLI. Minimally, an instance of IBM z/OSMF must be running on the mainframe before you can

issue Zowe CLI commands successfully. z/OSMF enables the core capabilities, such as retrieving data

sets, executing TSO commands, submitting jobs, and more. If Zowe API Mediation Layer (API ML) is

configured and running, Zowe CLI users can choose to connect to API ML rather than to every separate

service.

Plug-in services configured and running: Plug-ins communicate with various mainframe services.

The services must be configured and running on the mainframe before issuing plug-in commands. For

example, the IMS plug-in requires an instance of IBM IMS on the mainframe with IMS Connect (REST

services) running. For more information, see Software requirements for CLI plug-ins

Zowe CLI on z/OS is not supported: Zowe CLI can be installed on an IBM z/OS environment and run

under Unix System Services (USS). However, the IBM Db2 plug-in cannot run on z/OS due to native

code requirements. As such, Zowe CLI is not supported on z/OS and is currently experimental.

Free disk space

Zowe CLI requires approximately 100 MB of free disk space. The actual quantity of free disk space

consumed might vary depending on your operating system, the plug-ins that you install, and the user

profiles that are saved to disk.

https://docs.zowe.org/v2.2.x/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins

Version: v2.2.x LTS

Installing Zowe CLI

Install Zowe™ CLI on your computer.

If your role is that of a systems administrator or you are familiar with command-line tools and want to get

started using Zowe CLI quickly, see Zowe CLI quick start. You can learn about new CLI features in the

Release notes.

After you install Zowe CLI and Zowe CLI plug-ins using your preferred installation method, see Using CLI to

learn about how to connect Zowe CLI to the mainframe, create Zowe CLI profiles and team profiles, integrate

Zowe CLI with API ML, enable daemon mode, and much, much more!

Installation guidelines

To install CLI on Windows, Mac, and Linux operating systems, follow the steps in Install Zowe CLI from npm

or Install Zowe CLI from a local package.

However, to install Zowe CLI on z/Linux, z/OS UNIX System Services (USS), or on an operating system

where the Secure Credential Store is not required or cannot be installed, use the following installation

guidelines:

To install Zowe CLI on a z/Linux operating system and you require the Secure Credential Store:

i. Follow the steps in Configure Secure Credential Store on headless Linux operating systems.

ii. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.

To install Zowe CLI on a z/Linux operating system and you do not require the Secure Credential Store:

i. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.

ii. Follow the steps in Configure Zowe CLI on operating systems where the Secure Credential Store is

not available.

To install Zowe CLI on a USS system or on an operating system where you cannot install the Secure

Credential Store:

i. Follow the steps in Install Zowe CLI from npm or Install Zowe CLI from a download.

ii. Follow the steps in Configure Zowe CLI on operating systems where the Secure Credential Store is

not available.

Installation notes

https://docs.zowe.org/v2.2.x/getting-started/cli-getting-started
https://docs.zowe.org/v2.2.x/getting-started/release-notes/v2_1_0
https://docs.zowe.org/v2.2.x/user-guide/cli-using-usingcli
https://docs.zowe.org/v2.2.x/user-guide/cli-configure-scs-on-headless-linux-os
https://docs.zowe.org/v2.2.x/user-guide/cli-configure-cli-on-os-where-scs-unavailable
https://docs.zowe.org/v2.2.x/user-guide/cli-configure-cli-on-os-where-scs-unavailable

As you are installing Zowe CLI, you might encounter error messages that relate to cpu-features and

ssh . You can safely ignore error messages of this type; the installation completes successfully. This

behavior can occur when you install CLI from npm and from a local package.

Prerequisites

Meet the software requirements for Zowe CLI.

Meet the software requirements for each plug-in.

Prerequisite notes

If you are installing Zowe CLI on a computer that is running Node.js 16 on a Windows operating system,

see Installing Zowe CLI with Node.js 16 on Windows.

If you are running NPM version 7 (npm@7) or NPM version 8 (npm@8) on a Windows operating

system, ensure that your computer is connected to the Internet.

Issue the following command before you install Zowe CLI:

Linux users might need to prepend sudo to npm commands. For more information, see

Troubleshooting Zowe CLI.

Install Zowe CLI from npm

Use the following procedure to install Zowe CLI from an npm registry:

�. To install or update the core CLI, open a command-line window:

Zowe CLI is installed.

�. (Optional) Address the Software requirements for CLI plug-ins. You can install most plug-ins without

meeting the requirements. However, the plug-ins will not function until you configure the back-end

APIs. The IBM Db2 plug-in requires additional configuration to install.

�. (Optional) To install all available plug-ins to Zowe CLI, issue the following command:

Zowe CLI is installed on your computer. Issue the zowe --help command to view a list of available

commands. For information about how to connect the CLI to the mainframe, create profiles, integrate with

https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-cli
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins
https://docs.zowe.org/v2.2.x/user-guide/cli-install-cli-nodejs-windows
https://docs.zowe.org/v2.2.x/troubleshoot/cli/troubleshoot-cli
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins

API ML, and more, see Using Zowe CLI.

Install Zowe CLI from a local package

Use the following procedure to install Zowe CLI from a local package:

�. Meet the prerequisites for installing Zowe CLI.

�. Navigate to Download Zowe and click the Zowe vNext CLI Core button.

�. Read the End User License Agreement for Zowe and click I agree to download the core package.

zowe-cli-package-next-2022MMDD.zip is downloaded to your computer (where MMDD

indicates the month and day of the build).

�. (Optional) Meet the prerequisites for installing Zowe CLI plug-ins.

�. (Optional) Navigate to Download Zowe and click the Zowe vNext CLI Plugins button to download the

plugins.

�. (Optional) Read the End User License Agreement for Zowe plug-ins and click I agree to download the

plugins package.

zowe-cli-plugins-next-2022MMDD.zip is downloaded to your computer (where MMDD

indicates the month and day of the build).

�. Unzip the contents of zowe-cli-package-next-2021MMDD.zip (and optionally zowe-cli-

plugins-2021MMDD.zip) to a working directory.

�. To install Zowe CLI Core, open a command-line window and issue the following commands to the

working directory that you used in Step 7:

Note: If an EACCESS error displays, see Resolving EACCESS permissions errors when installing

packages globally in the npm documentation.

�. (Optional) To install Zowe CLI plug-ins, issue the following command to the working directory that you

used in Step 7:

Zowe CLI and the optional plug-ins are installed on your computer. Issue the zowe --help command to

view a list of available commands. For information about how to connect the CLI to the mainframe, create

https://docs.zowe.org/v2.2.x/user-guide/cli-using-usingcli
https://www.zowe.org/download.html
https://www.zowe.org/download.html
https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally

profiles and team profiles, integrate with API ML, enable daemon mode, and more, see Using CLI.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-usingcli

Version: v2.2.x LTS

Configuring Secure Credential Store on
headless Linux operating systems

Perform the following configurations on headless and z/Linux operating systems.

Headless Linux requirements

Ensure that you installed the Secure Credential Store requirements that are described in System

Requirements.

Unlock the Gnome keyring to allow you to load and store credentials on headless Linux operating

systems. You can unlock the keyring manually or automatically.

Note: On z/Linux operating systems, complete the steps in Configuring z/Linux before you continue.

Unlocking the keyring manually

Issue the following commands to unlock the keyring manually. You must unlock the keyring in each user

session.

Note: The gnome-keyring-daemon -r --unlock --components=secrets prompts you to specify a

password. Press Ctrl+D twice after you specify the password.

Unlocking the keyring automatically

When you are using SSH or TTY to log in to Linux, you can configure the Gnome keyring to unlock

automatically when you log in.

Note: The following steps were tested on CentOS, SUSE, and Ubuntu operating systems. The steps do not

work on WSL (Windows Subsystem for Linux) because it bypasses TTY login. Results may vary on other

Linux distributions.

Follow these steps:

�. Install the PAM module for Gnome keyring. The package name depends on your distribution:

gnome-keyring-pam : CentOS, Fedora, SUSE

https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-cli

libpam-gnome-keyring : Debian, Ubuntu

�. Apply the following edits to the files /etc/pam.d/login (for TTY login), and /etc/pam.d/sshd if

it exists (for SSH login).

Add the following statement to the end of the auth section:

Add the following statement to end of the session section:

�. Add the following statements to ~/.bashrc . The statement lets you launch DBus, which the Gnome

keyring requires. Also the statement lets the keyring daemon start so that it is ready to be used by Zowe

CLI commands.

�. Start the Gnome keyring daemon:

�. Restart your computer.

Issue a Zowe CLI command that uses secure credentials to test that automatic unlock of the keyring

works.

Configuring z/Linux

The Secure Credential Store (SCS) does not contain the native, pre-built binaries that are required to access

the credential vault on z/Linux operating systems.

Because the credential manager is now a built-in function of Zowe CLI, developers must build the credential

mananger binaries on z/Linux systems during the Zowe CLI installation process.

The following steps describe how to install and build the credential store binaries on z/Linux (Red Hat

Enterprise Linux (RHEL) and Ubuntu) systems.

�. Install the following Linux packages on the z/Linux system:

make

gcc-c++ (sometimes available as g++)

gnome-keyring

libsecret (sometimes available as libsecret-1-0)

libsecret-devel (sometimes available as libsecret-1-dev)

Python 3.6 or later

Note: If you are installing the Linux packages on a z/Linux system, the system where you are

configuring SCS might require Internet access. When a site hosts its own package repositories, the

repositories might not contain all of the packages that are required to configure the SCS. In this

scenario, the z/Linux system requires Internet access to install the required packages.

�. If you are configuring SCS on a Ubuntu z/Linux operating system, no further action is required. You can

now install Zowe CLI. For all other platforms (RHEL), continue to the next step.

�. Enable the rhel-#-for-system-z-optional-rpms repository to download libsecret-devel.

Replace # with the major version of RHEL that is running on the z/Linux system.

If your license entitles you to this repository, issue the following command to enable it:

�. If you are configuring SCS to run on RHEL V8.x or later, no further action is required. You can now install

Zowe CLI. For RHEL V7.x, continue to the next step.

�. Install the Red Hat Developer Toolset to ensure that you are running a version of the gcc-c++ compiler

that can build the SCS native binaries.

Issue the following commands to enable the repositories that are required to install the toolset:

�. Install the toolset:

�. After you install the toolset on RHEL V7.x, you can install Zowe CLI.

Important: The SCS is installed every time that you install or update Zowe CLI. On RHEL V7.x, ensure

that the Red Hat Developer Toolset is enabled every time you install or update Zowe CLI. When you do

not enable the toolset, secure credential management is not available on the system. To ensure that the

toolset is enabled when you install Zowe CLI, issue the following commands instead of the standard

NPM install commands. For example:

When you run these commands, Zowe CLI is installed globally and the system will use the latest version

of the C++ compiler to build the native components. Refer back to the instructions to set up the Secure

Credential Storage component of the Zowe CLI.

Version: v2.2.x LTS

Configure Zowe CLI on operating systems
where the Secure Credential Store is not
available

By default, Zowe CLI attempts to store sensitive information and credentials in the operating systems̓

credential manager. When the information cannot be stored securely, Zowe CLI displays an error when you

attempt to create V1 style profiles or a V2 configuration. The actions that are required to disable secure

credential management differ depending on the type of configuration being used.

V1 profiles

Existing V1 profiles will continue to function properly. However, it will not be possible to create new profiles

without disabling secure credential management. To disable secure credential management for V1 profiles:

�. Navigate to the .zowe/settings directory.

�. Modify the imperative.json file by replacing the Credential Manager override value to the

following:

�. Save the changes.

Team configuration

Team configuration is stored in zowe.config.json .

Team configuration can be created without access to the Secure Credential Store. However, team

configuration does not store sensitive user information on the system. Subsequent commands prompt for

the user s̓ sensitive information when it not provided on the command line, and will attempt to save it with

the new Auto Store functionality. Users may experience errors when Auto Store cannot save sensitive

information securely. To mitigate this error, disable the Auto Store functionality by changing the value of the

autoStore property from true to false in the zowe.config.json or zowe.config.user.json

file.

Example:

Version: v2.2.x LTS

Installing Zowe CLI with Node.js 16 on
Windows

There are several preferred installation workarounds when you encounter the following scenarios:

Using Node.js version 16 with npm version 8 on Windows, want to install from the TGZ, and have

restricted Internet access

Unable to install Zowe CLI while offline using the TGZ bundle

The workaround installation options are, in order of preference:

Configure NPM proxy to access the public NPM registry (npmjs.org) so that the install from TGZ can

succeed. To configure an NPM proxy:

If your proxy is HTTP: npm config set proxy <proxyUrl>

If your proxy is HTTPS: npm config set https-proxy <proxyUrl>

Install CLI from an online registry instead of TGZ. This may also require configuring an NPM proxy. See

Installing Zowe CLI from an online registry.

Downgrade NPM to version 6. To downgrade from a newer version of NPM, issue the command: npm

install -g npm@6.x

Additional Considerations

There are issues with Node 16 and bundled optional dependencies in offline node installs. Because of the

issues, the optional cpu-features package was removed from the offline .tgz file that is available from

zowe.org and Broadcom. The installation process attempts to reach a configured registry and to use any

NPM proxy configured on the system. If the attempt fails, the installation process completes normally.

cpu-features changes the SSH cipher order that is used on the zowe uss issue ssh commands,

favoring chacha20-poly1305 cipher in cases where CPUs do not have built in AES instructions. This

should not affect performance.

https://docs.zowe.org/v2.2.x/user-guide/cli-installcli#installing-zowe-cli-from-an-online-registry

Version: v2.2.x LTS

Install CLI from Online Registry Via Proxy

 This topic describes how to install Zowe CLI using the NPM install command when you are working behind a

proxy server. Use this installation method when your site blocks access to public npm.

You can install Zowe CLI from an online registry via proxy on Windows, macOS, or Linux operating systems:

This method requires access to an internal server that will allow you to connect to the appropriate

registries. For other installation methods, see Installing CLI.

Your default registry must be public npm (or a mirror of public npm).

If you previously installed the CLI and want to update to a current version, see Updating Zowe CLI

Follow these steps:

�. Identify the proxy server, including the IP address or hostname and the port number.

If your proxy server does not require login credentials, issue the following commands to add the

proxy URL to the NPM config file:

[proxy_name]: The IP or hostname

[port_number]: The port number of the proxy server.

If your proxy server requires login credentials, issue the following commands to add the proxy

URL, with login credentials, to the NPM config file:

[username] and [password]: The required login credentials

[proxy_name]: The IP or hostname

[port_number]: The port number of the proxy server

�. Ensure that you meet the System requirements for CLI.

�. To install Zowe CLI, issue the following command. On Linux, you might need to prepend sudo to

your npm commands:

�. (Optional) To install open-source Zowe plug-ins:

a. Ensure that your system meets the Software requirements for Zowe CLI plug-ins.

https://docs.zowe.org/v2.2.x/user-guide/cli-updatingcli
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-cli
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins

b. Issue the following command to install all of the plug-ins:

Zowe CLI is installed.

�. (Optional) Verify that a Zowe plug-in is operating correctly.

[my-plugin]: The syntax for the plug-in. For example, @zowe/cics@zowe-v2-lts .

�. (Optional) Test the connection to z/OSMF. See Testing connections to z/OSMF

�. (Optional) Access the Zowe CLI Help (zowe --help) or the Zowe CLI Web Help for a complete

reference of Zowe CLI. After you install Zowe CLI, you can connect to the mainframe directly issuing a

command, by creating user profiles and making use of them on commands, or by using environment

variables. For more information, see Displaying help.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-profiles#testing-connections-to-zosmf
https://docs.zowe.org/v2.2.x/user-guide/cli-using-displaying-help

Version: v2.2.x LTS

Updating Zowe CLI

Zowe™ CLI is updated continuously. You can update Zowe CLI to a more recent version using online registry

method or the local package method.

You must update Zowe CLI using the method that you used to install Zowe CLI.

Updating to the Zowe CLI V2 Long-term Support (v2-lts)
version

If you are running Zowe CLI version v1.8.x to v1.27.x, you can update to @zowe-v2-lts (LTS version) to

leverage the latest Zowe CLI and plug-ins functionality.

�. Update Zowe CLI. Open a command line window and issue the following command:

�. Update Zowe plug-ins. Issue the following command to install all Zowe plug-ins:

Note: To install a subset of the plug-ins, remove the syntax for the plug-ins that you do not want to

update. For example:

�. (Optional) Migrate your Zowe CLI profiles from your current installation to your V2 installation. Issue the

following command:

Although you can run Zowe CLI V2 successfully using CLI V1 profiles, we strongly recommend using CLI

V2 profiles.

Note: Profile data is backed up in case you want to revert the profiles to your previous Zowe CLI

installation.

�. (Optional) If you no longer require the profiles for your previous Zowe CLI installation, you can delete

them. Issue the following command:

Important: We do not recommend deleting the profiles from your previous Zowe CLI installation until

you have tested your V2 installation and are satisfied with its performance.

You updated to the Zowe CLI V2-LTS version!

Ensure that you review the Release Notes, which describes Notable Changes in this version. We

recommend issuing familiar commands and running scripts to ensure that your profiles/scripts are

compatible. You might need to take corrective action to address the breaking changes.

Identify the currently installed version of Zowe CLI

Issue the following command (case-sensitive):

Identify the currently installed versions of Zowe CLI plug-
ins

Issue the following command:

Update Zowe CLI from the online registry

You can update Zowe CLI to the latest version from the online registry on Windows, Mac, and Linux

computers.

Note: The following steps assume that you previously installed the CLI as described in Installing Zowe CLI

from an online registry.

�. Update Zowe CLI. Open a command line window and issue the following command:

�. Update Zowe plug-ins. Issue the following command to install all Zowe plug-ins:

Note: To install a subset of the plug-ins, remove the syntax for the plug-ins that you do not want to

update. For example:

�. Recreate any user profiles that you created before you updated to the latest version of Zowe CLI.

Update or revert Zowe CLI to a specific version

Optionally, you can update Zowe CLI (or revert) to a known version. The following example illustrates the

syntax to update Zowe CLI to version 7.0.0:

Update Zowe CLI from a local package

https://docs.zowe.org/v2.2.x/getting-started/release-notes/v2_0_0
https://docs.zowe.org/v2.2.x/user-guide/cli-installcli#installing-zowe-cli-from-an-online-registry

To update Zowe CLI from an offline (.tgz), local package, uninstall your current package then reinstall

from a new package using the Install from a Local package instructions. For more information, see

Uninstalling Zowe CLI and Installing Zowe CLI from a local package.

Important! Recreate any user profiles that you created before the update.

https://docs.zowe.org/v2.2.x/user-guide/cli-uninstall
https://docs.zowe.org/v2.2.x/user-guide/cli-installcli#installing-zowe-cli-from-a-local-package

Version: v2.2.x LTS

Uninstalling Zowe CLI

You can uninstall Zowe™ CLI from the desktop if you no longer need to use it.

Important! The uninstall process does not delete the profiles and credentials that you created when using

the product from your computer. To delete the profiles from your computer, delete them before you uninstall

Zowe CLI.

The following steps describe how to list the profiles that you created, delete the profiles, and uninstall Zowe

CLI.

�. Open a command-line window.

Note: If you do not want to delete the Zowe CLI profiles from your computer, go to Step 5.

�. List all configuration files that you created. Issue the following command:

Example:

�. Delete all of the configuration files that are listed. Issue the following command:

Tip: For this command, use the results of the zowe config list command.

�. Uninstall Zowe CLI by issuing the following command:

Note: You might receive an ENOENT error when issuing this command if you installed Zowe CLI from a

local package (.tgz) and the package was moved from its original location. In the event that you receive

the error, open an issue in the Zowe CLI GitHub repository.

The uninstall process removes all Zowe CLI installation directories and files from your computer.

�. Delete the ~/.zowe or %homepath%\.zowe directory on your computer. The directory contains the

Zowe CLI log files and other miscellaneous files that were generated when you used the product.

Tip: Deleting the directory does not harm your computer.

Version: v2.2.x LTS

Visual Studio Code (VS Code) Extension for
Zowe

chatchat on Slackon Slack

The Zowe Explorer extension for Visual Studio Code (VS Code) modernizes the way developers and system

administrators interact with z/OS mainframes, and lets you interact with data sets, USS files and jobs. Install

the extension directly to VSCode to enable the extension within the GUI. Working with data sets and USS

files from VSCode can be more convenient than using 3270 emulators, and complements your Zowe CLI

experience. The extension provides the following benefits:

Enables you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

Enables you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

Provides a more streamlined way to access data sets, USS files and jobs.

Lets you create, edit, and delete Zowe CLI zosmf compatible profiles.

Lets you use the Secure Credential Store plug-in to store your credentials securely in the settings.

Note: Zowe Explorer is a subcomponent of Zowe. The extension demonstrates the potential for plug-ins

powered by Zowe.

Software Requirements

Ensure that you meet the following prerequisites before you use the extension:

Get access to z/OSMF.

Install Node.js v8.0 or later.

Install VSCode.

Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs REST

interface. For more information, see z/OS Requirements.

Create one Zowe CLI zosmf profile so that the extension can communicate with the mainframe.

Profile notes:

You can use your existing Zowe CLI zosmf profiles that are created with the Zowe CLI v.2.0.0 or later.

https://code.visualstudio.com/
https://zowe.org/home/
https://nodejs.org/en/download/
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements

Zowe CLI zosmf profiles that are created in Zowe Explorer can be interchangeably used in the Zowe

CLI.

Optionally, you can continue using Zowe CLI V1 profiles with Zowe Explorer. For more information, see

instert link here.

Installing

Use the following steps to install Zowe Explorer:

�. Address the software requirements.

�. Open VSCode, and navigate to the Extensions tab on the left-hand side of the UI.

�. Type Zowe Explorer in the search field.

Zowe Explorer appears in the list of extensions in the left-hand panel.

�. Click the green Install button to install the extension.

�. Restart VSCode.

The extension is now installed and available for use.

Note: For information about how to install the extension from a VSIX file and run system tests on the

extension, see the Developer README.

You can also watch the following videos to learn how to get started with Zowe Explorer, and work with data

sets.

https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README.md

Configuration

Configure Zowe Explorer in the settings file of the extension. To access the extension settings, navigate to

Manage (the gear icon) > Settings, then select Extensions > Zowe Explorer Settings. For example, you

can modify the following settings:

Data set creation settings: You can change the default creation settings for various data set types.

Follow these steps:

�. Click the Edit in settings.json button under the Data Set, USS or JOBS settings that you want to edit.

�. Edit the settings as needed.

�. Save the settings.

Set the Temporary Folder Location: You can change the default folder location where temporary files

are stored.

Follow these steps:

i. Click the Edit in settings.json button under the Data Set, USS or JOBS settings that you want to

edit.

ii. Modify the following definition:

where /path/to/directory is the folder location that you specify.

iii. Save the settings.

Relevant Information

In this section you can find useful links and other relevant to Zowe Explorer information that can improve

your experience with the extension.

For information about how to develop for Eclipse Theia, see Theia README.

For information about how to create a VSCode extension for Zowe Explorer, see VSCode extensions for

Zowe Explorer.

Visit the #zowe-explorer channel on Slack for questions and general guidance.

https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Theia.md
https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Extending.md
https://openmainframeproject.slack.com/

Version: v2.2.x LTS

Zowe Explorer Profiles

After you install Zowe Explorer, you need to have a Zowe Explorer profile to use all functions of the

extension.

Note: You can continue using Zowe V1 profiles with Zowe Explorer V2.

Configuring team profiles

Zowe CLI team profiles simplify profile management by letting you to edit, store, and share mainframe

configuration details in one location. You can use a text editor or an IDE to populate configuration files with

connection details for your mainframe services. By default, your team configuration file is located in the

.zowe home folder, whereas the project-level configuration file is located in the main directory of your

project. You can create profiles that you use globally, given that the names of the globally-used profiles are

different from your other profile names.

Note: A project context takes precedence over global configuration.

Creating team configuration files

Create a team configuration file.

�. Navigate to the explorer tree.

�. Hover over DATA SETS, USS, or JOBS.

�. Click the + icon.

�. Select Create a New Team Configuration File.

�. Chose either a global configuration file or a project-level configuration file.

�. Edit the config file to include the host information and save the file.

�. Refresh Zowe Explorer by either clicking the button in the notification message shown after creation,

alt+z , or the Zowe Explorer: Refresh Zowe Explorer command palette option.

Your team configuration file appears either in your .zowe folder if you choose the global configuration file

option, or in your workspace directory if you choose the project-level configuration file option. The

notification message that shows in VS Code after config file creation will include the path of the file created.

Managing profiles

You can edit your project-level or global configuration files.

Follow these steps:

�. Right-click on your profile.

�. Select the Add, Update, or Delete Profile options to edit the zowe config file in place.

Tip: Use the Intellisense prompts if you need assistance with filling parameters in the file.

�. Save the config file.

�. Refresh the view by clicking the refresh icon in the Data Sets, USS, or Jobs view.

Alternatively, press F1 to open the command palette, type and execute the Zowe Explorer: Refresh

Zowe Explorer option.

You successfully edited your configuration file.

Sample profile configuration

View the profile configuration sample. In the sample, the default lpar1.zosmf profile will be loaded upon

activation.

You can use the sample to customize your profile configuration file. Ensure that you edit the host and

port values before you work in your environment.

Working with Zowe Explorer profiles

Important! The information in this section applies to only Zowe CLI V1 profiles unless otherwise noted.

Zowe CLI V1 profiles are defined by having one yaml file for each user profile.

You must have a zosmf compatible profile before you can use Zowe Explorer. You can set up a profile to

retain your credentials, host, and port name. In addition, you can create multiple profiles and use them

simultaneously.

Follow these steps:

�. Navigate to the explorer tree.

�. Click the + button next to the DATA SETS, USS or JOBS bar.

Note: If you already have a profile, select it from the drop-down menu.

�. Select the Create a New Connection to z/OS option.

Note: When you create a new profile, user name and password fields are optional. However, the system

will prompt you to specify your credentials when you use the new profile for the first time.

�. Follow the instructions, and enter all required information to complete the profile creation.

You successfully created a Zowe CLI zosmf profile. Now you can use all the functionalities of the

extension.

If you need to edit a profile, right-click the profile and select Update Profile option.

In addition, you can hide a profile from the explorer tree, and permanently delete a profile. When you delete

your profile permanently, the extension erases the profile from the .zowe folder. To hide or delete a profile,

right-click the profile and choose one of the respective options from the list.

Validating profiles

Note: The following information applies to Zowe CLI V1 profiles (one yaml file for each user profile) and

Zowe CLI team profiles (Zowe CLI V2).

Zowe Explorer includes the profile validation feature that helps to ensure that z/OSMF is accessible and

ready for use. If a profile is valid, the profile is active and can be used. By default, the feature is automatically

enabled. You can disable the feature by right-clicking on your profile and selecting the Disable Validation

for Profile option. Alternatively, you can enable or disable the feature for all profiles in the VS Code settings.

Follow these steps:

�. Navigate to the VS Code settings.

�. Open Zowe Explorer Settings.

�. Enable or disable the automatic validation of profiles option.

�. Restart VS Code.

Using base profiles and tokens with existing profiles

As a Zowe user, you can leverage the base profile functionality to access multiple services through Single

Sign-on. Base profiles enable you to authenticate using Zowe API Mediation Layer (API ML). You can use

base profiles with more than one service profile. For more information, see Base Profiles.

Before you log in and connect your service profile, ensure that you have Zowe CLI v6.16 or higher installed.

Accessing services through API ML using SSO

Connect your service profile with a base profile and token.

Follow these steps:

�. Open Zowe CLI and issue the following command:

�. Follow the onscreen instructions to complete the login process.

A local base profile is created that contains your token. For more information about the process, see

Token Management.

�. Run Zowe Explorer and click the + icon.

�. Select the profile you use with your base profile with the token.

The profile appears in the tree and you can now use this profile to access z/OSMF via the API Mediation

Layer.

For more information, see Integrating with API Mediation Layer.

Logging in to the Authentication Service

If the token for your base profile is no longer valid, you can log in again to get a new token with the Log in to

Authentication Service feature.

Notes:

The feature is only available for base profiles.

The feature supports only API Mediation Layer at the moment. Other extenders may use a different

authentication service.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-profiles#base-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-install-cli-checklist
https://docs.zowe.org/v2.2.x/user-guide/cli-using-integrating-apiml#how-token-management-works
https://docs.zowe.org/v2.2.x/user-guide/cli-using-integrating-apiml

Follow these steps:

�. Open Zowe Explorer.

�. Right-click your profile.

�. Select the Log in to Authentication Service option.

You will be prompted to enter your username and password beforehand.

The token is stored in the corresponding base profile.

If you do not want to store your token, request from the server to end the session of your token. Use the Log

out from Authentication Service feature to invalidate the token.

Follow these steps:

�. Open Zowe Explorer.

�. Right-click your profile.

�. Select the Log out from Authentication Service option.

Your token has been successfully invalidated.

Version: v2.2.x LTS

Configuring Zowe Application Framework

The Zowe Application ("App") Framework is configured in the Zowe configuration file. Configuration can be

used to change things such as verbosity of logs, the way in which the App server communicates with the

Mediation Layer, how ZSS operates, whether to use HTTPS or AT-TLS, what language the logs should be

set, and many more attributes.

When you install Zowe™, the App Framework is configured as a Mediation Layer client by default. This is

simpler to administer because the App framework servers are accessible externally through a single port:

API ML Gateway port. It is more secure because you can implement stricter browser security policies for

accessing cross-origin content.

You can modify the Zowe App Server and Zowe System Services (ZSS) configuration, as needed, or

configure connections for the Terminal app plugins.

Accessing the App Server

When the server is enabled and given a port within the configuration file, the App server will print a message

ZWED0031I in the log output. At that time, it is ready to accept network communication. When using the API

Mediation Layer (recommended), app-server URLs should be reached from the Gateway, and you should

additionally wait for the message ZWEAM000I for the Gateway to be ready.

When Zowe is ready, the app-server can be found at https://<zowe.externalDomain>:

<components.gateway.port>/zlux/ui/v1

(Not recommended): If the API Mediation Layer is not used, or you need to contact the App server directly,

the ZWED0031I message states which port it is accessible from, though generally it will be the same value

as specified within components.app-server.port . In that case, the server would be available at

https://<zowe.externalDomain>:<components.app-server.port>/

Accessing the Desktop

The app-server should be accessed through the gateway when both are present. When both are

ready, the Desktop can be accessed from the API Mediation Layer Gateway, such as

https://<zowe.externalDomain>:<components.gateway.port>/zlux/ui/v1/ , which will

redirect to https://<zowe.externalDomain>:

<components.gateway.port>/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstrap/web/inde

x.html

Although you access the App server via the Gateway port, the App server still needs a port assigned to it

which is the value of the components.app-server.port variable in the Zowe configuration file.

(Not recommended): If the mediation layer is not used, the Desktop will be accessible from the App server

directly at /ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html

Accessing ZSS

The zss server should be accessed through the gateway when both are present. When both are ready,

ZSS can be accessed from the API Mediation Layer Gateway, such as

https://<zowe.externalDomain>:<components.gateway.port>/zss/api/v1/

Although you access the ZSS server via the Gateway port, the ZSS server still needs a port assigned to it

which is the value of the components.zss.port variable in the Zowe configuration file.

If the mediation layer is not used, ZSS directly at https://<zowe.externalDomain>:

<components.zss.port>/

Configuration file

app-server configuration

The app-server uses the Zowe server configuration file for customizing server behavior. For a full list of

parameters, requirements, and descriptions, see the json-schema document for the app-server which

describes attributes that can be specified within the configuration file section components.app-server

zss configuration

ZSS shares some parameters in common with the app-server, so you can consult the above json-schema

document to find out which parameters are valid within components.zss of the Zowe configuration file.

https://github.com/zowe/zlux/blob/v2.x/staging/schemas/zlux-config-schema.json

However, some parameters within the app-server schema are not used by ZSS, such as the node section.

A ZSS-centric schema will be available soon.

Environment variables

In the latest version of Zowe, instance.env is no longer used. However, some environment variables that

could be specified within v1 can still be set within v2 in the zowe.environments section of the server

configuration file. Environment variables starting with ZWED_ map to values that can be specified within

components.app-server and components.zss so they are redundant, but you can refer to the above

json-schema document to see which values are useful or deprecated.

Configuring the framework as a Mediation Layer client

The App Server and ZSS automatically register to the API Mediation Layer when present. If this is not

desired, registration can disabled by setting the properties components.app-

server.mediationLayer.server.enabled=false for app-server and

components.zss.mediationLayer.enabled=false for ZSS.

Setting up terminal app plugins

Follow these optional steps to configure the default connection to open for the terminal app plugins.

Setting up the TN3270 mainframe terminal app plugin

The file _defaultTN3270.json within the tn3270-ng2 app folder

/config/storageDefaults/sessions/ is deployed to the configuration dataservice when the app-

server runs for the first time. This file is used to tell the terminal what host to connect to by default. If you'd

like to customize this default, you can edit the file directly within the configuration dataservice

<components.app-

server.instanceDir>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json . Or you

can open the app, customize a session within the UI, click the save icon (floppy icon) and then copy that file

from <components.app-server.usersDir>/<your

user>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json to <components.app-

server.instanceDir>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json . Either

way, you will see a file with the following properties:

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice

Setting up the VT Terminal app plugin

The file _defaultVT.json within the vt-ng2 app folder /config/storageDefaults/sessions/

is deployed to the configuration dataservice when the app-server runs for the first time. This file is used to

tell the terminal what host to connect to by default. If you'd like to customize this default, you can edit the file

directly within the configuration dataservice <components.app-

server.instanceDir>/org.zowe.terminal.vt/sessions/_defaultVT.json . Or you can open the

app, customize a session within the UI, click the save icon (floppy icon) and then copy that file from

<components.app-server.usersDir>/<your

user>/org.zowe.terminal.vt/sessions/_defaultVT.json to <components.app-

server.instanceDir>/org.zowe.terminal.vt/sessions/_defaultVT.json . Either way, you will

see a file with the following properties:

Network configuration

Note: The following attributes are to be defined in the Zowe configuration file.

The App Server can be accessed over HTTP and/or HTTPS, provided it has been configured for either.

HTTPS should be used, as HTTP is not secure unless AT-TLS is used. When AT-TLS is used by ZSS,

components.zss.agent.http.attls must be set to true.

HTTPS

Both app-server and zss server components use HTTPS by default, and the port parameters

components.app-server.port and components.zss.port control which port they are accessible

from. However, each have advanced configuration options to control their HTTPS behavior.

The app-server component configuration can be used to customize its HTTPS connection such as

which certificate and ciphers to use, and these parameters are to be set within components.app-

server.node.https as defined within the json-schema file

The zss component configuration can be used to customize its HTTPS connection such as which

certificate and ciphers to use, and these parameters are to be set within components.zss.agent.https

as defined within the json-schema file

HTTP

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L15
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json#L81

The app-server can be configured for HTTP via the components.app-server.node.http section

of the Zowe configuration file, as specified within the app-server json-schema file.

The zss server can be configured for HTTP via the components.zss.agent.http section of the Zowe

configuration file, as specified within the zss json-schema file. Note that components.zss.tls must

be set to false for HTTP to take effect, and that components.zss.agent.http.attls must be set to

true for AT-TLS to be recognized correctly.

Configuration Directories

When running, the App Server will access the server's settings and read or modify the contents of its

resource storage. All of this data is stored within a hierarchy of folders which correspond to scopes:

Product: The contents of this folder are not meant to be modified, but used as defaults for a product.

Site: The contents of this folder are intended to be shared across multiple App Server instances,

perhaps on a network drive.

Instance: This folder represents the broadest scope of data within the given App Server instance.

Group: Multiple users can be associated into one group, so that settings are shared among them.

User: When authenticated, users have their own settings and storage for the Apps that they use.

These directories dictate where the Configuration Dataservice will store content. For more information, see

the Configuration Dataservice documentation

Old defaults

Prior to Zowe release 2.0.0, the location of the configuration directories were initialized to be within the

<INSTANCE_DIR> folder unless otherwise customized. 2.0.0 does have backwards compatibility for the

existence of these directories, but <INSTANCE_DIR> folder no longer exists, so they should be migrated

to match the ones specified in the Zowe configuration file.

Folder New Location Old Location

siteDir
<zowe.workspaceDirectory>/app-

server/site

<INSTANCE_DIR>/workspace/app-

server/site

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L73
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json#L99
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice

App plugin configuration

The App framework will load plugins from Components such as extensions based upon their enabled status

in Zowe configuration. The server caches knowledge of these plugins in the

<workspaceDirectory>/app-server/plugins folder. This location can be customized with the

components.app-server.pluginsDir variable in the Zowe configuration file.

Logging configuration

For more information, see Logging Utility.

Enabling tracing

To obtain more information about how a server is working, you can enable tracing within the Zowe

configuration file via components.app-server.logLevels or components.zss.logLevels variable. For more

information on all loggers, check out the Extended documentation.

For example:

All settings are optional.

Folder New Location Old Location

instanceDir
<zowe.workspaceDirectory>/app-

server

<INSTANCE_DIR>/workspace/app-

server

insta

isn't

work

is us

groupsDir
<zowe.workspaceDirectory>/app-

server/groups

<INSTANCE_DIR>/workspace/app-

server/groups

usersDir
<zowe.workspaceDirectory>/app-

server/users

<INSTANCE_DIR>/workspace/app-

server/users

pluginsDir
<zowe.workspaceDirectory>/app-

server/plugins

<INSTANCE_DIR>/workspace/app-

server/plugins

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-logutility
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-core-loggers

Log files

The app-server and zss will create log files containing processing messages and statistics. The log files are

generated within the log directory specified within the Zowe configuration file (zowe.logDirectory).

The filename patterns are:

App Server: <zowe.logDirectory>/appServer-yyyy-mm-dd-hh-mm.log

ZSS: <zowe.logDirectory>/zssServer-yyyy-mm-dd-hh-mm.log

Retaining logs

By default, the last five log files are retained. You can change this by setting environment variables within the

zowe.environments section of the Zowe server configuration file. To specify a different number of logs

to retain, set ZWED_NODE_LOGS_TO_KEEP for app-server logs, or ZWES_LOGS_TO_KEEP for zss logs. For

example, if you set ZWED_NODE_LOGS_TO_KEEP to 10, when the eleventh log is created, the first log is

deleted.

Controlling the logging location

At minimum, the log information for both app-server and zss are written to STDOUT such that messages are

visible in the terminal that starts Zowe and when on z/OS, the STC job log.

By default, both servers additionally log to files and the location of these files can be changed or logging to

them can be disabled. The following environment variables can be used to customize the app-server and

zss log locations by setting the values within the zowe.environments section of the Zowe configuration

file.

ZWED_NODE_LOG_DIR : Overrides the zowe configuration file value of zowe.logDirectory for

app-server, but keeps the default filenames.

ZWES_LOG_DIR : Overrides the zowe configuration file value of zowe.logDirectory for zss, but

keeps the default filenames.

ZWED_NODE_LOG_FILE : Specifies the full path to the file where logs will be written from app-server.

This overrides both ZWED_NODE_LOG_DIR and zowe.logDirectory . If the path is /dev/null

then no log file will be written. This option does not timestamp logs or keep multiple of them.

ZWES_LOG_FILE : Specifies the full path to the file where logs will be written from zss. This overrides

both ZWES_LOG_DIR and zowe.logDirectory . If the path is /dev/null then no log file will be

written. This option does not timestamp logs or keep multiple of them.

If the directory or file specified cannot be created, the server will run (but it might not perform logging

properly).

ZSS configuration

Running ZSS requires a Zowe configuration file configuration that is similar to the one used for the Zowe App

Server (by structure and property names). The attributes that are needed for ZSS (components.zss) at

minimum, are: port, crossMemoryServerName.

By default, ZSS is configured to use HTTPS with the same certificate information and port specification as

the other Zowe services. If you are looking to use AT-TLS instead, then you must set component.zss.tls

variable to false and define component.zss.agent.http section with port, ipAddresses, and attls: true

as shown below

(Recommended) Example of the agent body:

(Not recommended) Unsecure, HTTP example with AT-TLS:

ZSS 64 or 31 bit modes

Two versions of ZSS are included in Zowe, a 64 bit version and a 31 bit version. It is recommended to run the

64 bit version to conserve shared system memory but you must match the ZSS version with the version your

ZSS plugins support. Official Zowe distributions contain plugins that support both 64 bit and 31 bit, but

extensions may only support one or the other.

Verifying which ZSS mode is in use

You can check which version of ZSS you are running by looking at the logs. At startup, the message

ZWES1013I states which mode is being used, for example:

ZWES1013I ZSS Server has started. Version 2.0.0 64-bit

Or

ZWES1013I ZSS Server has started. Version 2.0.0 31-bit

Verifying which ZSS mode plugins support

You can check if a ZSS plugin supports 64 bit or 31 bit ZSS by reading the pluginDefinition.json file of the

plugin. In each component or extension you have, its manifest file will state if there are appFw plugin

entries. In each folder referenced by the appFw section, you will see a pluginDefinition.json file. Within that

file, if you see a section that says type: 'service' , then you can check its ZSS mode support. If the

service has the property libraryName64 , then it supports 64 bit. If it says libraryName31 , then it

supports 31 bit. Both may exist if it supports both. If it instead only contains libraryName , this is

ambigious and deprecated, and most likely that plugin only supports 31 bit ZSS. A plugin only supporting 31

bit ZSS must be recompiled for 64 bit support, so you must contact the developers to accomplish that.

Example: the sample angular app supports both 31 bit and 64 bit zss

Setting ZSS 64 bit or 31 bit mode

You can switch between ZSS 64 bit and 31 bit mode by setting the value

components.zss.agent.64bit to true or false in the Zowe configuration file. The value will not take

effect until next server restart.

Using AT-TLS in the App Framework

By default, both ZSS and the App server use HTTPS regardless of platform. However, some may wish to use

AT-TLS on z/OS as an alternative way to provide HTTPS. In order to do this, the servers must run in HTTP

mode instead, and utilize AT-TLS for HTTPS. The servers should never use HTTP without AT-TLS, it

would be insecure. If you want to use AT-TLS, you must have a basic knowledge of your security product

and you must have Policy Agent configured. For more information on AT-TLS and Policy Agent, see the z/OS

Knowledge Center.

There are a few requirements to working with AT-TLS:

You must have the authority to alter security definitions related to certificate management, and you

must be authorized to work with and update the Policy Agent.

AT-TLS needs a TLS rule and keyring. The next section will cover that information.

Note: Bracketed values below (including the brackets) are variables. Replace them with values relevant to

your organization. Always use the same value when substituting a variable that occurs multiple times.

Creating AT-TLS certificates and keyring using RACF

https://github.com/zowe/sample-angular-app/blob/083855582e8a82cf48abc21e15fa20bd59bfe180/pluginDefinition.json#L50-L53
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.halx001/transtls.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz002/pbn_pol_agnt.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2/en/homepage.html

In the following commands and examples you will create a root CA certificate and a server certificate signed

by it. These will be placed within a keyring which is owned by the user that runs the Zowe server. Note:

These actions can be done for various Zowe servers, but in these examples we set up ZSS for AT-TLS.

You can subsitute ZSS for another server if desired.

Key variables:

Variable Value

[ca_common_name]

[ca_label]

[server_userid]

[server_common_name]

[server_label]

[ring_name]

[output_dataset_name]

Note:

[server_userid] must be the server user ID, such as the STC user.

[server_common_name] must be the z/OS hostname that runs Zowe

�. Enter the following RACF command to generate a CA certificate:

�. Enter the follow RACF command to generate a server certificate signed by the CA certificate:

�. Enter the following RACF commands to create a key ring and connect the certificates to the key ring:

�. Enter the following RACF command to refresh the DIGTRING and DIGTCERT classes to activate your

changes:

�. Enter the following RACF commands to verify your changes:

�. Enter the following RACF commands to allow the ZSS server to use the certificates. Only issue the

RDEFINE commands if the profiles do not yet exist.

Note: These sample commands use the FACILTY class to manage certificate related authorizations. You can

also use the RDATALIB class, which offers granular control over the authorizations.

�. Enter the following RACF command to export the CA certificate to a dataset so it can be imported by the

Zowe server:

Defining the AT-TLS rule

To define the AT-TLS rule, use the sample below to specify values in your AT-TLS Policy Agent Configuration

file:

Using multiple ZIS instances

When you install Zowe, it is ready to be used for 1 instance of each component. However, ZIS can have a

one-to-many relationship with the Zowe webservers, and so you may wish to have more than one copy of

ZIS for testing or to handle different groups of ZIS plugins.

The following steps can be followed to point a Zowe instance at a particular ZIS server.

�. Create a copy of the ZIS server. You could run multiple copies of the same code by having different STC

JCLs pointing to the same LOADLIB, or run different copies of ZIS by having JCLs pointing to different

LOADLIBs.

�. Edit the JCL of the ZIS STC. In the NAME parameter specify a unique name for the ZIS server, for

example:

Where ZWESIS_MYSRV is the unique name of the new ZIS.

�. Start the new ZIS with whatever PROCLIB name was chosen.

�. Stop the Zowe instance you wish to point to the ZIS server

�. Locate the zowe configuration file for the Zowe instance, and edit the parameter

components.zss.privilegedServerName to match the name of the ZIS STC name chosen, such

as ZWESIS_MYSRV

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server#starting-and-stopping-the-cross-memory-server-on-zos
https://docs.zowe.org/stable/user-guide/stop-zowe-zos

�. Restart the Zowe instance

�. Verify that the new ZIS server is being used by checking for the following messages in the ZWESLSTC

server job log:

ZIS status - Ok (name='ZWESIS_MYSRV ', cmsRC=0, description='Ok',

clientVersion=2)

Controlling access to apps

You can control which apps are accessible (visible) to all Zowe desktop users, and which are accessible only

to individual users. For example, you can make an app that is under development only visible to the team

working on it.

You control access by editing JSON files that list the apps. One file lists the apps all users can see, and you

can create a file for each user. When a user logs into the desktop, Zowe determines the apps that user can

see by concatenating their list with the all users list.

You can also control access to the JSON files. The files are accessible directly on the file system, and since

they are within the configuration dataservice directories, they are also accessible via REST API. We

recommend that only Zowe administrators be allowed to access the file system locations, and you control

that by setting the directories and their contents to have file permissions on z/OS that only allow the Zowe

admin group read & write access. You control who can read and edit the JSON files through the REST API by

controlling who can access the configuration dataservice objects URLs that serve the JSON files.

Enabling RBAC

By default, RBAC is disabled and all authenticated Zowe users can access all dataservices. To enable RBAC,

follow these steps:

�. To enable RBAC, set the components.zss.dataserviceAuthentication.rbac and components.app-

server.dataserviceAuthentication.rbac variables to true in the Zowe configuration file.

Controlling app access for all users

Note:

<zowe.runtimeDirectory> variable comes from the Zowe configuration file.

https://docs.zowe.org/stable/user-guide/configure-zowe-server#step-3-launch-the-zwesvstc-started-task
https://docs.zowe.org/v2.2.x/user-guide/mvd-configuration#creating-authorization-profiles

�. Enable RBAC.

�. Navigate to the following location:

�. Copy the allowedPlugins.json file and paste it in the following location:

�. Open the copied allowedPlugins.json file and perform either of the following steps:

To make an app unavailable, delete it from the list of objects.

To make an app available, copy an existing plugin object and specify the app's values in the new

object. Identifier and version attributes are required.

�. Restart the app server.

Controlling app access for individual users

�. Enable RBAC.

�. In the user's ID directory path, in the \pluginStorage directory, create

\org.zowe.zlux.bootstrap\plugins directories. For example:

�. In the /plugins directory, create an allowedPlugins.json file. You can use the default

allowedPlugins.json file as a template by copying it from the following location:

�. Open the allowedPlugins.json file and specify apps that user can access. For example:

Notes:

Identifier and version attributes are required.

When a user logs in to the desktop, Zowe determines which apps they can see by concatenating

the list of apps available to all users with the apps available to the individual user.

�. Restart the app server.

Controlling access to dataservices

To apply role-based access control (RBAC) to dataservice endpoints, you must enable RBAC for Zowe, and

then use a z/OS security product such as RACF to map roles and authorities to the endpoints. After you

apply RBAC, Zowe checks authorities before allowing access to the endpoints.

https://docs.zowe.org/v2.2.x/user-guide/start-zowe-zos
https://docs.zowe.org/v2.2.x/user-guide/start-zowe-zos

You can apply access control to Zowe endpoints and to your app endpoints. Zowe provides endpoints for a

set of configuration dataservices and a set of core dataservices. Apps can use configuration endpoints to

store and their own configuration and other data. Administrators can use core endpoints to get status

information from the App Framework and ZSS servers. Any dataservice added as part of an app plugin is a

service dataservice.

Defining the RACF ZOWE class

If you use RACF security, take the following steps define the ZOWE class to the CDT class:

�. Make sure that the CDT class is active and RACLISTed.

�. In TSO, issue the following command:

If you receive the following message, ignore it:

�. In TSO, issue the following command to refresh the CDT class:

�. In TSO, issue the following command to activate the ZOWE class:

For more information on RACF security administration, see the IBM Knowledge Center at

https://www.ibm.com/support/knowledgecenter/.

Creating authorization profiles

For users to access endpoints after you enable RBAC, in the ZOWE class you must create System

Authorization Facility (SAF) profiles for each endpoint and give users READ access to those profiles.

Endpoints are identified by URIs in the following format:

/ZLUX/plugins/<plugin_id>/services/<service>/<version>/<path>

For example:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Where the path is /users/fred .

SAF profiles have the following format:

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice#configuration-dataservice
https://docs.zowe.org/v2.2.x/user-guide/mvd-configuration#Administering-the-servers-and-plugins-using-an-API
https://www.ibm.com/support/knowledgecenter/

ZLUX.<zowe.rbacProfileIdentifier>.<servicename>.<pluginid_with_underscores>.

<service>.<HTTP_method>.<url_with_forward_slashes_replaced_by_periods>

For example, to issue a POST request to the dataservice endpoint documented above, users must have

READ access to the following profile:

ZLUX.1.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

For configuration dataservice endpoint profiles use the service code CFG . For core dataservice endpoints

use COR . For all other dataservice endpoints use SVC .

Creating generic authorization profiles

Some endpoints can generate an unlimited number of URIs. For example, an endpoint that performs a

DELETE action on any file would generate a different URI for each file, and users can create an unlimited

number of files. To apply RBAC to this type of endpoint you must create a generic profile, for example:

ZLUX.1.COR.ORG_ZOWE_FOO.BAZ.DELETE.**

You can create generic profile names using wildcards, such as asterisks (*). For information on generic

profile naming, see IBM documentation.

Configuring basic authorization

The following are recommended for basic authorization:

To give administrators access to everything in Zowe, create the following profile and give them UPDATE

access to it: ZLUX.**

To give non-administrators basic access to the site and product, create the following profile and give

them READ access to it: ZLUX.*.ORG_ZOWE_*

To prevent non-administrators from configuring endpoints at the product and instance levels, create the

following profile and do not give them access to it: ZLUX.1.CFG.**

To give non-administrators all access to user, create the following profile and give them UPDATE access

to it: ZLUX.1.CFG.*.*.USER.**

Endpoint URL length limitations

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha100/egnoff.htm

SAF profiles cannot contain more than 246 characters. If the path section of an endpoint URL is long enough

that the profile name exceeds the limit, the path is trimmed to only include elements that do not exceed the

limit. To avoid this issue, we recommend that appliction developers maintain relatively short endpoint URL

paths.

For information on endpoint URLs, see Dataservice endpoint URL lengths and RBAC

Multi-factor authentication configuration

Multi-factor authentication is an optional feature for Zowe.

As of Zowe version 1.8.0, the Zowe App Framework, Desktop, and all apps present in the SMP/E or

convenience builds support out-of-band MFA by entering an MFA assigned token or passcode into

password field of the Desktop login screen, or by accessing the app-server /auth REST API endpoint.

For a list of compatible MFA products, see Known compatible MFA products.

Session duration and expiration

After successful authentication, a Zowe Desktop session is created by authentication plugins.

The duration of the session is determined by the plugin used. Some plugins are capable of renewing the

session prior to expiration, while others may have a fixed session length.

Zowe is bundled with a few of these plugins:

sso-auth: Uses either ZSS or the API Mediation Layer for authentication, and ZSS for RBAC

authorization. This plugin also supports resetting or changing your password via a ZSS API. Whether

ZSS or API Mediation Layer or both are used for authentication depends upon SSO settings. Starting

with Zowe 1.28.0, SSO is enabled by default such that only API Mediation Layer is called at

authentication time. By default, the Mediation Layer calls z/OSMF to answer the authentication request.

The session created mirrors the z/OSMF session.

trivial-auth: This plugin is used for development and testing, as it always returns true for any function.

It could be used if there were specific services you did not need authentication for, while you wanted

authentication elsewhere.

When a session expires, the credentials used for the initial login are likely to be invalid for re-use, since MFA

credentials are often one-time-use or time-based.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-dataservices#limiting-the-length-of-dataservice-paths-for-rbac
https://www.ibm.com/support/knowledgecenter/SSNR6Z_2.0.0/com.ibm.mfa.v2r0.azfu100/azf_server.htm
https://www.ibm.com/support/knowledgecenter/SSNR6Z_2.0.0/com.ibm.mfa.v2r0.azfu100/azf_oobconcepts.htm
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zos#multi-factor-authentication-mfa

In the Desktop, Apps that you opened prior to expiration will remain open so that your work can resume after

entering new credentials.

Configuration

When you use the default Zowe SMP/E or convenience build configuration, you do not need to change Zowe

to get started with MFA.

To configure Zowe for MFA with a configuration other than the default, take the following steps:

�. Choose an App Server security plugin that is compatible with MFA. The sso-auth plugin is compatible.

�. Locate the App Server's configuration file in zowe.yaml .

�. Edit the configuration file to modify the section components.app-

server.dataserviceAuthentication .

�. Set defaultAuthentication to the same category as the plugin of choice, as seen in its

pluginDefinition.json file. For example:

sso-auth: "saf"

trivial-auth: "fallback"

The following is an example configuration for sso-auth , as seen in a default installation of Zowe:

Administering the servers and plugins using an API

The App Server has a REST API to retrieve and edit both the App Server and ZSS server configuration

values, and list, add, update, and delete plugins. Most of the features require RBAC to be enabled and for

your user to have RBAC access to utilize these endpoints. For more information see documentation on how

to use RBAC

The API returns the following information in a JSON response:

API Description

/server (GET)
Returns a list of accessible server endpoints for

the Zowe App Server.

https://docs.zowe.org/stable/user-guide/mvd-configuration.html#controlling-access-to-dataservices

API Description

/server/config (GET)
Returns the Zowe App Server configuration

which follows this specification.

/server/log (GET)
Returns the contents of the Zowe App Server

log file.

/server/loglevels (GET)
Returns the verbosity levels set in the Zowe App

Server logger.

/server/environment (GET)

Returns Zowe App Server environment

information, such as the operating system

version, node server version, and process ID.

/server/reload (GET)
Reloads the Zowe App Server. Only available in

cluster mode.

/server/agent (GET)
Returns a list of accessible server endpoints for

the ZSS server.

/server/agent/config (GET)
Returns the ZSS server configuration which

follows this specification.

/server/agent/log (GET) Returns the contents of the ZSS log file.

/server/agent/loglevels (GET) Returns the verbosity levels of the ZSS logger.

/server/agent/environment (GET) Returns ZSS environment information.

/server/logLevels/name/:componentName/level/:level

(POST)

Specify the logger that you are using and a

verbosity level.

/plugins (GET)
Returns a list of all plugins and their

dataservices.

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json

API Description

/plugins (PUT)
Adds a new plugin or upgrades an existing

plugin. Only available in cluster mode (default).

/plugins/:id (DELETE)
Deletes a plugin. Only available in cluster mode

(default).

Swagger API documentation is provided in the <zowe.runtimeDirectory>/components/app-

server/share/zlux-app-server/doc/swagger/server-plugins-api.yaml file. To see it in HTML

format, you can paste the contents into the Swagger editor at https://editor.swagger.io/.

Note: The "agent" end points interact with the agent specified in the zowe configuration file. By default this

is ZSS.

https://editor.swagger.io/

Version: v2.2.x LTS

Configuring Zowe CLI environment variables

This section explains how to configure Zowe CLI using environment variables.

By default, Zowe CLI configuration is stored on your computer in the C:\Users\user01\.zowe directory.

The directory includes log files, profile information, and installed CLI plug-ins. When troubleshooting, refer to

the logs in the imperative and zowe folders.

Setting the CLI home directory

You can set the location on your computer where Zowe CLI creates the .zowe directory, which contains log

files, profiles, and plug-ins for the product:

Environment

Variable
Description Values Default

ZOWE_CLI_HOME
Zowe CLI home

directory location

Any valid path on your

computer

Your computer default

home directory

Setting CLI log levels

You can set the log level to adjust the level of detail that is written to log files:

Important! Setting the log level to TRACE or ALL might result in "sensitive" data being logged. For example,

command line arguments will be logged when TRACE is set.

Environment Variable Description Values Default

ZOWE_APP_LOG_LEVEL
Zowe CLI logging

level

Log4JS log levels (OFF, TRACE,

DEBUG, INFO, WARN, ERROR,

FATAL)

WARN

Environment Variable Description Values Default

ZOWE_IMPERATIVE_LOG_LEVEL
Imperative CLI

Framework

logging level

Log4JS log levels (OFF, TRACE,

DEBUG, INFO, WARN, ERROR,

FATAL)

WARN

Setting CLI daemon mode properties

By default, the CLI daemon mode binary creates or reuses a file in the user's home directory each time a

Zowe CLI command runs. In some cases, this behavior might be undesirable. For example, the home

directory resides on a network drive and has poor file performance. To change the location that the daemon

uses, set the environment variables that are described in the following table:

Platform Environment Variable Description Values Defaul

All ZOWE_DAEMON_DIR

Lets you override the

complete path to the

directory that will hold

daemon files related to

this user. The directory

can contain the following

files:

daemon.lock

daemon.sock

daemon_pid.json

Any valid

path on

your

computer

<your_home_dir>/.z

Examples:

Windows:

%HOMEPATH%\.zo

Linux: $HOME/.zo

Windows

(only)
ZOWE_DAEMON_PIPE

Lets you override the last

two segments of the

name of the

communication pipe

between the daemon

executable (.exe) and the

daemon.

Any valid

path on

your

computer

\\.\pipe\%USERNAME

Version: v2.2.x LTS

Configuring the Zowe APIs

Review the security considerations for Zowe APIs and learn how to prevent the Denial of Service (DoS)

attacks.

The default configuration before Zowe version 1.14.0 contains Data sets and Unix files and Jobs API

microservices which might be vulnerable to DoS attacks in the form of slow https attacks. You can add

additional configuration to the start script of these components in order to prevent resource starvation via

slow https attacks.

To update the configuration of the Data sets and Unix files component, modify the start.sh script

within the runtime component directory /zowe/runtime/components/files-api/bin .

To update the configuration of the Jobs component, modify the start.sh script within the runtime

component directory /zowe/runtime/components/jobs-api/bin .

Ensure that the -Dserver.connection-timeout=8000 parameter is set. This parameter specifies how

long the component waits to receive all the required information from the client that makes a request.

See a snippet of a configured start.sh script for the Jobs component as follows:

In version 1.14.0 and later, the preceding snippet reflects the default configuration.

Version: v2.2.x LTS

Advanced Gateway features configuration

As a system programmer who wants to configure advanced Gateway features of the API Mediation Layer,

you can customize Gateway parameters by modifying either of the following files:

<Zowe runtime directory>/components/gateway/bin/start-gateway.sh

<Zowe runtime directory>/components/gateway/manifest.yaml

zowe.yaml

The parameters begin with the -D prefix, similar to all the other parameters in the file.

Note: Restart Zowe to apply changes to the parameter.

Follow the procedures in the following sections to customize Gateway parameters according to your

preferences:

Prefer IP Address for API Layer services

SAF as an Authentication provider

Enable JWT token refresh endpoint

Change password with SAF provider

Gateway retry policy

Gateway client certificate authentication

Gateway timeouts

CORS handling

Encoded slashes

Connection limits

Routed instance header

Distributed load balancer cache

Replace or remove catalog with another service

API Mediation Layer as a standalone component

SAF resource checking

SAF as an Authentication provider

By default, the API Gateway uses z/OSMF as an authentication provider. It is possible to switch to SAF as the

authentication provider instead of z/OSMF. The intended usage of SAF as an authentication provider is for

systems without z/OSMF. If SAF is used and the z/OSMF is available on the system, the created tokens are

not accepted by z/OSMF. Use the following procedure to switch to SAF.

Follow these steps:

�. Open the zowe.yaml configuration file.

�. Find or add the property components.gateway.apiml.security.auth.provider and set the

value to saf .

�. Restart Zowe&trade.

Authentication requests now utilize SAF as the authentication provider. API ML can run without z/OSMF

present on the system.

Enable JWT token refresh endpoint

Enable the /gateway/api/v1/auth/refresh endpoint to exchange a valid JWT token for a new token

with a new expiration date. Call the endpoint with a valid JWT token and trusted client certificate. In case of

z/OSMF authentication provider, enable API Mediation Layer for passticket generation and configure z/OSMF

APPLID. Configure Passtickets

Follow these steps:

�. Open the file zowe.yaml .

�. Configure the following properties:

components.gateway.apiml.security.allowtokenrefresh: true

Add this property to enable the refresh endpoint.

components.gateway.apiml.security.zosmf.applid

If you use z/OSMF as an authentication provider, provide a valid APPLID . The API ML generates a

passticket for the specified APPLID and subsequently uses this passticket to authenticate to

z/OSMF. The default value in the installation of z/OSMF is IZUDFLT .

�. Restart Zowe.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-passtickets

Change password with SAF provider

Update the user password using the SAF Authentication provider. To use this functionality, add the

parameter newPassword on the login endpoint /gateway/api/v1/auth/login . The Gateway service

returns a valid JWT with the response code 204 as a result of successful password change. The user is

then authenticated and can consume APIs through the Gateway. If it is not possible to change the password

for any reason, the response code is 401 .

This feature is also available in the API Catalog.

This feature is also available in the API Catalog.

Use a POST REST call against the URL /gateway/api/v1/auth/login :

Note: It is a common practice to set the limit for changing the password in the ESM. This value is set by the

parameter MINCHANGE for PASSWORD . The password can be changed once. Subsequently, it is

necessary to wait the specified time period before changing the password again.

Example:

MINCHANGE=120

where:

120

Specifies the number of days before the password can be reset

Change password with z/OSMF provider

Update the user password using the z/OSMF Authentication provider. To use this functionality, add the

parameter newPassword on the login endpoint /gateway/api/v1/auth/login . The Gateway service

returns a valid JWT with the response code 204 as a result of successful password change. The user is

then authenticated and can consume APIs through the Gateway. If it is not possible to change the password

for any reason, the response code is 401 .

This feature is also available in the API Catalog.

Use a POST REST call against the URL /gateway/api/v1/auth/login :

Note: In order to use the password change functionality via z/OSMF, it is necessary to install the PTF for

APAR PH34912.

Gateway retry policy

To change the Gateway retry policy, edit properties in the <Zowe install

directory>/components/gateway/bin/start.sh file:

All requests are disabled as the default configuration for retry with one exception: the server retries GET

requests that finish with status code 503 . To change this default configuration, include the following

parameters:

ribbon.retryableStatusCodes

Provides a list of status codes, for which the server should retry the request.

Example: -Dribbon.retryableStatusCodes="503, 404"

ribbon.OkToRetryOnAllOperations

Specifies whether to retry all operations for this service. The default value is false . In this case, only

GET requests are retried if they return a response code that is listed in

ribbon.retryableStatusCodes . Setting this parameter to true enables retry requests for all

methods which return a response code listed in ribbon.retryableStatusCodes .

Note: Enabling retry can impact server resources due to request body buffering.

ribbon.MaxAutoRetries

Specifies the number of times a failed request is retried on the same server. This number is multiplied

with ribbon.MaxAutoRetriesNextServer . The default value is 0 .

ribbon.MaxAutoRetriesNextServer

Specifies the number of additional servers that attempt to make the request. This number excludes the

first server. The default value is 5 .

Gateway client certificate authentication

Use the following procedure to enable the feature to use a client certificate as the method of authentication

for the API Mediation Layer Gateway.

Follow these steps:

�. Open the zowe.yaml configuration file.

�. Configure the following properties:

components.gateway.apiml.security.x509.enabled

This property is the global feature toggle. Set the value to true to enable client certificate

functionality.

components.gateway.apiml.security.zosmf.applid

When z/OSMF is used as an authentication provider, provide a valid APPLID to allow for client

certificate authentication. The API ML generates a passticket for the specified APPLID and

subsequently uses this passticket to authenticate to z/OSMF. The default value in the installation of

z/OSMF is IZUDFLT .

Note: The following steps are only required if the ZSS hostname or default Zowe user name are

altered:

�. Change the following property if user mapping is provided by an external API:

components.gateway.apiml.security.x509.externalMapperUrl

Note: Skip this step if user mapping is not provided by an external API.

The API Mediation Gateway uses an external API to map a certificate to the owner in SAF. This property

informs the Gateway about the location of this API. ZSS is the default API provider in Zowe. You can

provide your own API to perform the mapping. In this case, it is necessary to customize this value.

The following URL is the default value for Zowe and ZSS:

�. Add the following property if the Zowe runtime userId is altered from the default ZWESVUSR :

components.gateway.apiml.security.x509.externalMapperUser

Note: Skip this step if the Zowe runtime userId is not altered from the default ZWESVUSR .

To authenticate to the mapping API, a JWT is sent with the request. The token represents the user that

is configured with this property. The user authorization is required to use the IRR.RUSERMAP resource

within the FACILITY class. The default value is ZWESVUSR . Permissions are set up during

installation with the ZWESECUR JCL or workflow.

If you customized the ZWESECUR JCL or workflow (the customization of zowe runtime user: // SET

ZOWEUSER=ZWESVUSR * userid for Zowe started task) and changed the default USERID,

create the components.gateway.apiml.security.x509.externalMapperUser property and

set the value by adding a new line as in the following example:

Example:

�. Restart Zowe&trade .

Gateway timeouts

Use the following procedure to change the global timeout value for the API Mediation Layer instance.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.gateway.timeoutmillis , and set the

value to the desired value.

�. Restart Zowe&trade .

If you require finer control, you can edit the <Zowe install

directory>/components/gateway/bin/start.sh , and modify the following properties:

apiml.gateway.timeoutMillis

This property defines the global value for http/ws client timeout.

Add the following properties to the file for the API Gateway:

Note: Ribbon configures the client that connects to the routed services.

ribbon.connectTimeout

Specifies the value in milliseconds which corresponds to the period in which API ML should establish a

single, non-managed connection with the service. If omitted, the default value specified in the API ML

Gateway service configuration is used.

ribbon.readTimeout

Specifies the time in milliseconds of inactivity between two packets in response from this service to API

ML. If omitted, the default value specified in the API ML Gateway service configuration is used.

ribbon.connectionManagerTimeout

The HttpClient employs a special entity to manage access to HTTP connections called by the HTTP

connection manager. The purpose of an HTTP connection manager is to serve as a factory for new

HTTP connections, to manage the life cycle of persistent connections, and to synchronize access to

persistent connections. Internally, the connections that are managed serve as proxies for real

connections. ConnectionManagerTimeout specifies a period during which managed connections

with API ML should be established. The value is in milliseconds. If omitted, the default value specified in

the API ML Gateway service configuration is used.

CORS handling

You can enable the Gateway to terminate CORS requests for itself and also for routed services. By default,

Cross-Origin Resource Sharing (CORS) handling is disabled for Gateway routes gateway/api/v1/** and

for individual services. After enabling the feature as stated in the prodecure below, API Gateway endpoints

start handling CORS requests and individual services can control whether they want the Gateway to handle

CORS for them through the Custom Metadata parameters.

When the Gateway handles CORS on behalf of the service, it sanitizes defined headers from the

communication (upstream and downstream). Access-Control-Request-Method,Access-Control-

Request-Headers,Access-Control-Allow-Origin,Access-Control-Allow-Methods,Access-

Control-Allow-Headers,Access-Control-Allow-Credentials,Origin The resulting request to

the service is not a CORS request and the service does not need to do anything extra. The list can be

overridden by specifying different comma-separated list in the property

components.gateway.apiml.service.ignoredHeadersWhenCorsEnabled in zowe.yaml

Additionally, the Gateway handles the preflight requests on behalf of the service when CORS is enabled in

Custom Metadata, replying with CORS headers:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata
https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata

Access-Control-Allow-Methods: GET,HEAD,POST,DELETE,PUT,OPTIONS

Access-Control-Allow-Headers: origin, x-requested-with

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

Alternatively, list the origins as configured by the service, associated with the value

customMetadata.apiml.corsAllowedOrigins in Custom Metadata.

If CORS is enabled for Gateway routes but not in Custom Metadata, the Gateway does not set any of the

previously listed CORS headers. As such, the Gateway rejects any CORS requests with an origin header for

the Gateway routes.

Use the following procedure to enable CORS handling.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.service.corsEnabled and set the value

to true .

�. Restart Zowe&trade .

Requests through the Gateway now contain a CORS header.

Encoded slashes

By default, the API Mediation Layer accepts encoded slashes in the URL path of the request. If you are

onboarding applications which expose endpoints that expect encoded slashes, it is necessary to keep the

default configuration. We recommend that you change the property to false if you do not expect the

applications to use the encoded slashes.

Use the following procedure to reject encoded slashes.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.service.allowEncodedSlashes and set

the value to false .

�. Restart Zowe&trade .

https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata
https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata

Requests with encoded slashes are now rejected by the API Mediation Layer.

Connection limits

By default, the API Gateway accepts up to 100 concurrent connections per route, and 1000 total concurrent

connections. Any further concurrent requests are queued until the completion of an existing request. The

API Gateway is built on top of Apache HTTP components that require these two connection limits for

concurrent requests. For more information, see Apache documentation.

Use the following procedure to change the number of concurrent connections.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.server.maxConnectionsPerRoute and set the

value to an appropriate positive integer.

�. Find or add the property components.gateway.server.maxTotalConnections and set the value

to an appropriate positive integer.

Routed instance header

The API Gateway can output a special header that contains the value of the instance ID of the API service

that the request has been routed to. This is useful for understanding which service instance is being called.

The header name is X-InstanceId , and the sample value is discoverable-

client:discoverableclient:10012 . This is identical to instanceId property in the registration of

the Discovery service.

Use the following procedure to output a special header that contains the value of the instance ID of the API

service.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property with value

components.gateway.apiml.routing.instanceIdHeader:true .

�. Restart Zowe.

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e393

Distributed load balancer cache

You can choose to distribute the load balancer cache between instances of the API Gateway. To distribute

the load balancer cache, it is necessary that the caching service is running. Gateway service instances are

reuqired to have the same DN (Distinguished name) on the server certificate.

Use the following procedure to distribute the load balancer cache between instances of the API Gateway.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property with value components.gateway.apiml.loadBalancer.distribute:

true .

�. Restart Zowe.

Replace or remove the Catalog with another service

By default, the API Mediation Layer contains API Catalog as a service showing available services. As the API

Mediation Layer can be successfully run without this component it is possible to replace or remove the

service from the Gateway home page and health checks. The following section describes the behavior of the

Gateway home page and health checks.

The default option displays the API Catalog.

A value can also be applied to components.gateway.apiml.catalog.serviceId .

Examples:

none

Nothing is displayed on the Gateway home page and the Catalog is removed from

/application/health

alternative-catalog

An alternative to the API Catalog is displayed

metrics-dashboard

A possible dashboard that could appear in place of the API Catalog

Notes:

If the application contains the homePageUrl and statusPageRelativeUrl , then the full set of

information is displayed.

If the application contains the homePageUrl the link is displayed without the UP information.

If the application contains the statusPageRelativeUrl then UP or DOWN is displayed based on

the statusPage without the link.

Use the following procedure to change or replace the Catalog service.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.catalog.serviceId . Set the value with

the following options:

Set the value to none to remove the Catalog service.

Set the value to the ID of the service that is onboarded to the API Mediation Layer.

API Mediation Layer as a standalone component

You can start the API Mediation Layer independently of other Zowe components. By default, the Gateway,

Zowe System Services, and Virtual Desktop start when Zowe runs. To limit consumed resources when the

Virtual Desktop or Zowe System Services are not required, it is possible to specify which components start

in the context of Zowe. No change is required during the installation process to support this setup.

Once Zowe is installed, use the following procedure to limit which components start.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.*.enabled and set this property to false for all

components that should not be started.

�. Restart Zowe&trade .

SAF Resource Checking

The API ML can check for the authorization of the user on certain endpoints. Access to a SAF resource is

checked with ESM.

Verification of the SAF resource is provided by the following three providers:

endpoint

This is the highest priority provider, such as a REST endpoint call (ZSS or similar one). This option is

disabled by default. In Zowe, ZSS has the API to check for SAF resource authorization.

native

The Native JZOS classes from Java are used to determine SAF resource access. This is the default

provider.

dummy

This is the lowest priority provider. This is the dummy implementation and is defined in a file.

Note: Verification of the SAF resource uses the first available provider based on the specified priority. The

default configuration resolves to the native provider.

You can select a specific provider by specifying the

components.gateway.apiml.security.authorization.provider key in the zowe.yaml file.

Use the parameter value to strictly define a provider. If verification is disabled, select the endpoint option.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.security.authorization.provider

and set desired value.

�. Restart Zowe&trade .

Examples:

Note: To configure the endpoint provider, add the following additional property:

components.gateway.apiml.security.authorization.endpoint.enabled: true

To use the endpoint provider, customize the URL corresponding to the SAF resource authorization. By

default, the ZSS API is configured and used.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property

components.gateway.apiml.security.authorization.endpoint.url and set desired value.

The default value for ZSS API is

https://${ZWE_haInstance_hostname}:${GATEWAY_PORT}/zss/api/v1/saf-auth

�. Restart Zowe&trade .

Checking providers

REST endpoint call

The REST provider calls the external API to retrieve information about access rights. To enable the feature

outside of the mainframe, such as when running in Docker, you can use a REST endpoint call using the GET

method:

Method: GET

URL: {base path}/{userId}/{class}/{entity}/{level}

Response:

Note: For more information about this REST endpoint call, see ZSS implementation.

Native

The Native provider is the easiest approach to use the SAF resource checking feature on the mainframe.

Enable this provider when classes com.ibm.os390.security.PlatformAccessControl and

com.ibm.os390.security.PlatformReturned are available on the classpath. This approach uses the

following method described in the IBM documentation: method.

Note: Ensure that the version of Java on your system has the same version of classes and method

signatures.

Dummy implementation

https://github.com/zowe/zss/blob/master/c/authService.c
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zsecurity.api.80.doc/com.ibm.os390.security/com/ibm/os390/security/PlatformAccessControl.html?view=kc#checkPermission-java.lang.String-java.lang.String-java.lang.String-int-

The Dummy provider is for testing purpose outside of the mainframe.

Create the file saf.yml and locate it in the folder, where is application running or create file mock-

saf.yml in the test module (root folder). The highest priority is to read the file outside of the JAR. A file

(inner or outside) has to exist.

The following YAML presents the structure of the file:

Notes:

Classes and resources are mapped into a map, user IDs into a list.

The load method does not support formatting with dots, such as shown in the following example:

Example: {CLASS}.{RESOURCE} Ensure that each element is separated.

The field safAccess is not required to define an empty file without a definition.

Classes and resources cannot be defined without the user ID list.

When a user has multiple definitions of the same class and resource, only the most privileged access

level loads.

Version: v2.2.x LTS

Discovery Service configuration parameters

Zowe runtime configuration parameters

As an application developer who wants to run Zowe, set the following parameters during the Zowe runtime

configuration by modifying the <Zowe install

directory>/components/discovery/bin/start.sh file:

API ML configuration

Eureka configuration

API ML configuration

apiml.discovery.userid

The Discovery service in HTTP mode protects it's endpoints with basic authentication instead of client

certificate. This parameter specifies the userid. The default value is eureka .

apiml.discovery.password

This parameter specifies the password for the basic authentication used by the Discovery Service in

HTTP mode. The default value is password .

apiml.discovery.allPeersUrls

This parameter contains the list of URLs of the Discovery Service in case of multiple instances of the

service on different host. Example:

Note: Each URL within the list must be separated by a comma.

apiml.discovery.staticApiDefinitionsDirectories

The static definition directories can be specified as a parameter at startup and will be scanned by the

Discovery Service. These directories contains the definitions of static services. Example:

apiml.discovery.serviceIdPrefixReplacer

This parameter is used to modify the service ID of a service instance, before it registers to API ML.

Using this parameter ensures compatibility of services that use a non-conformant organization prefix

with v2, based on Zowe v2 conformance. The value of the

*apiml.discovery.serviceIdPrefixReplacer parameter is represented as a tuple that

contains two strings, separated by a comma. The format of this parameter contains the following two

elements:

First, the prefix that you want to replace in the service ID

Second, the new prefix that will be replaced

Example: The value of the parameter has the following format:

oldServiceIdPrefix,newServiceIdPrefix

Set this parameter in your Zowe YAML configuration (typically zowe.yaml) by defining

configs.apiml.discovery.serviceIdPrefixReplacer . For example, defining it globally:

Or defining it only for lpar1 high availability instance:

Eureka configuration

The Discovery Service contains a configuration for implementing the client-side service discovery and for

defining a Eureka Server for service registry. Such configuration is shown below:

eureka.client.registerWithEureka If we make this property as true then while the server starts the

inbuilt client will try to register itself with the Eureka server.

eureka.client.registerWithEureka The inbuilt client will try to fetch the Eureka registry if we configure

this property as true.

eureka.client.serviceUrl.defaultZone A fallback value that provides the Eureka service URL for any

client that does not express a preference (in other words, it is a useful default).

More information about the other Eureka parameters can be found in the Spring Cloud Netflix Eureka

documentation.

https://cloud.spring.io/spring-cloud-netflix/multi/multi__service_discovery_eureka_clients.html

Version: v2.2.x LTS

API Gateway configuration parameters

As an application developer who wants to change the default configuration of the API Mediation Layer, set

the following parameters by modifying the <Zowe install

directory>/components/gateway/bin/start.sh file:

Runtime configuration

Environment variables

Service configuration

Zuul configuration

Hystrix configuration

AT-TLS

Runtime configuration

This section describes runtime configuration properties.

apiml.service.hostname

This property is used to set the API Gateway hostname.

apiml.service.port

This property is used to set the API Gateway port.

apiml.service.discoveryServiceUrls

This property specifies the Discovery Service URL used by the service to register to Eureka.

apiml.service.preferIpAddress

Set the value of this property to true to advertize a service IP address instead of its hostname.

Notes:

If you set this property to true on the Discovery Service, ensure that you modify the value of

discoveryLocations: to use the IP address instead of the hostname. Failure to modify the

discoveryLocations: value prevents Eureka from detecting registered services. As a result,

the available-replicas is empty.

Enabling this property may also cause issues with SSL certificates and Subject Alternative Name

(SAN).

apiml.cache.storage.location

This property specifies the location of the EhCache used by Spring.

Note: It is necessary for the API ML process to have write access to the cache location.

apiml.security.ssl.verifySslCertificatesOfServices

This parameter makes it possible to prevent server certificate validation.

Important! Ensure that this parameter is set to true in production environments. Setting this

parameter to false in production environments significantly degrades the overall security of the

system.

apiml.security.auth.zosmfServiceId

This parameter specifies the z/OSMF service id used as authentication provider. The service id is

defined in the static definition of z/OSMF. The default value is zosmf .

apiml.zoweManifest

This parameter lets you view the Zowe version by using the /version endpoint. To view the version

requires setting up the launch parameter of the API Gateway - apiml.zoweManifest with a path to

the Zowe build manifest.json file. This file is usually located in the root folder of Zowe build. If the

encoding of manifest.json file is different from UTF-8 and IBM1047, ensure that you set up the

launch parameter of API Gateway - apiml.zoweManifestEncoding with correct encoding.

Note: It is also possible to know the version of API ML and Zowe (if API ML used as part of Zowe), using

the /gateway/api/v1/version endpoint in the API Gateway service in the following format:

apiml.security.auth.tokenProperties.expirationInSeconds

This property is relevant only when the JWT is generated by the API Mediation Layer. API ML generation

of the JWT occurs in the following cases:

z/OSMF is only available as an older version which does not support JWT tokens

The SAF provider is used

To use a custom configuration for z/OSMF which changes the expiration of the LTPA token, it is

necessary to also set the expiration in this parameter.

Note: The default value is 8 hours which mimicks the 8 hour default expiration of the LTPA token in

z/OSMF.

Follow these steps:

i. Open the file <Zowe install directory>/components/gateway/bin/start.sh .

ii. Find the line that contains -cp ${ROOT_DIR}"/components/gateway/gateway-

service.jar":/usr/include/java_classes/IRRRacf.jar .

iii. Before this line, add a new line in the following format:

where:

{expirationTimeInSeconds}

refers to the specific time before expiration

iv. Restart Zowe&trade.

ibm.serversocket.recover

In a multiple network stack environment (CINET), when one of the stacks fails, no notification or Java™

exception occurs for a Java program that is listening on an INADDR_ANY socket. When new stacks

become available, the Java application does not become aware of these stacks until the application

rebinds the INADDR socket. By default, this parameter is enabled in the API Gateway. As a result, the

NetworkRecycledException exception is thrown to the application to allow it to either fail or

attempt to rebind. For more information, see the IBM documentation.

java.io.tmpdir

This property is a standard Java system property which is used by the disk-based storage policies. This

property determines where the JVM writes temporary files, including those written by these storage

policies. The default value is typically /tmp on Unix-like platforms.

https://www.ibm.com/support/knowledgecenter/SSYKE2_7.1.0/com.ibm.java.zos.71.doc/user/cinet.html

spring.profiles.include

This property can be used to unconditionally add active profiles. For more information, see the Spring

documentation.

server.maxTotalConnections and server.maxConnectionsPerRoute

These two properties are used to set the number of concurrent connections. Further connection

requests that put the number of connections over either of these limits are queued until an existing

connection completes. The API Gateway is built on top of Apache HTTP components that require these

two connection limits for concurrent requests. For more information, see Apache documentation.

Environment variables

You can add additional environment variables to store configuration properties for the API Mediation Layer.

Note: Use either dot separation, or the UPPER_CASE naming convention when adding an additional

environmental variable.

One use case for adding an environmental variable is to change the authentication provider. The SAF

Authentication Provider allows the API Gateway to authenticate directly with the z/OS SAF provider

that is installed on the system. The user needs a SAF account to authenticate. Use this procedure to

customize authentication provider.

Follow the steps:

�. Open the file <Zowe instance directory>/instance.env .

�. Add a new line with the following property:

apiml.security.auth.provider=saf .

Service configuration

For information about service configuration parameters, see Onboarding a REST API service with the Plain

Java Enabler (PJE).

Zuul configuration

https://docs.spring.io/spring-boot/docs/1.2.0.M1/reference/html/boot-features-profiles.html#boot-features-adding-active-profiles
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e393
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler

As a provider for routing and filtering, the API Gateway contains a Zuul configuration as shown in the

following example.

Example:

The Zuul configuration allows the API Gateway to act as a reverse proxy server through which API requests

can be routed from clients on the northbound edge to z/OS servers on the southbound edge.

Note: For more information about Zuul configuration parameters, see the Spring Cloud Netflix

documentation.

Hystrix configuration

The API Gateway contains a Hystrix configuration as shown in the following example.

Example:

Hystrix is a latency and fault tolerance library designed to isolate points of access to remote systems,

services and third-party libraries, stop cascading failure, and enable resilience in complex distributed

systems where failure is inevitable.

Note: For more information about Hystrix configuration parameters, see the Netflix - Hystrix documentation.

AT-TLS

The communication server on z/OS provides a functionality to encrypt HTTP communication for on-platform

running jobs. This functionality is refered to as Application Transparent Transport Layer Security (AT-TLS).

Starting with Zowe version 1.24, it is possible to leverage AT-TLS within the API Mediation Layer. Each API

ML component can run with AT-TLS rules applied. Some components, such as the Discovery service, can be

made AT-TLS aware by enabling the AT-TLS profile, whereby TLS information can be utilized. Such

information could be a client certificate. To enable the AT-TLS profile and disable the TLS application in API

ML, update zowe.yaml with following values under the respective component in the components

section:

While API ML can not handle TLS on its own, the Mediation Layer needs information about the server

certificate that is defined in the AT-TLS rule. Update the zowe.yaml file for each respective APIML

component in the components sections with the path to the SAF Key ring from the AT-TLS rule and

specify the alias that is used for Inbound communication:

https://cloud.spring.io/spring-cloud-netflix/multi/multi__router_and_filter_zuul.html
https://github.com/Netflix/Hystrix/wiki/Configuration#execution.isolation.strategy

Note: This procedure does not configure AT-TLS on z/OS, but rather enables API ML to work with AT-TLS in

place.

Version: v2.2.x LTS

Getting started

Learn how to start exploring the Zowe components, applications and plug-ins.

Use core components:

Using Zowe Desktop

Using Zowe API Mediation Layer

Using Zowe CLI

Using Zowe Explorer

Using Zowe SDKs

Explore available plug-ins:

Zowe CLI plug-ins

Zowe Explorer extensions

https://docs.zowe.org/v2.2.x/user-guide/mvd-using
https://docs.zowe.org/v2.2.x/user-guide/api-mediation-api-catalog
https://docs.zowe.org/v2.2.x/user-guide/cli-using-usingcli
https://docs.zowe.org/v2.2.x/user-guide/ze-usage
https://docs.zowe.org/v2.2.x/user-guide/sdks-using
https://docs.zowe.org/v2.2.x/user-guide/cli-extending
https://docs.zowe.org/v2.2.x/user-guide/ze-cics

Version: v2.2.x LTS

Using the Zowe Desktop

You can use the Zowe™ Application Framework to create application plugins for the Zowe Desktop. For more

information, see Extending the Zowe Application Framework.

Navigating the Zowe Desktop

From the Zowe Desktop, you can access Zowe applications.

Accessing the Zowe Desktop

From a supported browser, open the Zowe Desktop at

https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ or you can navigate to

the direct Desktop URI at

https://zowe.externalDomains[0]:zowe.externalPort/zlux/ui/v1/ZLUX/plugins/org.zow

e.zlux.bootstrap/web/index.html

Where:

zowe.externalDomains is the host on which you are running the Zowe Application Server, its the value

that was assigned in the zowe configuration file.

zowe.externalPort is the value of Gateway port that was assigned in the zowe configuration file.

Logging in and out of the Zowe Desktop

�. To log in, enter your TSO credentials in the Username and Password fields.

�. Press Enter. Upon authentication of your user name and password, the desktop opens.

To log out, click the User icon in the lower right corner and click Sign Out.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-extendingzlux

Changing user password

�. Open the Preferences panel by clicking on the Preferences icon in the bottom right of the desktop.

2. Click the Change Password icon. 3. Fill out the Old Password and New Password fields. 4. Upon

successful password change, you will be taken to the desktop.

Updating an expired password

�. Upon logging in with an expired password, a screen will be displayed prompting you to change your

password.

�. Enter and confirm your new password in the corresponding fields.

�. Upon successful password change, you will be taken to the desktop.

Pinning applications to the task bar

�. Click the Start menu in the bottom left corner of the home screen.

�. Locate the application you want to pin.

�. Right-click the application icon and select Pin to taskbar.

Open application in new tab

�. Click the Start menu in the bottom left corner of the home screen.

�. Locate the application you want to open in new tab.

�. Right-click the application icon and select Open In New Browser Tab.

While opening an application in new tab you can also do the following:

You can use url to send data to the application, for example you would specify

https://zowe.externalDomains[0]:zowe.externalPort/ZLUX/plugins/org.zowe.zl

ux.bootstrap/web/?pluginId=org.zowe.editor:data:{"type":"openFile","name":"

<path of file>"}

You can use url to open application directly on browser with and without credentials using

showLogin in url.

Personalizing the Desktop

�. Click the Preferences icon to open the Preferences panel.

�. Click the Personalization icon to open the menu.

�. Drag an image into the wallpaper grid, or press the upload button, to upload a new Desktop wallpaper.

�. To set a new theme color, select a color from the palette or hue.

�. Use the lightness swatch bar to adjust the lightness of the color.

Adjusting the lightness will also change the lightness of secondary text.

�. Select a size (small, medium, or large) to adjust the scale of the Desktop UI.

Changing the desktop language

Use the Languages setting in the Preferences panel to change the desktop language. After you change the

language and restart Zowe, desktop menus and text display in the specified language. Applications that

support the specified desktop language also display in that language.

�. Click the Preferences icon in the lower right corner.

�. Click Languages.

�. In the Languages dialog, click a language, and then click Apply.

�. When you are prompted, restart Zowe.

Zowe Desktop application plugins

Application plugins are applications that you can use to access the mainframe and to perform various tasks.

Developers can create application plugins using a sample application as a guide. The following application

plugins are installed by default:

Hello World Sample

The Hello World sample application plugin for developers demonstrates how to create a dataservice and

how to create an application plugin using Angular and using React.

IFrame Sample

Github Sample Repo: sample-iframe-app

Sample Angular App

Github Sample Repo: sample-angular-app

Sample React App

Github Sample Repo: sample-react-app

3270 Terminal

The 3270 Terminal plugin provides a user interface that emulates the basic functions of IBM 3270 family

terminals. On the "back end," the plugin and the Zowe Application Server connect to any standard TN3270E

server.

VT Terminal

The VT Terminal plugin provides a user interface that emulates the basic functions of DEC VT family

terminals. On the "back end," the plugin and the Zowe Application Server connect to VT compatible hosts,

such as z/OS UNIX System Services (USS), using standard network protocols.

API Catalog

The API Catalog plugin lets you view API services that have been discovered by the API Mediation Layer. For

more information about the API Mediation Layer, Discovery Service, and API Catalog, see API Mediation

Layer Overview.

Editor

With the Zowe Editor you can create, edit, and modify the properties of files such as ownership and

permissions. You can also view and edit datasets. Navigation is controlled by the File Tree. Other actions are

https://github.com/zowe/sample-iframe-app
https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-react-app/blob/lab/step-1-hello-world/README.md
https://docs.zowe.org/v2.2.x/getting-started/overview
https://github.com/zowe/zlux-file-explorer

available using the top left menu, a toolbar above the tree, or hotkeys.

JES Explorer

Use this application to query JES jobs with filters, and view the related steps, files, and status. You can also

purge jobs from this view.

IP Explorer

With the IP Explorer you can monitor the TCP/IP stacks, view active connections and reserved ports.

MVS Explorer

Use this application to browse the MVS™ file system by using a high-level qualifier filter. With the MVS

Explorer, you can complete the following tasks:

List the members of partitioned data sets.

Create new data sets using attributes or the attributes of an existing data set ("Allocate Like").

Submit data sets that contain JCL to Job Entry Subsystem (JES).

Edit sequential data sets and partitioned data set members with basic syntax highlighting and content

assist for JCL and REXX.

Conduct basic validation of record length when editing JCL.

Delete data sets and members.

Open data sets in full screen editor mode, which gives you a fully qualified link to that file. The link is

then reusable for example in help tickets.

USS Explorer

Use this application to browse the USS files by using a path. With the USS Explorer, you can complete the

following tasks:

List files and folders.

Create new files and folders.

Edit files with basic syntax highlighting and content assist for JCL and REXX.

Delete files and folders.

Version: v2.2.x LTS

Using the Editor

With the Zowe Editor, you can create and edit the many types of files.

Specifying a highlighting language

�. Click Language on the editor menu bar. A dropdown menu will be displayed.

�. From the dropdown, select the desired language. Plain Text will be chosen by default if the automatic

language detection is not able to determine the language.

Open a dataset

To open a dataset, follow these steps:

�. From the File menu, select Open Datasets. You can also use (ALT+K).

�. In the Dataset field, specify the name of the dataset you want to open.

�. Click Open

Deleting a file or folder

�. In the file tree, right-click on a file or folder you want to delete.

�. From the right-click menu, click Delete. A warning dialogue will appear.

�. Click Delete

Opening a directory

�. From the File menu, select Open Directory. You can also use (ALT+O).

�. In the Directory field, specify the name of the directory you want to open. For example: /u/zs1234

�. Click Open

The File Explorer on the left side of the window lists the folders and files in the specified directory. Clicking

on a folder expands the tree. Clicking on a file opens a tab that displays the file contents. Double-clicking on

a folder will make the active directory the newly specified folder.

Creating a new directory

�. Right-click on a location in the directory tree where you want to create a new directory.

�. From the right-click menu, click Create a directory....

�. Specify a directory name in the Directory Name field.

�. The Path will be set to the location that you initially right-clicked to open the dialogue. You can specify a

different location in the Path field.

�. Click Create

Creating a new file

To create a new file, complete these steps:

�. From the File menu, select New File. You can also use (ALT+N).

�. From the File menu, select Save to save the newly created file. You can also use (Ctrl+S)

�. In the File Name field, specify the file name for the newly created file.

�. Choose an encoding option from the Encoding dropdown menu. The directory will be prefilled if you are

creating the new file in an existing folder.

�. Click Save

�. To close a file, click the X icon in its tab, double-click on the tab, or use (Alt+W).

Hotkeys

The following hotkeys can be used in the editor to navigate or perform actions with only the keyboard.

Shift TAB: Cycle through the menu bar, browsing type, search bar, file tree, and editor component.

Individual options within the menu bar and individual nodes within the file tree can be navigated

with the arrow keys and ENTER (to select).

Hot Key Command

ALT+K Open a dataset

ALT+O Open a directory

Hot Key Command

ALT+N Create a new file

ALT+W Close tab

ALT+W+Shift Close all tabs

CTRL+S Save file

ALT+M Navigate Menu bar (use arrow keys)

ALT+P Search Bar focus

ALT+1 Primary editing component focus

ALT+T+CTRL Undo close/close all

ALT+R+Shift Refresh active tab

ALT+PgUp(or <) Switch to left tab

ALT+PgDown(or >) Switch to right tab

ALT+B Show/hide left-hand side file tree

Version: v2.2.x LTS

Using API Catalog

As an application developer, use the API Catalog to view what services are running in the API Mediation

Layer. Through the API Catalog, you can also view the associated API documentation corresponding to a

service, descriptive information about the service, and the current state of the service. The tiles in the API

Catalog can be customized by changing values in the apiml.catalog.tile section defined in the

application.yml of a service. A microservice that is onboarded to the API Mediation Layer and configured

appropriately, registers automatically with the API Catalog and a tile for that service is added to the Catalog.

Note: For more information about how to configure the API Catalog in the application.yml, see: Add API

Onboarding Configuration.

API Versioning

See API Catalog and Versioning for more information about the API versioning.

View Service Information and API Documentation in the API
Catalog

Use the API Catalog to view services, API documentation, descriptive information about the service, the

current state of the service, service endpoints, and detailed descriptions of these endpoints.

Note: Verify that your service is running. At least one started and registered instance with the Discovery

Service is needed for your service to be visible in the API Catalog.

Follow these steps:

�. Use the search bar to find the service that you are looking for. Services that belong to the same product

family are displayed on the same tile.

Example: Sample Applications, Endevor, SDK Application

�. Click the tile to view header information, the registered services under that family ID, and API

documentation for that service.

Notes:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-versioning

The state of the service is indicated in the service tile on the dashboard page. If no instances of the

service are currently running, the tile displays a message that no services are running.

At least one instance of a service must be started and registered with the Discovery Service for it to

be visible in the API Catalog. If the service that you are onboarding is running, and the

corresponding API documentation is displayed, this API documentation is cached and remains

visible even when the service and all service instances stop.

Descriptive information about the service and a link to the home page of the service are displayed.

Example:

�. Select the version (v1, v2) to view the documentation of a specific API version.

Example:

�. Expand the endpoint panel to see a detailed summary with responses and parameters of each endpoint,

the endpoint description, and the full structure of the endpoint.

Example:

Notes:

If a lock icon is visible on the right side of the endpoint panel, the endpoint requires authentication.

The structure of the endpoint is displayed relative to the base URL.

The URL path of the abbreviated endpoint relative to the base URL is displayed in the following

format:

Example:

/{yourServiceId}/api/v1/{endpointName}

The path of the full URL that includes the base URL is also displayed in the following format:

https://hostName:basePort/{yourServiceId}/api/v1/{endpointName}

Both links target the same endpoint location.

Swagger "Try it out" functionality in the API Catalog

The API Catalog enables users to call service APIs through the Try it out functionality. There are 2 types of

endpoints:

Public endpoints

Endpoints that are accessible without entering user credentials.

Protected endpoints

Endpoints that are only accessible by entering user credentials. These endpoints are marked with a lock

icon.

Example:

Note: Before making requests to protected endpoints, authorize your session by clicking the lock icon

and complete the required information in the Authorization modal shown below:

Example:

To demonstrate Try it out, we use the example of the Swagger Petstore.

Example:

Make a request

This section outlines the process for making a request.

Follow these steps:

�. Expand the POST Pet endpoint.

�. Click Try it out.

Example:

After you click Try it out, the example value in the Request Body field becomes editable.

�. In the Example Value field, change the first id value to a random value. Change the second name

value to a value of your choice, such as the name of a pet.

�. Click Execute.

Example:

The API Catalog Swagger UI submits the request and shows the curl that was submitted. The

Responses section shows the response.

Example:

Static APIs refresh functionality in the API Catalog

The API Catalog enables users to manually refresh static service APIs. Use the Refresh Static APIs option if

you change a static service API and want these changes to be visible in the API Catalog without restarting

the Discovery Service.

Example:

To refresh the status of a static service, click the Refresh option located in the upper right-hand side of the

API Catalog UI. Successful requests return a pop-up notification that displays the message, The refresh

of static APIs was successful! .

Example:

If the request fails, a dialog appears with an error message that describes the cause of the fail.

Example:

Note: The manual Refresh Static APIs option applies only to static service APIs. Changes to the status of

services that are onboarded to allow for dynamic discovery require a restart of the specific services where

changes are applied. It is not necessary to restart the API Catalog or the Discovery Service.

Change password via API Catalog

In case expiration of a mainframe password, the API Catalog offers the possibility to set a new password,

using either the SAF or the z/OSMF provider. For more information about the password change functionality,

see Advanced Gateway features configuration.

https://docs.zowe.org/v2.2.x/user-guide/api-mediation/api-gateway-configuration

Version: v2.2.x LTS

Using Metrics Service (Technical Preview)

As a system administrator, use the Metrics Service to view information about the acitivty of services running

in the API Mediation Layer. Currently, only HTTP metrics are displayed for core API Mediation Layer services.

In order for the Metrics Service to run, you must set components.metrics-service.enabled in

zowe.yaml to true . Additionally, for each APIML service you want to have metrics collected for, you

must set components.<service>.apiml.metrics.enabled set to true in zowe.yaml , or

configs.apiml.metrics.enabled set to true in the service's manifest. When metrics are enabled

for the API Gateway, the Gateway homepage displays a link to the Metrics Service dashboard. The

dashboard is available at https://{gateway_host}:{gateway_port}/metrics-service/ui/v1 .`

API Mediation Layer Metrics Service Demo Video

Watch this video to see a demo of the Metrics Service.

View HTTP Metrics in the Metrics Service Dashboard

https://youtu.be/KkuE6xADxPk

Use the Metrics Service to view HTTP metrics such as number of requests, response times, and error rates.

The below image describes the information provided in the Metrics Service dashboard.

To view the HTTP metrics for a service, select the corresponding tab in the Metrics Service dashboard.

Metrics are displayed for each endpoint of a service, aggregated from all service instances.

Example:

Metrics are provided on a near real-time basis, so the display shows the current activity of the selected

service. At this time there is no persistence for this information.

Service instances expose their HTTP metrics at https://<service_host>:

<service_port>/application/hystrix.stream using the Server-Sent-Events protocol. The Metrics

Service collects these streams and aggregates them across service instances before displaying.

Note: At this time, the /application/hystrix.stream endpoint for a service does not require

authentication if metrics are enabled for that service. If metrics for that service are not enabled,

/application/hystrix.stream is protected by authentication.

Version: v2.2.x LTS

Using Zowe CLI

Learn about how to use Zowe CLI, including connecting to the mainframe, managing profiles, integrating

with API Mediation Layer, and more.

You can use the CLI interactively from a command window on any computer on which it is installed, or run it

in a container or automation environment.

Tip: If you want to use the CLI together with a screen reader to provide accessibility, we recommend using

the Mac™ Terminal application enabled for Accessibility through System Preferences > Accessibility. On

Windows™, adjust the Properties settings in Command Prompt. For other operating systems, or for

alternative terminals, check the specification for the terminal to ensure that it meets accessibility

requirements.

https://support.apple.com/zh-sg/guide/terminal/trml1020/mac

Version: v2.2.x LTS

Displaying help

Zowe CLI has a command-line help system that details the commands, actions, and options available in the

product.

Top-level help

To view top-level help, open a command-line and issue the following command:

Alternatively, issue the following command to display a full list of all available commands:

Tip: All Zowe CLI commands begin with zowe.

Group, action, and object help

Append the global --help option to learn about a specific command group, action, or object.

For example, issue the following command to learn about the create action in the zos-files group:

Launch local web help

Launch an interactive form of help in a web browser. When you issue the following command, web help is

custom-generated to include commands for all of your currently installed plug-ins:

Tip: Append --help-web to a specific command or action to launch directly into the appropriate web help

page.

Viewing web help

We provide you with several methods to view Zowe CLI web help. You can browse Zowe CLI web help online,

download the web help in a ZIP file that contains the HTML, or download the web help in a PDF file.

Browse Online

https://docs.zowe.org/v2.2.x/web_help/index.html

Download (ZIP)

Download (PDF)

https://docs.zowe.org/v2.2.x/zowe_web_help.zip
https://docs.zowe.org/v2.2.x/CLIReference_Zowe.pdf

Version: v2.2.x LTS

Understanding core command groups

Zowe CLI contains command groups that focus on specific business processes. For example, the zos-

files command group lets you interact with mainframe data sets. This article provides a brief synopsis of

the tasks that you can perform with each group. For more information, see Displaying help.

The commands available in the product are organized in a hierarchical structure. Command groups (for

example, zos-files) contain actions (for example, create) that let you perform actions on specific

objects (for example, a specific type of data set). For each action that you perform on an object, you can

specify options that affect the operation of the command. Zowe CLI contains the following command

groups:

auth

The auth command group lets you connect to Zowe API Mediation Layer authentication service and obtain a

token, or disconnect from the authentication service and revoke the token.

Note: For more information about auth syntax, actions, and options, open Zowe CLI and issue the

following command:

config

The config command group lets you manage JSON projects, global configuration, and convert profiles

(service profiles and base profiles) to team profiles.

Note: For more information about config syntax, actions, and options, open Zowe CLI and issue the

following command:

daemon

The daemon command groups let you perform operations that control the daemon-mode functionality of

the Zowe CLI. Daemon-mode runs the CLI command processor as a daemon to improve performance.

Note: For more information about daemon syntax, actions, and options, open Zowe CLI and issue the

following command:

https://docs.zowe.org/v2.2.x/user-guide/cli-using-understanding-core-command-groups/cli-using-displaying-help

Important! Using daemon mode contains various limitations and configuration requirements, depending on

the operating system where the daemon is running. For more information, see Preparing for installation in

Using daemon mode.

plugins

The plugins command group lets you install and manage third-party plug-ins for the product. Plug-ins

extend the functionality of Zowe CLI in the form of new commands. With the plugins command group, you

can perform the following tasks:

Install or uninstall third-party plug-ins.

Display a list of installed plug-ins.

Validate that a plug-in integrates with the base product properly.

Note: For more information about plugins syntax, actions, and options, open Zowe CLI and issue the

following command:

profiles

The profiles command group lets you create and manage profiles for use with other Zowe CLI command

groups. Profiles allow you to issue commands to different mainframe systems quickly, without specifying

your connection details with every command. With the profiles command group, you can perform the

following tasks:

Create, update, and delete profiles for any Zowe CLI command group that supports profiles.

Set the default profile to be used within any command group.

List profile names and details for any command group, including the default active profile.

Note: For more information about profiles syntax, actions, and options, open Zowe CLI, and issue the

following command:

provisioning

The provisioning command group lets you perform IBM z/OSMF provisioning tasks with templates and

provisioned instances from Zowe CLI.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-daemon-mode

With the provisioning command group, you can perform the following tasks:

Provision cloud instances using z/OSMF Software Services templates.

List information about the available z/OSMF Service Catalog published templates and the templates that

you used to publish cloud instances.

List summary information about the templates that you used to provision cloud instances. You can filter

the information by application (for example, DB2 and CICS) and by the external name of the provisioned

instances.

List detail information about the variables used (and their corresponding values) on named, published

cloud instances.

Note: For more information about provisioning syntax, actions, and options, open Zowe CLI and issue

the following command:

zos-console

The zos-console command group lets you issue commands to the z/OS console by establishing an extended

Multiple Console Support (MCS) console.

With the zos-console command group, you can perform the following tasks:

Important! Before you issue z/OS console commands with Zowe CLI, security administrators should ensure

that they provide access to commands that are appropriate for your organization.

Issue commands to the z/OS console.

Collect command responses and continue to collect solicited command responses on-demand.

Note: For more information about zos-console syntax, actions, and options, open Zowe CLI and issue

the following command:

zos-files

The zos-files command group lets you interact with data sets on z/OS systems.

With the zos-files command group, you can perform the following tasks:

Create partitioned data sets (PDS) with members, physical sequential data sets (PS), and other types of

data sets from templates. You can specify options to customize the data sets you create.

Download mainframe data sets and edit them locally in your preferred Integrated Development

Environment (IDE).

Upload local files to mainframe data sets.

List available mainframe data sets.

Interact with VSAM data sets directly, or invoke Access Methods Services (IDCAMS) to work with VSAM

data sets.

Note: For more information about zos-files syntax, actions, and options, open Zowe CLI and issue the

following command:

zos-jobs

The zos-jobs command group lets you submit jobs and interact with jobs on z/OS systems.

With the zos-jobs command group, you can perform the following tasks:

Submit jobs from JCL that resides on the mainframe or a local file.

List jobs and spool files for a job.

View the status of a job or view a spool file from a job.

Note: For more information about zos-jobs syntax, actions, and options, open Zowe CLI and issue the

following command:

zos-ssh

The zos-ssh command group lets you issue Unix System Services shell commands by establishing an SSH

connection to an SSH server. The zos-ssh command group was previously named zos-uss .

With the zos-uss command group, you can perform the following task:

Important! Before you issue z/OS UNIX System Services commands with Zowe CLI, security administrators

must provide access for your user ID to login via SSH.

Issue z/OS UNIX System Services shell commands over an SSH connection and stream back the

response.

Note: For more information about zos-ssh syntax, actions, and options, open Zowe CLI and issue the

following command:

zos-workflows

The zos-workflows command group lets you create and manage z/OSMF workflows on a z/OS system.

With the zos-workflows command group, you can perform the following tasks:

Create or register a z/OSMF workflow based on the properties on a z/OS system

Start a z/OSMF workflow on a z/OS system.

Delete or remove a z/OSMF workflow from a z/OS system.

List the z/OSMF workflows for a system or sysplex.

Note: For more information about zos-workflows syntax, actions, and options, open Zowe CLI and issue

the following command:

zos-tso

The zos-tso command group lets you issue TSO commands and interact with TSO address spaces on z/OS

systems.

With the zos-tso command group, you can perform the following tasks:

Execute REXX scripts

Create a TSO address space and issue TSO commands to the address space.

Review TSO command response data in Zowe CLI.

Note: For more information about zos-tso syntax, actions, and options, open Zowe CLI and issue the

following command:

zosmf

The zosmf command group lets you work with Zowe CLI profiles and get general information about z/OSMF.

With the zosmf command group, you can perform the following tasks:

Create and manage your Zowe CLI zosmf profiles. Profiles let you store configuration information for

use on multiple commands. You can create a profile that contains your username, password, and

connection details for a particular mainframe system, then reuse that profile to avoid typing it again on

every command. You can switch between profiles to quickly target different mainframe subsystems. For

more information, see Using profiles.

Verify that your profiles are set up correctly to communicate with z/OSMF on your system. For more

information, see Test Connection to z/OSMF.

Get information about the current z/OSMF version, host, port, and plug-ins installed on your system.

Note: For more information about zosmf syntax, actions, and options, open Zowe CLI and issue the

following command:

https://docs.zowe.org/v2.2.x/user-guide/cli-using-understanding-core-command-groups/cli-using-using-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-using-understanding-core-command-groups/cli-using-using-profiles#testing-connection-to-zosmf

Version: v2.2.x LTS

Issuing your first command

You can provide all connection options directly on commands to access a service. For example, issue the

following command to list all data sets under the name ibmuser on the specified system:

If you omit username, password, host, or port (and a value cannot be found in your configuration), the CLI

prompts you to enter a value.

Version: v2.2.x LTS

Using daemon mode

Daemon mode significantly improves the performance of Zowe CLI commands by running Zowe CLI as a

persistent background process (daemon). Running Zowe CLI as daemon lets Zowe absorb the one-time

startup of Node.js modules, which results in significantly faster responses to Zowe commands.

When you run Zowe in daemon mode, you run all Zowe commands as you normally run them. The first time

you run a command, it starts the daemon in the background automatically and runs your desired Zowe

command. Since the first Zowe command starts the daemon, the first command usually runs slower than a

traditional Zowe command. However, subsequent Zowe commands run significantly faster. The daemon

continues to run in the background until you close your terminal window.

Important: We do not recommend using daemon mode in an environment where multiple users use the

same system. For example, a shared Linux server.

Preparing for installation

Review the following installation notes before you configure Zowe CLI to run in daemon mode:

Daemon mode does not function on z/OS UNIX System Services (USS) systems.

When you want to run Zowe CLI to run in daemon mode on z/Linux operating systems, you must build

the daemon mode binary on the z/Linux systems. For information about how to build the binary, see

Configure Secure Credential Store on headless Linux operating systems. The sections Enable daemon

mode and Disable daemon mode (in this article) do not apply to running Zowe CLI in daemon mode on

z/Linux operating systems.

We do not recommend using daemon mode in an environment where multiple users use the same

system. For example, a shared Linux server.

When you are running Zowe on a Windows operating system in a virtual environment (for example,

Windows Sandbox), you might receive an error message that indicates that a library named

VCRUNTIME140.dll is missing. To correct the error, install Visual C++ Redistributable for Visual

Studio 2015. For more information, see Download Visual C++ Redistributable for Visual Studio 2015.

Enable daemon mode

https://docs.zowe.org/v2.2.x/user-guide/cli-configure-scs-on-headless-linux-os
https://www.microsoft.com/en-us/download/details.aspx?id=48145

The following steps describe how to enable daemon mode and how to configure Zowe to run Zowe CLI

constantly in daemon mode.

�. Open a terminal window and issue the following command:

The command copies the Zowe executables for your operating system into the

$ZOWE_CLI_HOME/bin (.zowe/bin) directory. The next command that you issue starts the

daemon.

�. Add the path to the Zowe executable to your PATH environment variable. For example:

Important! Ensure that you position the path to your Zowe executables before the path into which NPM

installed the Node.js script. For example, C:\Program Files\nodejs\zowe.cmd . For information

about configuring environment variables, see the documentation for your computer's operating system.

Alternative configuration: By default, the daemon binary creates or reuses a file in the user's home

directory each time a Zowe CLI command runs. In some cases, this behavior might be undesirable. To

change the location that the daemon uses, see Setting CLI daemon mode properties.

Note: Complete the environment variable configuration step (Step 2) only once.

The following example illustrates running Zowe CLI commands with daemon mode enabled:

Note: When you are running Zowe CLI in daemon mode using a Git Bash terminal on a Windows operating

system, special characters might display using the wrong code page. For example, the default code page

437 renders a form-feed character (\f) as an emoji (♀). To correct the problem, issue the command
chcp.com 65001 to change the code page to UTF-8. If you want the change to be persistent, add the

command to your .bashrc file.

Restart daemon mode

Daemon mode is a long-running background process (waits for work) that significantly improves Zowe CLI

performance. When you make changes to your work environment, daemon mode does not capture the

changes. Restarting daemon mode lets the daemon capture the changes. Issue the following command to

stop the currently running daemon and start a new daemon:

You must restart daemon mode under the following scenarios:

You changed the value of any of the following Zowe CLI environment variables:

https://docs.zowe.org/v2.2.x/user-guide/cli-configuringcli-ev#setting-cli-daemon-mode-properties
https://docs.zowe.org/v2.2.x/user-guide/cli-configuringcli-ev

ZOWE_CLI_HOME

ZOWE_APP_LOG_LEVEL

ZOWE_IMPERATIVE_LOG_LEVEL

You installed, updated, or uninstalled a plug-in.

You installed a newer version of Zowe CLI and daemon mode was running while you installed the newer

version of Zowe CLI.

Note: When you install another version of Zowe CLI, you should always run the zowe daemon

enable command again.

You issued a Zowe command and the following message appeared:

Disable daemon mode

You can disable Zowe from running in daemon mode at any time. For example, daemon mode lacks

functionality that you desire, such as viewing colored-coded commands.

�. Open a terminal window and issue the following command:

The disable command stops daemon mode, removes the Zowe executables from your .zowe/bin

directory, and disables daemon mode.

Version: v2.2.x LTS

Configure daemon mode on z/Linux
operating systems

Currently, Zowe does not offer a prebuilt daemon that can run on z/Linux operating systems. However,

developers can build the daemon binary from source.

The following steps describe how to install and build the daemon binary on z/Linux systems and the

technical limitations.

�. Ensure that the z/Linux system can communicate using the Internet.

�. Install Zowe CLI on the z/Linux system.

�. Install the following Linux packages on the z/Linux system:

make

gcc-c++ (or g++)

git

Rust

For information about how to install Rust, see the Rust documentation.

�. Shallow clone the Zowe CLI Git repository for the version of CLI that you installed. Issue the following

command:

�. Change to the following directory:

�. Build the daemon binary. Issue the following command from the zowe-cli/zowex directory:

After the command completes successfully, the Zowe daemon binary is a file named zowe that can be

found in the target/release directory.

�. Copy the binary to another location on the system and add it to your PATH.

�. (Optional) Modify the file permissions to allow others to use the same binary:

https://forge.rust-lang.org/infra/other-installation-methods.html

Example: The following example illustrates the command to allow all users to run the Zowe binary.

However, only the user that created the binary can overwrite the binary.

Note: You can delete the .zowe-cli folder that was created in Step 4 after the binary builds

successfully. The Zowe daemon commands will not function, and the daemon will need to be rebuilt for

all new versions of Zowe CLI.

Version: v2.2.x LTS

Using profiles

As a system programmer, profiles let you store configuration details for reuse, and for logging in to

authentication servers such as API Mediation layer. Create a profile that contains your username, password,

and connection details for a mainframe service, then use that profile to avoid typing the information on every

command. Switch between profiles to quickly target different mainframe subsystems.

Zowe CLI profile types

Zowe CLI contains the following types of profiles:

Team profiles simplify profile management by letting you edit, store, and share mainframe

configuration details in one location. You can use a text editor to populate global profiles with

connection details for your mainframe services.

For more information, see Configuring team profiles.

Service profiles: let you store connection information for specific mainframe service, such as IBM

z/OSMF. Plug-ins can introduce other service profile types, such as the cics profile to connect to IBM

CICS.

Base profiles: let you store connection information for use with one or more services. Your service

profiles can pull information from- base profiles as needed, so that you can specify a common

username and password once. The base profile can optionally store tokens to connect to Zowe API

Mediation Layer, which improves security by enabling Multi-Factor Authentication (MFA) and Single

Sign-on (SSO).

Tips for using Zowe CLI profiles

You can have multiple service profiles and multiple base profiles.

Profiles are not required. You can choose to specify all connection details for every command.

Profile values are stored on your computer in plaintext in C:\Users\

<yourUsername>\.zowe\profiles (Windows) or in ~/.zowe/profiles (Mac/Linux).

Important information about team profiles

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-team-profiles

With the introduction of team profiles, the Secure Credential Store (SCS) Plug-in is deprecated. Secure

credential encryption is now handled by the the secure array in the zowe.config.json file.

You can convert all of your Zowe CLI and Zowe CLI plug-ins V1 profiles to team profiles by issuing the

following command:

Note: You can continue using Zowe CLI and Zowe CLI plug-ins V1 profiles with Zowe CLI V2. However,

we highly recommend that you implement V2 profiles with Zowe CLI V2.

Commands in the zowe config command group now let you manage security for any option value.

The zowe scs and zowe config command groups were repurposed to work with team profiles.

Zowe CLI V2 prompts you to enter the username and password securely by default.

Displaying profile help

Use help to learn about options for creating profiles. For example, for a zosmf profile, issue the following

command:

Service profiles

Create profiles that target a specific mainframe service, then use profiles to issue commands. For example,

issue the following command (substituting your connection details) to create a zosmf service profile

named myprofile123 :

Use the profile. For example, issue the following command to list all data sets under the name ibmuser on

the system that you specified in your profile:

Note: If you do not specify a profile, your default profile is used. The first profile that your create is your

default. You can set a service profile as your default with the zowe profiles set-default

<profileType> <profileName> command.

Base profiles

Base profiles store your connection details and provide them to service profiles and commands as needed.

The base profile can also contain a token to connect to services through API ML.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-team-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-using-understanding-core-command-groups#config

For example, if you use the same username and password across multiple services, you can create a base

profile with your username and password. After the base profile is created, you can omit the --username

and --password options when you issue commands or use service profiles such as zosmf and tso .

Commands will use the values provided by the base profile. For example, create the base profile:

The first profile that you create for a service is set as your default profile. When you create subsequent

profiles, you can select one as the default with the zowe profiles set-default <profileType>

<profileName> command.

Use the default profile to issue a command:

Note: If you choose to log in to Zowe API Mediation Layer, a base profile is created for you to store a web

token, host, and port.

Tips for using base profiles

Use the base profile to share option values between services. You might share option values between

services in the following situations:

You have multiple services that share the same username, password, or other value.

You want to store a web token to access all services through Zowe API Mediation Layer.

You want to trust a known self-signed certificate or your site does not have server certificates

configured. You can define reject-unauthorized in the base profile with a value of false to apply

to all services. Understand the security implications of accepting self-signed certificates at your site

before you use this method. If you have multiple LPARs and want to share option values only between

services that run on the same LPAR, you can use nested profiles to achieve this (see Example 1 below).

Profile best practices

According to order of precedence, base profiles are used as a fallback for service profiles. This means that

after you create a base profile, you might need to update your service profiles to remove username,

password, host, and port. Otherwise, commands will use the information stored in your service profile and

will ignore your base profile definition.

Testing connections to z/OSMF

Optionally, issue a command at any time to receive diagnostic information from the server and confirm that

Zowe CLI can communicate with z/OSMF or other mainframe APIs.

Important! By default, the server certificate is verified against a list of Certificate Authorities (CAs) trusted

by Mozilla. This handshake ensures that the CLI can trust the server. You can append the flag --ru false

to the following commands to bypass the certificate verification against CAs. If you use the --ru false

flag, ensure that you understand the potential security risks of bypassing the certificate requirement at your

site. For the most secure environment, system administrators configure a server keyring with a server

certificate signed by a Certificate Authority (CA). For more information, see Working with certificates.

Without a profile

Verify that your CLI instance can communicate with z/OSMF:

Default profile

After you create a profile, verify that you can use your default profile to communicate with z/OSMF:

Specific profile

After you create a profile, verify that you can use a specific profile to communicate with z/OSMF:

The commands return a success or failure message and display information about your z/OSMF server, such

as the z/OSMF version number. Report failures to your systems administrator and use the information for

diagnostic purposes.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-profiles

Version: v2.2.x LTS

Using team profiles

This version of Zowe CLI (V2) introduces the concept of team profiles.

Using team profiles helps to improve the initial setup of Zowe CLI by making service connection details

easier to share and easier to store within projects.

Consider the following benefits of using team profiles:

As an application developer or team member, you can manage your connection details efficiently in one

location.

As a Dev-Ops advocate, or team leader, you can share global profiles with your team members so that

they can easily access mainframe services. You can add the file directly to your project in a software

change management (SCM) application.

As a Dev-Ops advocate, you can quickly onboard new application developers by sharing the

configuration file that your team uses with the new team member.

As an application developer in a small shop where your role is that of an application developer and a

Dev-Ops advocate, you can create team profiles, base profiles, or service profiles; whatever profile type

is most suitable for your needs!

Important: With the introduction of team profiles, the Secure Credential Store (SCS) Plug-in is deprecated.

The zowe scs and zowe config command groups are obsolete. Secure credential encryption is now

included in the core CLI. The CLI prompts you to enter the username and password securely by default.

Commands in the zowe config command group now let you manage security for any option value.

Version: v2.2.x LTS

Initializing team configuration

You can use one of the following methods to initialize team configuration.

Tip: If API Mediation Layer is running on your site, Connecting profiles to API Mediation Layer is the

recommended method to use to initialize team configuration.

Create team profile configuration files

�. Issue the following command:

Zowe CLI responds with prompts for a username and password.

�. Respond to the prompts with a username and password for a mainframe service such as z/OSMF.

The zowe config init command ensures that your credentials are stored securely on your

computer by default.

After you respond, the zowe.config.json team configuration file is added to your local .zowe

directory. You can then use a text editor or IDE, such as Visual Studio Code, to add the connection

details for your mainframe services.

�. (Optional) Issue a Zowe CLI command to test that you can access z/OSMF.

Example: List all data sets under your user ID:

A list of data sets is returned. You successfully configured Zowe CLI to access a z/OSMF instance.

If the CLI returns an error message, verify that you have access to the target system. Examine your

configuration files in a text editor to verify that the information you entered is correct.

Important: After the configuration files are in place (either by using the zowe config init command or

by manually creating the files), the now-deprecated zowe profiles commands no longer function. Zowe CLI

returns errors when you attempt to use deprecated profile commands.

Connecting profiles to API Mediation Layer

If you are using the API Mediation Layer, you can set up your zowe.config.json file to automatically

access the services that are registered to the API ML by issuing the following command:

After you issue the command, Zowe CLI prompts you to specify the following information:

The host name and port to your API ML instance

Your username and password

Using Certificates:

If you are using certificates to authenticate, you can specify the details for the certificates by issuing the

following command:

Version: v2.2.x LTS

Team configuration for application
developers

As an application developer or Zowe CLI user, you want to manage your connection details efficiently and in

one location.

Initializing user-specific configuration

As an application developer, you can optionally generate a user-specific configuration file that overrides the

values defined in the global zowe.config.json file.

To generate a profile configuration file (zowe.config.json) that you can use globally, issue the following

command:

To generate the global user profile configuration file (zowe.config.user.json), issue the following

command:

In your user-specific file , observe that the "defaults" object is empty and the profiles do not have properties

(illustrated in the following example). You can add your connection details as properties here to override

properties in zowe.config.json , or add add new connections.

Editing team profiles

After the initial setup, as an application developer you can define additional mainframe services to the team

(or user-specific) configuration file.

Open the ~/.zowe/zowe.config.json file in a text editor or an IDE (such as Visual Stuide Code) on

your computer. The profiles object contains connection and other frequently needed information for

accessing various services.

Example:

Version: v2.2.x LTS

Team configuration for team leaders

As a Dev-Ops advocate or team leader, you can share team profiles with your team members so that they

can easily access mainframe services.

Sharing team configuration files

As a DevOps advocate or team leader, you might want to share a team configuration globally in the following

scenarios:

You want to share profiles with application developers so that they can work with a defined set of

mainframe services. The recipient of the file places it in their local ~/.zowe folder manually before

issuing CLI commands.

You want to add the profiles to your project directory in a software change management (SCM) tool,

such as GitHub. When you store the profiles in an SCM, application developers can pull the project to

their local computer and use the defined team or global configuration. Zowe CLI commands that you

issue from within the project directory use the configuration scheme for the project automatically.

You want to enable test automation a CI/CD pipeline, which lets your pipelines make use of the project

configuration.

For information about how to share team configuration files, see Sharing team configuration files.

Profile scenarios

The following topics describe various profile scenarios that DevOps advocates (team leaders) can share with

their teams, and application developers that function as DevOps advocates can create.

Access to one or more LPARs that contain services that share the same
credentials

The following example illustrates that the settings are using nested profiles to access multiple services

directly on one or more LPARs that share the same username and password.

Access to one or more LPARs contain services that do not share the same
credentials

https://docs.zowe.org/v2.2.x/user-guide/cli-using-sharing-team-config-files

The following example illustrates that the settings are using nested profiles to access multiple services

directly on one or more LPARs that do not share (different) user names and passwords.

Access to LPARs that access services through one API Mediation Layer

The following example illustrates that the settings access multiple services using the API ML where multi-

factor authentication (MFA) or single sign-on (SSO) is achievable using token-based authorization.

Access to LPARs that access services through one API Mediation Layer using
certificate authentication

Access LPARs containing multiple services through API Mediation Layer with certificate authentication

Version: v2.2.x LTS

Sharing team configuration files

Team leaders can share team configuration files using several methods:

Shared network drive

Project repository (for example, GitHub)

Web server

The following topics describe how to share the team configuration files.

Network drive

�. Store the configuration files on a shared network drive.

�. Issue the following command:

DriveLetter:

The drive letter of the shared network drive

FolderPath:

The directory path on the drive

Note: You can specify any path that file management applications, such as Windows Explorer and

Finder, can access. For example, a UNC network path (\\

<HostName>\SharedZoweConfig\zowe.config.json) or local file path (C:\Users\

<UserName>\Downloads\zowe.config.json).

Project repository and web server

Team leaders can import configuration files from a web URL that is in raw json format. The following steps

describe how to import the configuration file from a GitHub repository and a web server.

�. Store the configuration files in a project repository or on a web server.

�. Issue the following command:

Project (GitHub) repository

user

Specifies the user ID

password

Specifies the password for the user ID

githuburl

Specifies the URL to the GitHub repository

repoName

Specifies the name of the repository

branch

Specifies the name of the branch that contains the configuration file

folderPath

Specifies the path to the configuration file

Web server

user

Specifies the user ID

password

Specifies the password for the user ID

hostname

Specifies the host name of the system

folderPath

Specifies the path to the team configuration file

Note: You can host team configuration files on private and public web servers. The user

name and password are required for only private URLs. However, to maintain the highest level

of security, you should not store team configuration files on public URLs.

Tip: To import the schema automatically from shared drives and from web servers, store the schema in the

same directory as the zowe.config.json file. In the configuration file, reference the schema as a relative

path at the top of the configuration file.

Example:

Version: v2.2.x LTS

Managing credential security

When you first run the zowe config init --global-config command, the

profiles.base.properties.user and profiles.base.properties.password fields are defined

to the "secure" array in your configuration file, which helps to ensure that the username and password are

stored securely on your computer.

To store or update values for the secure fields (for example, when you want to change your username and

password), issue the zowe config secure command. If, for example, you want to update several

property values in a long list of properties, press Enter to skip a field.

To secure a specific field, issue zowe config set --secure <property-path> . For example, zowe

config set --secure profiles.base.properties.password . When you issue the command for

an option that is already secured, the CLI prompts you to enter a new option value.

You can use an editor to define options to the secure array in zowe.config.json . Any option that you

define to there becomes secure/prompted-for.

Changes to secure credential storage

With the introduction of team profiles in Zowe CLI V2, the Secure Credential Store (SCS) Plug-in is

deprecated. The zowe scs and zowe config command groups are obsolete. Secure credential

encryption is now included with the Zowe CLI core application.

Zowe CLI V2 prompts you to enter the username and password securely by default. Commands in the

zowe config command group let you manage security for any option value.

Version: v2.2.x LTS

Storing properties automatically

When you issue a command that is missing a required option value for a property (for example, host or

password) the CLI prompts you to enter the option value. In the V1-LTS version of Zowe CLI, the value that

was specified was not stored for future commands to use. As a result, you either responded to a prompt on

every command issued or issued a profile update command to store the missing value.

The autoStore property in the zowe.config.json file lets you store the option values for properties

automatically. When you specify the autoStore property in zowe.config.json to true , the value

that you enter when prompted is stored for future commands to use. The values for secure fields are stored

securely in the credential vault, and the other values are written to zowe.config.json on disk.

The default value of the autoStore property is true. However, if this behavior is undesirable (you do not

want to store properties automatically), set the value of autoStore to false. A value of false uses the V1-

LTS behavior, which prompts for missing values on all commands that you issue.

Version: v2.2.x LTS

Integrating with API Mediation Layer

Zowe API ML provides a single point of access to a defined set of mainframe services. The layer provides

API management features such as high-availability, consistent security, and a single sign-on (SSO) and

multi-factor authentication (MFA) experience.

You can access services through API ML without reauthenticating every time you issue a command. Tokens

allow for a secure interaction between the client and server. When you issue commands to API ML, the layer

routes requests to an appropriate API instance based on system load and available API instances.

How token management works

When you log in with the CLI, an API ML token is supplied and stored on your computer in place of username

and password. The token allows for a secure handshake with API ML when you issue each command, such

that you do not need to reauthenticate until the token expires.

Note: Zowe CLI also supports standard token implementations such as Java Web Tokens (JWT) and

Lightweight Third-Party Authentication (LTPA).

Logging in

To request a token and "log in" to API ML, issue the following command:

The CLI prompts you to enter your username, password (where password can be a PIN concatenated with a

second factor for MFA), host, and port for the API ML instance.

Tip: If you already created a base profile, you might not be prompted for host and port.

A local base profile is created that contains your token. When you issue commands, you can omit your

username, password, host, and port. Instead, provide a base path and base profile on commands to connect

to API ML.

Optionally, when you do not want to store the token on disk, append the --show-token option to the

login command. If you choose this option, you must manually supply the token on each command using the

--token-value option.

Notes:

Tokens expire after a period of time defined by your security administrator. When a token expires, you

must log in again to get a new token.

If you omit connection details from a service profile, such as zosmf profile, the CLI uses the

information from your base profile.

You can choose to specify all connection details on a service profile and connect directly to the service.

Routing through API ML is not required.

Logging out

Log out to expire the API ML token and remove it from your base profile.

Issue the following command:

zowe auth logout

The token is expired. Log in again to obtain a new token.

Accessing a service through API ML

To access services through API ML using the token in your base profile, specify the following options on

commands and service profiles:

--base-path : The base path of the API ML instance that you want to access.

--disable-defaults : Specify this flag to prevent default values from being stored in service

profiles. If you do not use this flag, the defaults can override values in your base profile.

Note: Ensure that you do not provide username, password, host, or port directly on the service commands

or profiles. Supplying those options causes the CLI to ignore the API ML token in your base profile and

directly access the service.

Specifying a base path

The following example illustrates a complete path for a z/OSMF instance registered to API ML. The format of

base path can vary based on how API ML is configured at your site:

To access that API ML instance, create a service profile (or issue a command) with the --base-path

value of api/v1 . Your service profile uses the token and credentials stored in your default base profile.

Commands issued with this profile are routed through the layer to access an appropriate z/OSMF instance.

Accessing multiple services with SSO

If multiple services are registered to the API Mediation Layer at your site, Zowe CLI lets you access the

services with Single Sign-on (SSO). Log in once to conveniently access all available services.

When you are logged-in, supply the --base-path option on commands for each service. Ensure that you

do not provide username, password, host, or port directly on your service commands or profiles. Supplying

those options causes the CLI to ignore the token in your base profile and directly access the service. You

might need to remove those options from existing profiles to use SSO.

For information about registering an API service at your site, see Developing for API Mediation Layer.

Accessing services through SSO + one service not through
APIML

There might be a scenario where you log in to API ML with SSO, but you also want access a different service

directly (not through API ML).

To access the SSO-enabled services, log in and issue commands with the --base-path and --base-

profile options. The token from your base profile is used for authentication. Remember, your command

or service profile must not contain username, password, host, or port.

To access the other service directly (circumvent API ML), supply all connection information (username,

password, host, and port) on a command or service profile. When you explicitly supply username and

password in a command or service profile, the CLI always uses that connection information instead of the

API ML token.

Accessing services through SSO + one service through API
ML but not SSO

https://docs.zowe.org/v2.2.x/user-guide/extend/extend-apiml/onboard-overview

You might want to access multiple services with SSO, but also access a service through API ML that is not

SSO-enabled.

To perform SSO for the first set of services, log in to API ML and supply the --base-path and --base-

profile on commands. For more information, see Accessing multiple services with SSO.

To access the service that is not SSO-enabled, explicitly provide your username and password when you

issue commands. Using the --base-path option ensures that the request is routed to API ML, but the

username and password that you provide overrides the credentials in your base profile. This lets you sign in

to the individual service.

Version: v2.2.x LTS

Working with certificates

Certificates authorize communication between a server and client, such as z/OSMF and Zowe CLI. The client

CLI must "trust" the server to successfully issue commands. Use one of the following methods to let the CLI

communicate with the server.

Configure certificates signed by a Certificate Authority
(CA)

System Administrators can configure the server with a certificate signed by a Certificate Authority (CA)

trusted by Mozilla. When a CA trusted by Mozilla exists in the certificate chain, the CLI automatically

recognizes the server and authorizes the connection. Related information:

Using certificates with z/OS client/server applications in the IBM Knowledge Center.

Configuring the z/OSMF key ring and certificate in the IBM Knowledge Center.

Certificate management in Zowe API Mediation Layer

Mozilla Included CA Certificate List

Extend trusted certificates on client

If your organization uses self-signed certificates in the certificate chain (rather than a CA trusted by Mozilla),

you can download the certificate to your computer add it to the local list of trusted certificates. Provide the

certificate locally using the NODE_EXTRA_CA_CERTS environment variable. Organizations might want to

configure all client computers to trust the self-signed certificate. This blog post outlines the process for

using environment variables to trust the self-signed certificate.

Bypass certificate requirement

If you do not have server certificates configured at your site, or you want to trust a known self-signed

certificate, you can append the --reject-unauthorized false flag to your CLI commands. Setting

the --reject-unauthorized flag to false rejects self-signed certificates and essentially bypasses

the certificate requirement.

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.icha700/icha700_Using_certificates_with_z_OS_client_server_applications.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#certificate-management-in-zowe-api-mediation-layer
https://wiki.mozilla.org/CA/Included_Certificates
https://medium.com/@dkelosky/zowe-cli-providing-node-extra-ca-certs-117727d936e5

Important! Understand the security implications of accepting self-signed certificates at your site before you

use this command.

Example:

Version: v2.2.x LTS

Completing advanced tasks

This section describes how to use Zowe CLI using its advanced capabilities.

Using environment variables

You can define environment variables to execute commands more efficiently. Store a value such as your

password in an environment variable, then issue commands without specifying your password every time.

The term environment can refer to your operating system, container environment, or automation server such

as Jenkins. You might want to assign a variable in the following scenarios:

Store a value that is commonly used.

For example, you might want to specify your mainframe username as an environment variable. Now you

can issue commands and omit the --user option, and Zowe CLI automatically uses the value that you

defined in the environment variable.

Override a value in existing profiles.

For example, you might want to override a value that you previously defined in multiple profiles to avoid

recreating each profile. Specify the new value as a variable to override the value in profiles.

Secure credentials in an automation server or container You can set environment variables for use in

scripts that run in your CI/CD pipeline. For example, can define environment variables in Jenkins so that

your password is not seen in plaintext in logs. You can also define sensitive information in the Jenkins

secure credential store.

Formatting environment variables

Transform an option into the proper format for a Zowe CLI environment variable, then define a value to the

variable. Transform option names according to the following rules:

Prefix environment variables with ZOWE_OPT_ .

Convert lowercase letters in arguments/options to uppercase letters.

Convert hyphens in arguments/options to underscores.

Tip: Refer to your operating system documentation for information about how to set and get environment

variables. The procedure varies between Windows, Mac, and various versions of Linux.

Examples:

The following table provides examples of CLI options and the corresponding environment variable to which

you can define a value:

Command

Option
Environment Variable Use Case

--user ZOWE_OPT_USER
Define your mainframe username to an

environment variable to avoid specifying

it on all commands or profiles.

--reject-

unauthorized
ZOWE_OPT_REJECT_UNAUTHORIZED

Define a value of true to the --

reject-unauthorized flag when you

always require the flag and do not want

to specify it on all commands or profiles.

Setting environment variables in an automation server

You can use environment variables in an automation server, such as Jenkins, to write more efficient scripts

and make use of secure credential storage. Automation tools such as Jenkins automation server usually

provide a mechanism for securely storing configuration (for example, credentials). In Jenkins, you can use

withCredentials to expose credentials as an environment variable (ENV) or Groovy variable.

You can either set environment variables using the SET command within your scripts, or navigate to

Manage Jenkins > Configure System > Global Properties and define an environment variable in the

Jenkins GUI. For example:

Using the prompt feature

Zowe CLI has a command-line "prompt" feature that asks you to provide required option values. The CLI

always prompts for host, port, username, and password if you do not supply them in commands or profile

configuration.

You can also manually enable the prompt for any option. This is helpful to mask sensitive information on the

screen while you type. You can enable a one-time prompt, or choose to always prompt for a particular

option.

Enable prompt

Enable one-time prompting as needed.

�. Begin typing a command.

�. For the option(s) that you want to mask, insert the value "PROMPT*" . For example, prompt for your

password:

The CLI prompts you to enter a value for the --password field.

�. Enter a value to complete the command.

Tip: Enter the value carefully. The backspace key does not work in prompt mode.

Always prompt

You can configure your environment so that the CLI always prompts for a particular option, such as --

password .

To enable the feature, set an environment variable named ZOWE_OPT_PASSWORD with the value

"PROMPT*" . With the environment variable set, the CLI automatically enables the prompt when you omit a

required --password value.

Tip The procedure for setting environment variables is dependent on your operating systems. Refer to

documentation for your OS to learn about setting environment variables.

Change the keyword for prompt

The default keyword that enables prompting is "PROMPT*" . You might want to change the keyword if there

is a chance that "PROMPT*" could exist as a valid value for the field. For example, if you mask the data-

set argument and are working with real mainframe data sets that begin with the characters "PROMPT*" .

To configure the keyword, choose a new value. Then define the value to to the environment variable on your

computer named ZOWE_PROMPT_PHRASE .

Writing scripts

You can combine multiple Zowe CLI commands in bash or shell scripts to automate actions on z/OS.

Implement scripts to enhance your development workflow, automate repetitive test or build tasks, and

orchestrate mainframe actions from continuous integration/continuous deployment (CI/CD) tools such as

Jenkins or TravisCI.

Note: The type of script that you write depends on the programming languages that you use and the

environment where the script is executed. The following is a general guide to Zowe CLI scripts. Refer to

third-party documentation to learn more about scripting in general.

Follow these steps:

�. Create a new file on your computer with the extension .sh. For example, testScript.sh .

Note: On Mac and Linux, an extension is not required. To make the file executable, issue the command

chmod u+x testScript .

�. (Mac and Linux only) At the top of the file, specify the interpreter that your script requires. For

example, type #!/bin/sh or #!/bin/bash .

Note: The command terminal that you use to execute the script depends on what you specify at the top

of your script. Bash scripts require a bash interpreter (bash terminal), while shell scripts can be run from

any terminal.

�. Write a script using a series of Zowe CLI commands.

Tip: You can incorporate commands from other command-line tools in the same script. You might

choose to "pipe" the output of one command into another command.

�. From the appropriate command terminal, issue a command to execute the script. The command you

use to execute script varies by operating system.

The script runs and prints the output in your terminal. You can run scripts manually, or include them in your

automated testing and delivery pipelines.

Sample script library

Refer to the Zowe CLI Sample Scripts repository for examples that cover a wide range of scripting languages

and use cases.

Example: Clean up Temporary Data Sets

The script in this example lists specified data sets, then loops through the list of data sets and deletes each

file. You can use a similar script to clean up temporary data sets after use.

Note: Run this script from a bash terminal.

Example: Submit Jobs and Save Spool Output

The script in this example submits a job, waits for the job to enter output status, and saves the spool files to

local files on your computer.

Note: Run this script from a bash terminal.

https://github.com/zowe/zowe-cli-sample-scripts

Version: v2.2.x LTS

Extending Zowe CLI

You can install plug-ins to extend the capabilities of Zowe™ CLI. Plug-ins CLI to third-party applications are

also available, such as Visual Studio Code Extension for Zowe (powered by Zowe CLI). Plug-ins add

functionality to the product in the form of new command groups, actions, objects, and options.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of every

command. Install third-party plug-ins at your own risk. We make no warranties regarding the use of third-

party plug-ins.

Install Zowe CLI plug-ins

IBM® CICS Plug-in for Zowe CLI

IBM® Db2® Database Plug-in for Zowe CLI

IBM® z/OS FTP Plug-in for Zowe CLI

IBM® IMS™ Plug-in for Zowe CLI

IBM® MQ Plug-in for Zowe CLI

Visual Studio Code (VSCode) Extension for Zowe

https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins
https://docs.zowe.org/v2.2.x/user-guide/cli-cicsplugin
https://docs.zowe.org/v2.2.x/user-guide/cli-db2plugin
https://docs.zowe.org/v2.2.x/user-guide/cli-ftpplugin
https://docs.zowe.org/v2.2.x/user-guide/cli-imsplugin
https://docs.zowe.org/v2.2.x/user-guide/cli-mqplugin
https://docs.zowe.org/v2.2.x/user-guide/ze-install

Version: v2.2.x LTS

Software requirements for Zowe CLI plug-ins

Before you use Zowe™ CLI plug-ins, complete the following steps:

Important! You can perform the required configurations for the plug-ins that you want to use before or

after you install the plug-ins. However, if you do not perform the required configurations, the plug-ins will

not function as designed.

Plug-in Required Configurations

IBM CICS

Plug-in for

Zowe CLI

Ensure that IBM CICS Transaction Server v5.2 or later is installed and running in

your mainframe environment

IBM CICS Management Client Interface (CMCI) is configured and running in your

CICS region.

IBM Db2

Database

Plug-in for

Zowe CLI

Download and prepare the ODBC driver (required for only package installations)

and address the licensing requirements. Perform this task before you install the

plug-in.

(MacOS) Download and Install Xcode.

IBM z/OS FTP

Plug-in for

Zowe CLI

Ensure that z/OS FTP service is enabled and configured with

JESINTERFACELEVEL = 2.

FTP over SSL is recommended.

IBM IMS Plug-

in for Zowe CLI

Ensure that IBM® IMS™ v14.1.0 or later is installed and running in your mainframe

environment.

Configure IBM® IMS™ Connect.

Configure IBM IMS Operations APIs to enable communication between the CLI

and the IMS instance.

https://docs.zowe.org/v2.2.x/user-guide/cli-cicsplugin
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.home.doc/welcomePage/welcomePage.html
https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.2.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
https://docs.zowe.org/v2.2.x/user-guide/cli-db2plugin
https://docs.zowe.org/v2.2.x/user-guide/cli-db2plugin#downloading-the-odbc-driver
https://developer.apple.com/xcode/resources/
https://docs.zowe.org/v2.2.x/user-guide/cli-ftpplugin
https://docs.zowe.org/v2.2.x/user-guide/cli-imsplugin
https://www.ibm.com/support/knowledgecenter/en/SSEPH2_14.1.0/com.ibm.ims14.doc/ims_product_landing_v14.html
https://www.ibm.com/support/knowledgecenter/en/SSEPH2_13.1.0/com.ibm.ims13.doc.ccg/ims_ct_intro.html
https://github.com/zowe/ims-operations-api

Plug-in Required Configurations

IBM MQ Plug-

in for Zowe CLI

Ensure that IBM® MQ™ v9.1.0 or later is installed and running in your mainframe

environment. Please read this blog for more information: Exposing the MQ REST

API via the Zowe API Mediation Layer

Visual Studio

Code

Extension for

Zowe

Node.js V8.0 or later

Access to z/OSMF; at least one profile is configured

Configure TSO/E address space services, z/OS data set, file REST interface, and

z/OS jobs REST interface. For more information, see z/OS Requirements.

Important! You can perform the required configurations for the plug-ins that you want to use before or

after you install the plug-ins. However, if you do not perform the required configurations, the plug-ins will

not function as designed.

https://docs.zowe.org/v2.2.x/user-guide/cli-mqplugin
https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.pro.doc/q121910_.htm
https://developer.ibm.com/messaging/2019/05/17/exposing-the-mq-rest-api-via-the-zowe-api-mediation-layer/
https://docs.zowe.org/v2.2.x/user-guide/ze-install
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zosmf

Version: v2.2.x LTS

Installing Zowe CLI plug-ins

Use commands in the plugins command group to install and manage Zowe™ CLI plug-ins.

Important! Plug-ins can gain control of your CLI application legitimately during the execution of commands.

Install third-party plug-ins at your own risk. We make no warranties regarding the use of third-party plug-ins.

You can install the following Zowe plug-ins:

IBM® CICS® Plug-in for Zowe CLI

IBM® Db2® Plug-in for Zowe CLI

Third-party Zowe Conformant Plug-ins

Use either of the following methods to install plug-ins:

Install from an online NPM registry. Use this method when your computer can access the Internet.

For more information, see Installing plug-ins from an online registry.

Install from a local package. With this method, you download and install the plug-ins from a bundled set

of .tgz files. Use this method when your computer cannot access the Internet.

For more information, see Installing plug-ins from a local package.

Installing plug-ins from an online registry

Install Zowe CLI plug-ins using npm commands on Windows, Mac, and Linux. The procedures in this article

assume that you previously installed the core CLI.

Follow these steps:

�. Meet the software requirements for each plug-in that you install.

�. Issue the following command to install a plug-in from public npm:

Note: Replace <my-plugin> with the installation command syntax in the following table:

https://www.openmainframeproject.org/projects/zowe/conformance
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins

Plug-in SyntaxPlug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli@zowe-v2-lts

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli@zowe-v2-lts

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli@zowe-v2-lts

IBM IMS Plug-in for Zowe CLI @zowe/ims-for-zowe-cli@zowe-v2-lts

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli@zowe-v2-lts

�. (Optional) Issue the following command to install two or more plug-ins using one command. Separate

the <my-plugin> names with one space.

Note: The IBM Db2 Plug-in for Zowe CLI requires additional licensing and ODBC driver configurations. If

you installed the DB2 plug-in, see IBM Db2 Plug-in for Zowe CLI.

You installed Zowe CLI plug-ins.

Installing plug-ins from a local package

Install plug-ins from a local package on any computer that has limited or no access to the Internet. The

procedure assumes that you previously installed the core CLI.

Follow these steps:

�. Meet the software requirements for each plug-in that you want to install.

�. Obtain the installation files.

From the Zowe Download website, click Download Zowe CLI to download the Zowe CLI installation

package named zowe-cli-package-*v*.*r*.*m*.zip to your computer.

Note: v indicates the version, r indicates the release number, and m indicates the modification

number

https://docs.zowe.org/v2.2.x/user-guide/cli-db2plugin
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins
https://zowe.org/download/

�. Open a command-line window, such as Windows Command Prompt. Browse to the directory where you

downloaded the Zowe CLI installation package (.zip file). Issue the following command, or use your

preferred method to unzip the files:

Example:

By default, the unzip command extracts the contents of the zip file to the directory where you

downloaded the .zip file. You can extract the contents of the zip file to your preferred location.

�. Issue the following command against the extracted directory to install each available plug-in:

Replace <my-plugin> with the .tgz file name listed in the following table:

Plug-in .tgz File Name

IBM CICS Plug-in for Zowe CLI cics-for-zowe-cli.tgz

IBM Db2 Plug-in for Zowe CLI db2-for-zowe-cli.tgz

IBM z/OS FTP Plug-in for Zowe CLI zos-ftp-for-zowe-cli.tgz

IBM IMS Plug-in for Zowe CLI ims-for-zowe-cli.tgz

IBM MQ Plug-in for Zowe CLI mq-for-zowe-cli.tgz

You installed Zowe CLI plug-ins.

Validating plug-ins

Issue the plug-in validation command to run tests against all plug-ins (or against a plug-in that you specify)

to verify that the plug-ins integrate properly with Zowe CLI. The tests confirm that the plug-in does not

conflict with existing command groups in the base application. The command response provides you with

details or error messages about how the plug-ins integrate with Zowe CLI.

The validate command has the following syntax:

[plugin] (Optional) Specifies the name of the plug-in that you want to validate. If you do not specify

a plug-in name, the command validates all installed plug-ins. The name of the plug-in is not always the

same as the name of the NPM package.

Plug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli

IBM IMS Plug-in for Zowe CLI @zowe/ims-for-zowe-cli

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli

Examples: Validate plug-ins

The following example illustrates the syntax to use to validate the IBM CICS Plug-in for Zowe CLI:

The following example illustrates the syntax to use to validate all installed plug-ins:

Updating plug-ins

You can update Zowe CLI plug-ins from an online registry or from a local package.

Update plug-ins from an online registry

Issue the update command to install the latest stable version or a specific version of a plug-in that you

installed previously. The update command has the following syntax:

[plugin...]

Specifies the name of an installed plug-in that you want to update. The name of the plug-in is not

always the same as the name of the NPM package. You can use npm semantic versioning to specify a

plug-in version to which to update. For more information, see npm semver.

[--registry \<registry>\]

(Optional) Specifies a registry URL that is different from the registry URL of the original installation.

Examples: Update plug-ins

The following example illustrates the syntax to use to update an installed plug-in to the latest version:

The following example illustrates the syntax to use to update a plug-in to a specific version:

Update plug-ins from a local package

You can update plug-ins from a local package. You acquire the media from the Zowe Download website and

update the plug-ins using the zowe plugins install command.

To update plug-ins from a local package, follow the steps described in Installing plug-ins from a local

package.

Uninstall Plug-ins

Issue the uninstall command to uninstall plug-ins from Zowe CLI. After the uninstall process completes

successfully, the product no longer contains the plug-in configuration.

The uninstall command contains the following syntax:

[plugin]

Specifies the name of the plug-in that you want to uninstall.

The following table describes the uninstallation command syntax for each plug-in:

Plug-in Syntax

IBM CICS Plug-in for Zowe CLI @zowe/cics-for-zowe-cli

IBM Db2 Plug-in for Zowe CLI @zowe/db2-for-zowe-cli

IBM z/OS FTP Plug-in for Zowe CLI @zowe/zos-ftp-for-zowe-cli

IBM IMS Plug-in for Zowe CLI @zowe/ims-for-zowe-cli

IBM MQ Plug-in for Zowe CLI @zowe/mq-for-zowe-cli

https://zowe.org/download/

Example:

The following example illustrates the command to uninstall the CICS plug-in:

Version: v2.2.x LTS

IBM® CICS® Plug-in for Zowe CLI

The IBM® CICS® Plug-in for Zowe™ CLI lets you extend Zowe CLI to interact with CICS programs and

transactions. The plug-in uses the IBM CICS® Management Client Interface (CMCI) API to achieve the

interaction with CICS. For more information, see CICS management client interface on the IBM Knowledge

Center.

Use Cases

Commands

Software requirements

Installing

Creating a user profile

Use cases

As an application developer, you can use the plug-in to perform the following tasks:

Deploy code changes to CICS applications that were developed with COBOL.

Deploy changes to CICS regions for testing or delivery. See the define command for an example of how

you can define programs to CICS to assist with testing and delivery.

Automate CICS interaction steps in your CI/CD pipeline with Jenkins Automation Server or TravisCI.

Deploy build artifacts to CICS regions.

Alter, copy, define, delete, discard, and install CICS resources and resource definitions.

Commands

For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help.

It is available for download in three formats: a PDF document, an interactive online version, and a ZIP file

containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

https://www.ibm.com/support/knowledgecenter/en/SSGMCP_5.3.0/com.ibm.cics.ts.clientapi.doc/topics/clientapi_overview.html
https://docs.zowe.org/v2.2.x/web_help/index.html
https://docs.zowe.org/v2.2.x/zowe_web_help.zip
https://docs.zowe.org/v2.2.x/CLIReference_Zowe.pdf

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-

ins.

Installing

Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

Creating a user profile

You create a cics profile to avoid entering your connection details each time that you issue a command. You

can create multiple profiles and switch between them as needed. Use one of the following methods to

create a profile:

Create plug-in profiles using a configuration file: Specify your profile and connection details in the

zowe.config.json configuration file.

Create plug-in profiles using a command: Issue the zowe profiles create command to create

the profile. We recommend that you create profiles using the configuration file. We do not recommend

using profile commands because we are removing them from a future major release.

Create Plug-in Profiles Using a Configuration File

When you issue various zowe config commands, such as init , auto-init , and convert-

profiles , they create a zowe.config.json configuration file. When you install the CICS plug-in, the

commands create an entry for a cics profile in your zowe.config.json file.

Alternatively, you can create a CICS profile manually by adding a section that contains the configuration

details to your zowe.config.json configuration file.

�. Browse to the following directory C:\Users\<username>\.zowe

�. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code

or IntelliJ.

https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins
https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

NOTE: If the file does not exist, issue the following command to create the configuration file:

�. Add the following code to the "profiles" section of the configuration file:

Example:

�. Save the file.

You can now use your profile when you issue commands in the cics command group.

Create Plug-in Profiles Using a Command

The following steps describe how to create a profile using the zowe profiles create command.

�. Open a terminal window and issue the following command:

profile_name :

Specifies a name for your profile.

host :

Specifies the host name for the instance.

user :

Specifies your user name to log in to the instance.

password :

Specifies your password to log in to the instance.

port :

Specifies the port number to connect to the instance.

region :

Specifies the region to use on the instance.

Example:

�. Press Enter. The result of the command displays as a success or failure message.

You can now use your profile when you issue commands in the cics command group.

The plug-in uses HTTPS by default. Use the optional flag --protocol http to override the default with

HTTP.

Version: v2.2.x LTS

IBM® Db2® Database Plug-in for Zowe CLI

The IBM® Db2® Database Plug-in for Zowe™ CLI lets you interact with Db2 for z/OS to perform tasks

through Zowe CLI and integrate with modern development tools. The plug-in also lets you interact with Db2

to advance continuous integration and to validate product quality and stability.

Zowe CLI Plug-in for IBM Db2 Database lets you execute SQL statements against a Db2 region, export a

Db2 table, and call a stored procedure. The plug-in also exposes its API so that the plug-in can be used

directly in other products.

Use cases

As an application developer, you can use Zowe CLI Plug-in for IBM DB2 Database to perform the following

tasks:

Execute SQL and interact with databases.

Execute a file with SQL statements.

Export tables to a local file on your computer in SQL format.

Call a stored procedure and pass parameters.

Commands

For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help.

It is available for download in three formats: a PDF document, an interactive online version, and a ZIP file

containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-

ins.

https://docs.zowe.org/v2.2.x/web_help/index.html
https://docs.zowe.org/v2.2.x/zowe_web_help.zip
https://docs.zowe.org/v2.2.x/CLIReference_Zowe.pdf
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins

Installing

Use one of the following methods to install the the Zowe CLI Plug-in for IBM Db2 Database:

Install from an online registry

Install from a local package

Installing from an online registry

Complete the following steps if you installed Zowe CLI from online registry:

�. If you are installing the plug-in on an Apple computer that contains an M1 (or later architecture)

processor, complete the steps in M1 processor installation. If not, continue to Step 2.

�. Open a command line window and issue the following command:

�. Address the license requirements to begin using the plug-in.

Installing from a local package

Follow these procedures if you downloaded the Zowe installation package:

Downloading the ODBC driver

Download the ODBC driver before you install the Db2 plug-in.

Follow these steps:

�. If you are installing the plug-in on a Apple computer that contains an M1 (or later architecture)

processor, complete the steps in M1 processor installation. If not, continue to Step 2.

�. Download the ODBC CLI Driver (Darwin x64). Use the table within the download URL to select the

correct CLI Driver for your platform and architecture.

�. Create a new directory named odbc_cli on your computer. Remember the path to the new directory.

You will need to provide the full path to this directory immediately before you install the Db2 plug-in.

�. Place the ODBC driver in the odbc_cli folder. Do not extract the ODBC driver.

https://docs.zowe.org/v2.2.x/user-guide/cli-db2-install-m1
https://docs.zowe.org/v2.2.x/user-guide/cli-db2-install-m1
https://github.com/ibmdb/node-ibm_db#-download-clidriver-based-on-your-platform--architecture-from-the-below-ibm-hosted-url

You downloaded and prepared to use the ODBC driver successfully. Proceed to install the plug-in to Zowe

CLI.

Installing Xcode on MacOS

To install the Db2 CLI plug-in on MacOS, you need the command line tools, which can be obtained by

installing Xcode from the App Store.

Note: On some versions of MacOS, you may receive the error xcrun: error: invalid active

developer path as shown below:

If this occurs, a manual refresh of the command line tools is required by running the following commands:

Installing the plug-in

Now that the Db2 ODBC CLI driver is downloaded, set the IBM_DB_INSTALLER_URL environment variable

and install the Db2 plug-in to Zowe CLI.

Follow these steps:

�. Open a command line window and change the directory to the location where you extracted the zowe-

cli-bundle.zip file. If you do not have the zowe-cli-bundle.zip file, see the topic Install

Zowe CLI from local package in Installing Zowe CLI for information about how to obtain and extract it.

�. From a command line window, set the IBM_DB_INSTALLER_URL environment variable by issuing the

following command:

Windows operating systems:

Linux and Mac operating systems:

For example, if you downloaded the Windows x64 driver (ntx64_odbc_cli.zip) to C:\odbc_cli, you would

issue the following command:

�. Issue the following command to install the plug-in:

�. Address the license requirements to begin using the plug-in.

Addressing the license requirement

https://medium.com/r/?url=https%3A%2F%2Fapps.apple.com%2Fus%2Fapp%2Fxcode%2Fid497799835%3Fmt%3D12
https://docs.zowe.org/v2.2.x/user-guide/cli-installcli

To successfully connect the Db2 CLI plug-in to a database on z/OS, a license needs to be present either on

the client where the Zowe CLI is executed from, or else on z/OS. If you do not have a license configured

when you execute Db2 CLI commands, you will receive an error SQL1598N , for example:

Server-side license

You can execute the utility db2connectactivate on z/OS to enable a Db2 database to accept client

requests. For more information, see db2connectactivate - Server license activation utility. This avoids having

to apply the Db2 Connect license on each database client that connects directly to the server. It is also the

preferred approach to enabling users of the Zowe Db2 CLI because it avoids individual client license

distribution and configuration.

Client-side license

If the utility db2connectactivate has not been executed against the Db2 database that your profile is

connecting to, then it is possible to obtain the license file db2consv_zs.lic from a copy of DB2 Connect

and use this for client configuration. This will need to be done separately for each client PC.

�. Locate your client copy of the Db2 license file db2consv_zs.lic .

Note: The license must be of version 11.5 if the Db2 server is not db2connectactivated . You can

buy a db2connect license from IBM. The connectivity can be enabled either on server using

db2connectactivate utility or on client using client side license file. To know more about DB2 license and

purchasing cost, please contact IBM Customer Support.

�. Copy your Db2 license file db2consv_za.lic and place it in the following directory.

Tip: By default, <zowe_home> is set to ~/.zowe on *UNIX Aand Mac systems, and C:\Users\

<Your_User>\.zowe on Windows systems.

After the license is copied, you can use the Db2 plugin functionality.

Creating a user profile

Before you start using the IBM Db2 plug-in, create a profile with details of the Db2 system you're connecting

to.

The Db2 server host name

https://www.ibm.com/support/knowledgecenter/SSEPGG_11.5.0/com.ibm.db2.luw.licensing.doc/doc/r0057377.html

The Db2 server port number

The database name (you can also use the location)

To get the Db2 system information, the following two methods can be used.

Issue the command -DISPLAY DDF in the Db2 SPUFI command on z/OS

or

View the JES spool for the MSTR job for the Db2 subsystem and search for the message DSNL004I .

For example, for the database DI2E the JES job DI2EMSTR will have an entry with similar to:

The DOMAIN is used for the <hostname>, the TCPPORT for the <port> and the LOCATION for the

<database> in the zowe create profile command.

In addition to the host, port and database you'll need

The user name

The password

If your Db2 systems use a secure connection, you can also provide an SSL/TSL certificate file.

To create a db2 team profile in Zowe CLI, open the zowe.config.json file and specify the properties for

the port and database :

SQL0805N: Database BIND

To be able to run remote SQL commands against a Db2 database, you must invoke a BIND command

against it. If the BIND command is not run, you will see an error that contains SQL0805N similar to the log

below:

If you receive this error, a user with DBADM authority must run the BIND command. This will typically be

done by a Db2 System Programmer. More information can be found in the Db2 product documentation and

The Bind process.

https://medium.com/r/?url=https%3A%2F%2Fwww.ibm.com%2Fsupport%2Fproducthub%2Fdb2%2Fdocs%2Fcontent%2FSSEPGG_11.5.0%2Fcom.ibm.db2.luw.admin.cmd.doc%2Fdoc%2Fr0001935.html
https://medium.com/r/?url=https%3A%2F%2Fwww.ibm.com%2Fsupport%2Fknowledgecenter%2FSSEPEK_10.0.0%2Fapsg%2Fsrc%2Ftpc%2Fdb2z_bindprocess.html

Version: v2.2.x LTS

M1 processor installation

The IBM ODBC DB2 driver functions only on MacOS x86_64 architecture.

Use the following steps to configure an M1 (or later architecture) processor to behave as MacOS x86_64

architecture so that it can communicate with the IBM ODBC DB2 driver.

�. Install Rosetta. Open a terminal window and issue the following command:

�. Modify ~/.zshrc to contain the following syntax:

�. Source the new file by issuing the following command:

�. Switch to the x86_64 architecture by issuing the following command:

�. Reinstall Zowe CLI.

�. After you complete these steps, do one of the following:

If you are installing the plug-in from an online registry, continue with Step 2 in Install from an online

registry.

If you are installing the plug-in from a local package, continue with Step 2 in Installing from a local

package.

Important! You must issue the intel command every time that you open a new terminal window to help

ensure that Zowe CLI, Secure Credential Storage and the DB2 plug-in function properly on x86_64

architecture. Also, issue the command before you issue Zowe CLI commands.

https://docs.zowe.org/v2.2.x/user-guide/cli-db2plugin#installing-from-an-online-registry
https://docs.zowe.org/v2.2.x/user-guide/cli-db2plugin#installing-from-a-local-package

Version: v2.2.x LTS

IBM® z/OS FTP Plug-in for Zowe CLI

The IBM® z/OS FTP Plug-in for Zowe™ CLI lets you extend Zowe CLI to access z/OS datasets, USS files, and

submit JCL. The plug-in uses the z/OS FTP service to achieve the interaction with z/OS.

Use cases

As a z/OS user, you can use the plug-in to perform the following tasks:

List, view, rename, and download z/OS datasets or USS files.

Upload local files or stdin to z/OS datasets or USS files.

List, view, and download job status or job spool files.

Delete a z/OS dataset, USS file, or job.

Commands

For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help.

It is available for download in three formats: a PDF document, an interactive online version, and a ZIP file

containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-

ins.

Installing

Use one of the following methods to install or update the plug-in:

https://docs.zowe.org/v2.2.x/web_help/index.html
https://docs.zowe.org/v2.2.x/zowe_web_help.zip
https://docs.zowe.org/v2.2.x/CLIReference_Zowe.pdf
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins

Installing plug-ins from an online registry

Installing plug-ins from a local package

Creating a user profile

You can create a zftp user profile to avoid typing your connection details on every command. A zftp

profile contains the host, port, username, and password for the z/OS instance to which you want to connect.

You can create multiple profiles and switch between them as needed.

Issue the following command:

Note: There is an option named --secure-ftp that is set to true by default. If FTPS (FTP over SSL) is

not enabled in z/OS FTP service, we recommend using --secure-ftp false . FTPS is not equivalent to

SFTP (FTP over SSH).

Note: For more information about the syntax, actions, and options, for a profiles create command, open

Zowe CLI and issue the following command:

https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Version: v2.2.x LTS

IBM® IMS™ Plug-in for Zowe CLI

The IBM IMS Plug-in for Zowe CLI lets you extend Zowe CLI such that it can interact with IMS resources

(regions, programs and transactions). You can use the plug-in to start, stop, and query regions and start,

stop, query, and update programs and transactions.

Note: For more information about IMS, see IBM Information Management System (IMS) on the IBM

Knowledge Center.

Use cases

As an application developer or DevOps administrator, you can use IBM IMS Plug-in for Zowe CLI to perform

the following tasks:

Refresh IMS transactions, programs, and dependent IMS regions.

Deploy application code into IMS production or test systems.

Write scripts to automate IMS actions that you traditionally perform using ISPF editors, TSO, and SPOC.

Commands

For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help.

It is available for download in three formats: a PDF document, an interactive online version, and a ZIP file

containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-

ins.

https://www.ibm.com/it-infrastructure/z/ims
https://docs.zowe.org/v2.2.x/web_help/index.html
https://docs.zowe.org/v2.2.x/zowe_web_help.zip
https://docs.zowe.org/v2.2.x/CLIReference_Zowe.pdf
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins

Installing

Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

Installing plug-ins from a local package

Creating user profiles

You can set up an ims profile to retain your credentials, host, and port name. You can create multiple

profiles and switch between them as needed. Issue the following command to create an ims profile:

Example: Setting up an IMS profile

The following example creates an ims profile named 'ims123' to connect to IMS APIs at host zos123 and port

1490. The name of the IMS plex in this example is 'PLEX1' and the IMS region we want to communicate with

has a host of zos124 and a port of 1491:

Note: For more information, issue the command zowe profiles create ims-profile --help .

https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry
https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

Version: v2.2.x LTS

IBM® MQ Plug-in for Zowe CLI

The IBM MQ Plug-in for Zowe CLI lets you issue MQSC commands to a queue manager. MQSC commands

let you to perform administration tasks. For example, you can define, alter, or delete a local queue object.

Note: For more information about MQSC commands and the corresponding syntax, see MQSC commands

on the IBM Knowledge Center.

Use cases

You can use the plug-in to execute MQSC Commands. With MQSC commands you can manage queue

manager objects (including the queue manager itself), queues, process definitions, channels, client

connection channels, listeners, services, namelists, clusters, and authentication information objects.

Using IBM MQ plug-in commands

For detailed documentation on commands, actions, and options available in this plug-in, see our Web Help.

It is available for download in three formats: a PDF document, an interactive online version, and a ZIP file

containing the HTML for the online version.

Browse Online

Download (ZIP)

Download (PDF)

Software requirements

Before you install the plug-in, meet the software requirements in Software requirements for Zowe CLI plug-

ins.

Installing

Use one of the following methods to install or update the plug-in:

Installing plug-ins from an online registry

https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_9.1.0/com.ibm.mq.ref.adm.doc/q085130_.htm
https://docs.zowe.org/v2.2.x/web_help/index.html
https://docs.zowe.org/v2.2.x/zowe_web_help.zip
https://docs.zowe.org/v2.2.x/CLIReference_Zowe.pdf
https://docs.zowe.org/v2.2.x/user-guide/cli-swreqplugins
https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins#installing-plug-ins-from-an-online-registry

Installing plug-ins from a local package

Creating a user profile

You create an mq profile to avoid entering your connection details each time that you issue a command. You

can create multiple profiles and switch between them as needed. Use one of the following methods to

create a profile:

Create plug-in profiles using a configuration file: Specify your profile and connection details in the

zowe.config.json configuration file.

Create plug-in profiles using a command: Issue the zowe profiles create command to create

the profile.

We recommend that you create profiles using the configuration file. We do not recommend using profile

commands because we are removing them in a future major release.

Create plug-in profiles using a configuration file

When you issue various zowe config commands, such as init , auto-init , and convert-profiles ,

they create a zowe.config.json configuration file. When you install the MQ plug-in, the commands

create an entry for an mq profile in your zowe.config.json file.

Alternatively, you can create a mq profile manually by adding a section that contains the configuration details

to your zowe.config.json ok configuration file.

�. Browse to the following directory C:\Users\<username>\.zowe

�. Open the zowe.config.json configuration file using a text editor or IDE, such as Visual Studio Code

or IntelliJ.

NOTE: If the file does not exist, issue the following command to create the configuration file: zowe

config init -–gc

�. Add the following code to the "profiles" section of the configuration file.

Example:

�. Save the file

https://docs.zowe.org/v2.2.x/user-guide/cli-installplugins#installing-plug-ins-from-a-local-package

You can now use your profile when you issue commands in the mq command group.

Create plug-in profiles using a command

The following steps describe how to create a profile using the zowe profiles create command.

�. Open a terminal window and issue the following command:

profile_name :

Specifies a name for your profile.

host :

Specifies the host name for the instance.

user :

Specifies your user name to log in to the instance.

password :

Specifies your password to log in to the instance.

port :

Specifies the port number to connect to the instance.

Example:

�. Press Enter. The result of the command displays as a success or failure message.

You can now use your profile when you issue commands in the mq command group.

Version: v2.2.x LTS

Visual Studio Code (VS Code) Extension for
Zowe

chatchat on Slackon Slack

The Zowe Explorer extension for Visual Studio Code (VS Code) modernizes the way developers and system

administrators interact with z/OS mainframes, and lets you interact with data sets, USS files and jobs. Install

the extension directly to VSCode to enable the extension within the GUI. Working with data sets and USS

files from VSCode can be more convenient than using 3270 emulators, and complements your Zowe CLI

experience. The extension provides the following benefits:

Enables you to create, modify, rename, copy, and upload data sets directly to a z/OS mainframe.

Enables you to create, modify, rename, and upload USS files directly to a z/OS mainframe.

Provides a more streamlined way to access data sets, USS files and jobs.

Lets you create, edit, and delete Zowe CLI zosmf compatible profiles.

Lets you use the Secure Credential Store plug-in to store your credentials securely in the settings.

Note: Zowe Explorer is a subcomponent of Zowe. The extension demonstrates the potential for plug-ins

powered by Zowe.

Software Requirements

Ensure that you meet the following prerequisites before you use the extension:

Get access to z/OSMF.

Install Node.js v8.0 or later.

Install VSCode.

Configure TSO/E address space services, z/OS data set, file REST interface, and z/OS jobs REST

interface. For more information, see z/OS Requirements.

Create one Zowe CLI zosmf profile so that the extension can communicate with the mainframe.

Profile notes:

You can use your existing Zowe CLI zosmf profiles that are created with the Zowe CLI v.2.0.0 or later.

https://code.visualstudio.com/
https://zowe.org/home/
https://nodejs.org/en/download/
https://code.visualstudio.com/
https://docs.zowe.org/stable/user-guide/systemrequirements-zosmf#z-os-requirements

Zowe CLI zosmf profiles that are created in Zowe Explorer can be interchangeably used in the Zowe

CLI.

Optionally, you can continue using Zowe CLI V1 profiles with Zowe Explorer. For more information, see

instert link here.

Installing

Use the following steps to install Zowe Explorer:

�. Address the software requirements.

�. Open VSCode, and navigate to the Extensions tab on the left-hand side of the UI.

�. Type Zowe Explorer in the search field.

Zowe Explorer appears in the list of extensions in the left-hand panel.

�. Click the green Install button to install the extension.

�. Restart VSCode.

The extension is now installed and available for use.

Note: For information about how to install the extension from a VSIX file and run system tests on the

extension, see the Developer README.

You can also watch the following videos to learn how to get started with Zowe Explorer, and work with data

sets.

https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README.md

Configuration

Configure Zowe Explorer in the settings file of the extension. To access the extension settings, navigate to

Manage (the gear icon) > Settings, then select Extensions > Zowe Explorer Settings. For example, you

can modify the following settings:

Data set creation settings: You can change the default creation settings for various data set types.

Follow these steps:

�. Click the Edit in settings.json button under the Data Set, USS or JOBS settings that you want to edit.

�. Edit the settings as needed.

�. Save the settings.

Set the Temporary Folder Location: You can change the default folder location where temporary files

are stored.

Follow these steps:

i. Click the Edit in settings.json button under the Data Set, USS or JOBS settings that you want to

edit.

ii. Modify the following definition:

where /path/to/directory is the folder location that you specify.

iii. Save the settings.

Relevant Information

In this section you can find useful links and other relevant to Zowe Explorer information that can improve

your experience with the extension.

For information about how to develop for Eclipse Theia, see Theia README.

For information about how to create a VSCode extension for Zowe Explorer, see VSCode extensions for

Zowe Explorer.

Visit the #zowe-explorer channel on Slack for questions and general guidance.

https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Theia.md
https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Extending.md
https://openmainframeproject.slack.com/

Version: v2.2.x LTS

Zowe Explorer Profiles

After you install Zowe Explorer, you need to have a Zowe Explorer profile to use all functions of the

extension.

Note: You can continue using Zowe V1 profiles with Zowe Explorer V2.

Configuring team profiles

Zowe CLI team profiles simplify profile management by letting you to edit, store, and share mainframe

configuration details in one location. You can use a text editor or an IDE to populate configuration files with

connection details for your mainframe services. By default, your team configuration file is located in the

.zowe home folder, whereas the project-level configuration file is located in the main directory of your

project. You can create profiles that you use globally, given that the names of the globally-used profiles are

different from your other profile names.

Note: A project context takes precedence over global configuration.

Creating team configuration files

Create a team configuration file.

�. Navigate to the explorer tree.

�. Hover over DATA SETS, USS, or JOBS.

�. Click the + icon.

�. Select Create a New Team Configuration File.

�. Chose either a global configuration file or a project-level configuration file.

�. Edit the config file to include the host information and save the file.

�. Refresh Zowe Explorer by either clicking the button in the notification message shown after creation,

alt+z , or the Zowe Explorer: Refresh Zowe Explorer command palette option.

Your team configuration file appears either in your .zowe folder if you choose the global configuration file

option, or in your workspace directory if you choose the project-level configuration file option. The

notification message that shows in VS Code after config file creation will include the path of the file created.

Managing profiles

You can edit your project-level or global configuration files.

Follow these steps:

�. Right-click on your profile.

�. Select the Add, Update, or Delete Profile options to edit the zowe config file in place.

Tip: Use the Intellisense prompts if you need assistance with filling parameters in the file.

�. Save the config file.

�. Refresh the view by clicking the refresh icon in the Data Sets, USS, or Jobs view.

Alternatively, press F1 to open the command palette, type and execute the Zowe Explorer: Refresh

Zowe Explorer option.

You successfully edited your configuration file.

Sample profile configuration

View the profile configuration sample. In the sample, the default lpar1.zosmf profile will be loaded upon

activation.

You can use the sample to customize your profile configuration file. Ensure that you edit the host and

port values before you work in your environment.

Working with Zowe Explorer profiles

Important! The information in this section applies to only Zowe CLI V1 profiles unless otherwise noted.

Zowe CLI V1 profiles are defined by having one yaml file for each user profile.

You must have a zosmf compatible profile before you can use Zowe Explorer. You can set up a profile to

retain your credentials, host, and port name. In addition, you can create multiple profiles and use them

simultaneously.

Follow these steps:

�. Navigate to the explorer tree.

�. Click the + button next to the DATA SETS, USS or JOBS bar.

Note: If you already have a profile, select it from the drop-down menu.

�. Select the Create a New Connection to z/OS option.

Note: When you create a new profile, user name and password fields are optional. However, the system

will prompt you to specify your credentials when you use the new profile for the first time.

�. Follow the instructions, and enter all required information to complete the profile creation.

You successfully created a Zowe CLI zosmf profile. Now you can use all the functionalities of the

extension.

If you need to edit a profile, right-click the profile and select Update Profile option.

In addition, you can hide a profile from the explorer tree, and permanently delete a profile. When you delete

your profile permanently, the extension erases the profile from the .zowe folder. To hide or delete a profile,

right-click the profile and choose one of the respective options from the list.

Validating profiles

Note: The following information applies to Zowe CLI V1 profiles (one yaml file for each user profile) and

Zowe CLI team profiles (Zowe CLI V2).

Zowe Explorer includes the profile validation feature that helps to ensure that z/OSMF is accessible and

ready for use. If a profile is valid, the profile is active and can be used. By default, the feature is automatically

enabled. You can disable the feature by right-clicking on your profile and selecting the Disable Validation

for Profile option. Alternatively, you can enable or disable the feature for all profiles in the VS Code settings.

Follow these steps:

�. Navigate to the VS Code settings.

�. Open Zowe Explorer Settings.

�. Enable or disable the automatic validation of profiles option.

�. Restart VS Code.

Using base profiles and tokens with existing profiles

As a Zowe user, you can leverage the base profile functionality to access multiple services through Single

Sign-on. Base profiles enable you to authenticate using Zowe API Mediation Layer (API ML). You can use

base profiles with more than one service profile. For more information, see Base Profiles.

Before you log in and connect your service profile, ensure that you have Zowe CLI v6.16 or higher installed.

Accessing services through API ML using SSO

Connect your service profile with a base profile and token.

Follow these steps:

�. Open Zowe CLI and issue the following command:

�. Follow the onscreen instructions to complete the login process.

A local base profile is created that contains your token. For more information about the process, see

Token Management.

�. Run Zowe Explorer and click the + icon.

�. Select the profile you use with your base profile with the token.

The profile appears in the tree and you can now use this profile to access z/OSMF via the API Mediation

Layer.

For more information, see Integrating with API Mediation Layer.

Logging in to the Authentication Service

If the token for your base profile is no longer valid, you can log in again to get a new token with the Log in to

Authentication Service feature.

Notes:

The feature is only available for base profiles.

The feature supports only API Mediation Layer at the moment. Other extenders may use a different

authentication service.

https://docs.zowe.org/v2.2.x/user-guide/cli-using-using-profiles#base-profiles
https://docs.zowe.org/v2.2.x/user-guide/cli-install-cli-checklist
https://docs.zowe.org/v2.2.x/user-guide/cli-using-integrating-apiml#how-token-management-works
https://docs.zowe.org/v2.2.x/user-guide/cli-using-integrating-apiml

Follow these steps:

�. Open Zowe Explorer.

�. Right-click your profile.

�. Select the Log in to Authentication Service option.

You will be prompted to enter your username and password beforehand.

The token is stored in the corresponding base profile.

If you do not want to store your token, request from the server to end the session of your token. Use the Log

out from Authentication Service feature to invalidate the token.

Follow these steps:

�. Open Zowe Explorer.

�. Right-click your profile.

�. Select the Log out from Authentication Service option.

Your token has been successfully invalidated.

Version: v2.2.x LTS

Configuring Zowe Application Framework

The Zowe Application ("App") Framework is configured in the Zowe configuration file. Configuration can be

used to change things such as verbosity of logs, the way in which the App server communicates with the

Mediation Layer, how ZSS operates, whether to use HTTPS or AT-TLS, what language the logs should be

set, and many more attributes.

When you install Zowe™, the App Framework is configured as a Mediation Layer client by default. This is

simpler to administer because the App framework servers are accessible externally through a single port:

API ML Gateway port. It is more secure because you can implement stricter browser security policies for

accessing cross-origin content.

You can modify the Zowe App Server and Zowe System Services (ZSS) configuration, as needed, or

configure connections for the Terminal app plugins.

Accessing the App Server

When the server is enabled and given a port within the configuration file, the App server will print a message

ZWED0031I in the log output. At that time, it is ready to accept network communication. When using the API

Mediation Layer (recommended), app-server URLs should be reached from the Gateway, and you should

additionally wait for the message ZWEAM000I for the Gateway to be ready.

When Zowe is ready, the app-server can be found at https://<zowe.externalDomain>:

<components.gateway.port>/zlux/ui/v1

(Not recommended): If the API Mediation Layer is not used, or you need to contact the App server directly,

the ZWED0031I message states which port it is accessible from, though generally it will be the same value

as specified within components.app-server.port . In that case, the server would be available at

https://<zowe.externalDomain>:<components.app-server.port>/

Accessing the Desktop

The app-server should be accessed through the gateway when both are present. When both are

ready, the Desktop can be accessed from the API Mediation Layer Gateway, such as

https://<zowe.externalDomain>:<components.gateway.port>/zlux/ui/v1/ , which will

redirect to https://<zowe.externalDomain>:

<components.gateway.port>/zlux/ui/v1/ZLUX/plugins/org.zowe.zlux.bootstrap/web/inde

x.html

Although you access the App server via the Gateway port, the App server still needs a port assigned to it

which is the value of the components.app-server.port variable in the Zowe configuration file.

(Not recommended): If the mediation layer is not used, the Desktop will be accessible from the App server

directly at /ZLUX/plugins/org.zowe.zlux.bootstrap/web/index.html

Accessing ZSS

The zss server should be accessed through the gateway when both are present. When both are ready,

ZSS can be accessed from the API Mediation Layer Gateway, such as

https://<zowe.externalDomain>:<components.gateway.port>/zss/api/v1/

Although you access the ZSS server via the Gateway port, the ZSS server still needs a port assigned to it

which is the value of the components.zss.port variable in the Zowe configuration file.

If the mediation layer is not used, ZSS directly at https://<zowe.externalDomain>:

<components.zss.port>/

Configuration file

app-server configuration

The app-server uses the Zowe server configuration file for customizing server behavior. For a full list of

parameters, requirements, and descriptions, see the json-schema document for the app-server which

describes attributes that can be specified within the configuration file section components.app-server

zss configuration

ZSS shares some parameters in common with the app-server, so you can consult the above json-schema

document to find out which parameters are valid within components.zss of the Zowe configuration file.

https://github.com/zowe/zlux/blob/v2.x/staging/schemas/zlux-config-schema.json

However, some parameters within the app-server schema are not used by ZSS, such as the node section.

A ZSS-centric schema will be available soon.

Environment variables

In the latest version of Zowe, instance.env is no longer used. However, some environment variables that

could be specified within v1 can still be set within v2 in the zowe.environments section of the server

configuration file. Environment variables starting with ZWED_ map to values that can be specified within

components.app-server and components.zss so they are redundant, but you can refer to the above

json-schema document to see which values are useful or deprecated.

Configuring the framework as a Mediation Layer client

The App Server and ZSS automatically register to the API Mediation Layer when present. If this is not

desired, registration can disabled by setting the properties components.app-

server.mediationLayer.server.enabled=false for app-server and

components.zss.mediationLayer.enabled=false for ZSS.

Setting up terminal app plugins

Follow these optional steps to configure the default connection to open for the terminal app plugins.

Setting up the TN3270 mainframe terminal app plugin

The file _defaultTN3270.json within the tn3270-ng2 app folder

/config/storageDefaults/sessions/ is deployed to the configuration dataservice when the app-

server runs for the first time. This file is used to tell the terminal what host to connect to by default. If you'd

like to customize this default, you can edit the file directly within the configuration dataservice

<components.app-

server.instanceDir>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json . Or you

can open the app, customize a session within the UI, click the save icon (floppy icon) and then copy that file

from <components.app-server.usersDir>/<your

user>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json to <components.app-

server.instanceDir>/org.zowe.terminal.tn3270/sessions/_defaultTN3270.json . Either

way, you will see a file with the following properties:

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice

Setting up the VT Terminal app plugin

The file _defaultVT.json within the vt-ng2 app folder /config/storageDefaults/sessions/

is deployed to the configuration dataservice when the app-server runs for the first time. This file is used to

tell the terminal what host to connect to by default. If you'd like to customize this default, you can edit the file

directly within the configuration dataservice <components.app-

server.instanceDir>/org.zowe.terminal.vt/sessions/_defaultVT.json . Or you can open the

app, customize a session within the UI, click the save icon (floppy icon) and then copy that file from

<components.app-server.usersDir>/<your

user>/org.zowe.terminal.vt/sessions/_defaultVT.json to <components.app-

server.instanceDir>/org.zowe.terminal.vt/sessions/_defaultVT.json . Either way, you will

see a file with the following properties:

Network configuration

Note: The following attributes are to be defined in the Zowe configuration file.

The App Server can be accessed over HTTP and/or HTTPS, provided it has been configured for either.

HTTPS should be used, as HTTP is not secure unless AT-TLS is used. When AT-TLS is used by ZSS,

components.zss.agent.http.attls must be set to true.

HTTPS

Both app-server and zss server components use HTTPS by default, and the port parameters

components.app-server.port and components.zss.port control which port they are accessible

from. However, each have advanced configuration options to control their HTTPS behavior.

The app-server component configuration can be used to customize its HTTPS connection such as

which certificate and ciphers to use, and these parameters are to be set within components.app-

server.node.https as defined within the json-schema file

The zss component configuration can be used to customize its HTTPS connection such as which

certificate and ciphers to use, and these parameters are to be set within components.zss.agent.https

as defined within the json-schema file

HTTP

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice
https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L15
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json#L81

The app-server can be configured for HTTP via the components.app-server.node.http section

of the Zowe configuration file, as specified within the app-server json-schema file.

The zss server can be configured for HTTP via the components.zss.agent.http section of the Zowe

configuration file, as specified within the zss json-schema file. Note that components.zss.tls must

be set to false for HTTP to take effect, and that components.zss.agent.http.attls must be set to

true for AT-TLS to be recognized correctly.

Configuration Directories

When running, the App Server will access the server's settings and read or modify the contents of its

resource storage. All of this data is stored within a hierarchy of folders which correspond to scopes:

Product: The contents of this folder are not meant to be modified, but used as defaults for a product.

Site: The contents of this folder are intended to be shared across multiple App Server instances,

perhaps on a network drive.

Instance: This folder represents the broadest scope of data within the given App Server instance.

Group: Multiple users can be associated into one group, so that settings are shared among them.

User: When authenticated, users have their own settings and storage for the Apps that they use.

These directories dictate where the Configuration Dataservice will store content. For more information, see

the Configuration Dataservice documentation

Old defaults

Prior to Zowe release 2.0.0, the location of the configuration directories were initialized to be within the

<INSTANCE_DIR> folder unless otherwise customized. 2.0.0 does have backwards compatibility for the

existence of these directories, but <INSTANCE_DIR> folder no longer exists, so they should be migrated

to match the ones specified in the Zowe configuration file.

Folder New Location Old Location

siteDir
<zowe.workspaceDirectory>/app-

server/site

<INSTANCE_DIR>/workspace/app-

server/site

https://github.com/zowe/zlux-app-server/blob/v2.x/staging/schemas/app-server-config.json#L73
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json#L99
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice

App plugin configuration

The App framework will load plugins from Components such as extensions based upon their enabled status

in Zowe configuration. The server caches knowledge of these plugins in the

<workspaceDirectory>/app-server/plugins folder. This location can be customized with the

components.app-server.pluginsDir variable in the Zowe configuration file.

Logging configuration

For more information, see Logging Utility.

Enabling tracing

To obtain more information about how a server is working, you can enable tracing within the Zowe

configuration file via components.app-server.logLevels or components.zss.logLevels variable. For more

information on all loggers, check out the Extended documentation.

For example:

All settings are optional.

Folder New Location Old Location

instanceDir
<zowe.workspaceDirectory>/app-

server

<INSTANCE_DIR>/workspace/app-

server

insta

isn't

work

is us

groupsDir
<zowe.workspaceDirectory>/app-

server/groups

<INSTANCE_DIR>/workspace/app-

server/groups

usersDir
<zowe.workspaceDirectory>/app-

server/users

<INSTANCE_DIR>/workspace/app-

server/users

pluginsDir
<zowe.workspaceDirectory>/app-

server/plugins

<INSTANCE_DIR>/workspace/app-

server/plugins

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-logutility
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-core-loggers

Log files

The app-server and zss will create log files containing processing messages and statistics. The log files are

generated within the log directory specified within the Zowe configuration file (zowe.logDirectory).

The filename patterns are:

App Server: <zowe.logDirectory>/appServer-yyyy-mm-dd-hh-mm.log

ZSS: <zowe.logDirectory>/zssServer-yyyy-mm-dd-hh-mm.log

Retaining logs

By default, the last five log files are retained. You can change this by setting environment variables within the

zowe.environments section of the Zowe server configuration file. To specify a different number of logs

to retain, set ZWED_NODE_LOGS_TO_KEEP for app-server logs, or ZWES_LOGS_TO_KEEP for zss logs. For

example, if you set ZWED_NODE_LOGS_TO_KEEP to 10, when the eleventh log is created, the first log is

deleted.

Controlling the logging location

At minimum, the log information for both app-server and zss are written to STDOUT such that messages are

visible in the terminal that starts Zowe and when on z/OS, the STC job log.

By default, both servers additionally log to files and the location of these files can be changed or logging to

them can be disabled. The following environment variables can be used to customize the app-server and

zss log locations by setting the values within the zowe.environments section of the Zowe configuration

file.

ZWED_NODE_LOG_DIR : Overrides the zowe configuration file value of zowe.logDirectory for

app-server, but keeps the default filenames.

ZWES_LOG_DIR : Overrides the zowe configuration file value of zowe.logDirectory for zss, but

keeps the default filenames.

ZWED_NODE_LOG_FILE : Specifies the full path to the file where logs will be written from app-server.

This overrides both ZWED_NODE_LOG_DIR and zowe.logDirectory . If the path is /dev/null

then no log file will be written. This option does not timestamp logs or keep multiple of them.

ZWES_LOG_FILE : Specifies the full path to the file where logs will be written from zss. This overrides

both ZWES_LOG_DIR and zowe.logDirectory . If the path is /dev/null then no log file will be

written. This option does not timestamp logs or keep multiple of them.

If the directory or file specified cannot be created, the server will run (but it might not perform logging

properly).

ZSS configuration

Running ZSS requires a Zowe configuration file configuration that is similar to the one used for the Zowe App

Server (by structure and property names). The attributes that are needed for ZSS (components.zss) at

minimum, are: port, crossMemoryServerName.

By default, ZSS is configured to use HTTPS with the same certificate information and port specification as

the other Zowe services. If you are looking to use AT-TLS instead, then you must set component.zss.tls

variable to false and define component.zss.agent.http section with port, ipAddresses, and attls: true

as shown below

(Recommended) Example of the agent body:

(Not recommended) Unsecure, HTTP example with AT-TLS:

ZSS 64 or 31 bit modes

Two versions of ZSS are included in Zowe, a 64 bit version and a 31 bit version. It is recommended to run the

64 bit version to conserve shared system memory but you must match the ZSS version with the version your

ZSS plugins support. Official Zowe distributions contain plugins that support both 64 bit and 31 bit, but

extensions may only support one or the other.

Verifying which ZSS mode is in use

You can check which version of ZSS you are running by looking at the logs. At startup, the message

ZWES1013I states which mode is being used, for example:

ZWES1013I ZSS Server has started. Version 2.0.0 64-bit

Or

ZWES1013I ZSS Server has started. Version 2.0.0 31-bit

Verifying which ZSS mode plugins support

You can check if a ZSS plugin supports 64 bit or 31 bit ZSS by reading the pluginDefinition.json file of the

plugin. In each component or extension you have, its manifest file will state if there are appFw plugin

entries. In each folder referenced by the appFw section, you will see a pluginDefinition.json file. Within that

file, if you see a section that says type: 'service' , then you can check its ZSS mode support. If the

service has the property libraryName64 , then it supports 64 bit. If it says libraryName31 , then it

supports 31 bit. Both may exist if it supports both. If it instead only contains libraryName , this is

ambigious and deprecated, and most likely that plugin only supports 31 bit ZSS. A plugin only supporting 31

bit ZSS must be recompiled for 64 bit support, so you must contact the developers to accomplish that.

Example: the sample angular app supports both 31 bit and 64 bit zss

Setting ZSS 64 bit or 31 bit mode

You can switch between ZSS 64 bit and 31 bit mode by setting the value

components.zss.agent.64bit to true or false in the Zowe configuration file. The value will not take

effect until next server restart.

Using AT-TLS in the App Framework

By default, both ZSS and the App server use HTTPS regardless of platform. However, some may wish to use

AT-TLS on z/OS as an alternative way to provide HTTPS. In order to do this, the servers must run in HTTP

mode instead, and utilize AT-TLS for HTTPS. The servers should never use HTTP without AT-TLS, it

would be insecure. If you want to use AT-TLS, you must have a basic knowledge of your security product

and you must have Policy Agent configured. For more information on AT-TLS and Policy Agent, see the z/OS

Knowledge Center.

There are a few requirements to working with AT-TLS:

You must have the authority to alter security definitions related to certificate management, and you

must be authorized to work with and update the Policy Agent.

AT-TLS needs a TLS rule and keyring. The next section will cover that information.

Note: Bracketed values below (including the brackets) are variables. Replace them with values relevant to

your organization. Always use the same value when substituting a variable that occurs multiple times.

Creating AT-TLS certificates and keyring using RACF

https://github.com/zowe/sample-angular-app/blob/083855582e8a82cf48abc21e15fa20bd59bfe180/pluginDefinition.json#L50-L53
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.halx001/transtls.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2.halz002/pbn_pol_agnt.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.2.0/com.ibm.zos.v2r2/en/homepage.html

In the following commands and examples you will create a root CA certificate and a server certificate signed

by it. These will be placed within a keyring which is owned by the user that runs the Zowe server. Note:

These actions can be done for various Zowe servers, but in these examples we set up ZSS for AT-TLS.

You can subsitute ZSS for another server if desired.

Key variables:

Variable Value

[ca_common_name]

[ca_label]

[server_userid]

[server_common_name]

[server_label]

[ring_name]

[output_dataset_name]

Note:

[server_userid] must be the server user ID, such as the STC user.

[server_common_name] must be the z/OS hostname that runs Zowe

�. Enter the following RACF command to generate a CA certificate:

�. Enter the follow RACF command to generate a server certificate signed by the CA certificate:

�. Enter the following RACF commands to create a key ring and connect the certificates to the key ring:

�. Enter the following RACF command to refresh the DIGTRING and DIGTCERT classes to activate your

changes:

�. Enter the following RACF commands to verify your changes:

�. Enter the following RACF commands to allow the ZSS server to use the certificates. Only issue the

RDEFINE commands if the profiles do not yet exist.

Note: These sample commands use the FACILTY class to manage certificate related authorizations. You can

also use the RDATALIB class, which offers granular control over the authorizations.

�. Enter the following RACF command to export the CA certificate to a dataset so it can be imported by the

Zowe server:

Defining the AT-TLS rule

To define the AT-TLS rule, use the sample below to specify values in your AT-TLS Policy Agent Configuration

file:

Using multiple ZIS instances

When you install Zowe, it is ready to be used for 1 instance of each component. However, ZIS can have a

one-to-many relationship with the Zowe webservers, and so you may wish to have more than one copy of

ZIS for testing or to handle different groups of ZIS plugins.

The following steps can be followed to point a Zowe instance at a particular ZIS server.

�. Create a copy of the ZIS server. You could run multiple copies of the same code by having different STC

JCLs pointing to the same LOADLIB, or run different copies of ZIS by having JCLs pointing to different

LOADLIBs.

�. Edit the JCL of the ZIS STC. In the NAME parameter specify a unique name for the ZIS server, for

example:

Where ZWESIS_MYSRV is the unique name of the new ZIS.

�. Start the new ZIS with whatever PROCLIB name was chosen.

�. Stop the Zowe instance you wish to point to the ZIS server

�. Locate the zowe configuration file for the Zowe instance, and edit the parameter

components.zss.privilegedServerName to match the name of the ZIS STC name chosen, such

as ZWESIS_MYSRV

https://docs.zowe.org/stable/user-guide/configure-xmem-server
https://docs.zowe.org/stable/user-guide/configure-xmem-server#starting-and-stopping-the-cross-memory-server-on-zos
https://docs.zowe.org/stable/user-guide/stop-zowe-zos

�. Restart the Zowe instance

�. Verify that the new ZIS server is being used by checking for the following messages in the ZWESLSTC

server job log:

ZIS status - Ok (name='ZWESIS_MYSRV ', cmsRC=0, description='Ok',

clientVersion=2)

Controlling access to apps

You can control which apps are accessible (visible) to all Zowe desktop users, and which are accessible only

to individual users. For example, you can make an app that is under development only visible to the team

working on it.

You control access by editing JSON files that list the apps. One file lists the apps all users can see, and you

can create a file for each user. When a user logs into the desktop, Zowe determines the apps that user can

see by concatenating their list with the all users list.

You can also control access to the JSON files. The files are accessible directly on the file system, and since

they are within the configuration dataservice directories, they are also accessible via REST API. We

recommend that only Zowe administrators be allowed to access the file system locations, and you control

that by setting the directories and their contents to have file permissions on z/OS that only allow the Zowe

admin group read & write access. You control who can read and edit the JSON files through the REST API by

controlling who can access the configuration dataservice objects URLs that serve the JSON files.

Enabling RBAC

By default, RBAC is disabled and all authenticated Zowe users can access all dataservices. To enable RBAC,

follow these steps:

�. To enable RBAC, set the components.zss.dataserviceAuthentication.rbac and components.app-

server.dataserviceAuthentication.rbac variables to true in the Zowe configuration file.

Controlling app access for all users

Note:

<zowe.runtimeDirectory> variable comes from the Zowe configuration file.

https://docs.zowe.org/stable/user-guide/configure-zowe-server#step-3-launch-the-zwesvstc-started-task
https://docs.zowe.org/v2.2.x/user-guide/mvd-configuration#creating-authorization-profiles

�. Enable RBAC.

�. Navigate to the following location:

�. Copy the allowedPlugins.json file and paste it in the following location:

�. Open the copied allowedPlugins.json file and perform either of the following steps:

To make an app unavailable, delete it from the list of objects.

To make an app available, copy an existing plugin object and specify the app's values in the new

object. Identifier and version attributes are required.

�. Restart the app server.

Controlling app access for individual users

�. Enable RBAC.

�. In the user's ID directory path, in the \pluginStorage directory, create

\org.zowe.zlux.bootstrap\plugins directories. For example:

�. In the /plugins directory, create an allowedPlugins.json file. You can use the default

allowedPlugins.json file as a template by copying it from the following location:

�. Open the allowedPlugins.json file and specify apps that user can access. For example:

Notes:

Identifier and version attributes are required.

When a user logs in to the desktop, Zowe determines which apps they can see by concatenating

the list of apps available to all users with the apps available to the individual user.

�. Restart the app server.

Controlling access to dataservices

To apply role-based access control (RBAC) to dataservice endpoints, you must enable RBAC for Zowe, and

then use a z/OS security product such as RACF to map roles and authorities to the endpoints. After you

apply RBAC, Zowe checks authorities before allowing access to the endpoints.

https://docs.zowe.org/v2.2.x/user-guide/start-zowe-zos
https://docs.zowe.org/v2.2.x/user-guide/start-zowe-zos

You can apply access control to Zowe endpoints and to your app endpoints. Zowe provides endpoints for a

set of configuration dataservices and a set of core dataservices. Apps can use configuration endpoints to

store and their own configuration and other data. Administrators can use core endpoints to get status

information from the App Framework and ZSS servers. Any dataservice added as part of an app plugin is a

service dataservice.

Defining the RACF ZOWE class

If you use RACF security, take the following steps define the ZOWE class to the CDT class:

�. Make sure that the CDT class is active and RACLISTed.

�. In TSO, issue the following command:

If you receive the following message, ignore it:

�. In TSO, issue the following command to refresh the CDT class:

�. In TSO, issue the following command to activate the ZOWE class:

For more information on RACF security administration, see the IBM Knowledge Center at

https://www.ibm.com/support/knowledgecenter/.

Creating authorization profiles

For users to access endpoints after you enable RBAC, in the ZOWE class you must create System

Authorization Facility (SAF) profiles for each endpoint and give users READ access to those profiles.

Endpoints are identified by URIs in the following format:

/ZLUX/plugins/<plugin_id>/services/<service>/<version>/<path>

For example:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Where the path is /users/fred .

SAF profiles have the following format:

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice#configuration-dataservice
https://docs.zowe.org/v2.2.x/user-guide/mvd-configuration#Administering-the-servers-and-plugins-using-an-API
https://www.ibm.com/support/knowledgecenter/

ZLUX.<zowe.rbacProfileIdentifier>.<servicename>.<pluginid_with_underscores>.

<service>.<HTTP_method>.<url_with_forward_slashes_replaced_by_periods>

For example, to issue a POST request to the dataservice endpoint documented above, users must have

READ access to the following profile:

ZLUX.1.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

For configuration dataservice endpoint profiles use the service code CFG . For core dataservice endpoints

use COR . For all other dataservice endpoints use SVC .

Creating generic authorization profiles

Some endpoints can generate an unlimited number of URIs. For example, an endpoint that performs a

DELETE action on any file would generate a different URI for each file, and users can create an unlimited

number of files. To apply RBAC to this type of endpoint you must create a generic profile, for example:

ZLUX.1.COR.ORG_ZOWE_FOO.BAZ.DELETE.**

You can create generic profile names using wildcards, such as asterisks (*). For information on generic

profile naming, see IBM documentation.

Configuring basic authorization

The following are recommended for basic authorization:

To give administrators access to everything in Zowe, create the following profile and give them UPDATE

access to it: ZLUX.**

To give non-administrators basic access to the site and product, create the following profile and give

them READ access to it: ZLUX.*.ORG_ZOWE_*

To prevent non-administrators from configuring endpoints at the product and instance levels, create the

following profile and do not give them access to it: ZLUX.1.CFG.**

To give non-administrators all access to user, create the following profile and give them UPDATE access

to it: ZLUX.1.CFG.*.*.USER.**

Endpoint URL length limitations

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.icha100/egnoff.htm

SAF profiles cannot contain more than 246 characters. If the path section of an endpoint URL is long enough

that the profile name exceeds the limit, the path is trimmed to only include elements that do not exceed the

limit. To avoid this issue, we recommend that appliction developers maintain relatively short endpoint URL

paths.

For information on endpoint URLs, see Dataservice endpoint URL lengths and RBAC

Multi-factor authentication configuration

Multi-factor authentication is an optional feature for Zowe.

As of Zowe version 1.8.0, the Zowe App Framework, Desktop, and all apps present in the SMP/E or

convenience builds support out-of-band MFA by entering an MFA assigned token or passcode into

password field of the Desktop login screen, or by accessing the app-server /auth REST API endpoint.

For a list of compatible MFA products, see Known compatible MFA products.

Session duration and expiration

After successful authentication, a Zowe Desktop session is created by authentication plugins.

The duration of the session is determined by the plugin used. Some plugins are capable of renewing the

session prior to expiration, while others may have a fixed session length.

Zowe is bundled with a few of these plugins:

sso-auth: Uses either ZSS or the API Mediation Layer for authentication, and ZSS for RBAC

authorization. This plugin also supports resetting or changing your password via a ZSS API. Whether

ZSS or API Mediation Layer or both are used for authentication depends upon SSO settings. Starting

with Zowe 1.28.0, SSO is enabled by default such that only API Mediation Layer is called at

authentication time. By default, the Mediation Layer calls z/OSMF to answer the authentication request.

The session created mirrors the z/OSMF session.

trivial-auth: This plugin is used for development and testing, as it always returns true for any function.

It could be used if there were specific services you did not need authentication for, while you wanted

authentication elsewhere.

When a session expires, the credentials used for the initial login are likely to be invalid for re-use, since MFA

credentials are often one-time-use or time-based.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-dataservices#limiting-the-length-of-dataservice-paths-for-rbac
https://www.ibm.com/support/knowledgecenter/SSNR6Z_2.0.0/com.ibm.mfa.v2r0.azfu100/azf_server.htm
https://www.ibm.com/support/knowledgecenter/SSNR6Z_2.0.0/com.ibm.mfa.v2r0.azfu100/azf_oobconcepts.htm
https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-zos#multi-factor-authentication-mfa

In the Desktop, Apps that you opened prior to expiration will remain open so that your work can resume after

entering new credentials.

Configuration

When you use the default Zowe SMP/E or convenience build configuration, you do not need to change Zowe

to get started with MFA.

To configure Zowe for MFA with a configuration other than the default, take the following steps:

�. Choose an App Server security plugin that is compatible with MFA. The sso-auth plugin is compatible.

�. Locate the App Server's configuration file in zowe.yaml .

�. Edit the configuration file to modify the section components.app-

server.dataserviceAuthentication .

�. Set defaultAuthentication to the same category as the plugin of choice, as seen in its

pluginDefinition.json file. For example:

sso-auth: "saf"

trivial-auth: "fallback"

The following is an example configuration for sso-auth , as seen in a default installation of Zowe:

Administering the servers and plugins using an API

The App Server has a REST API to retrieve and edit both the App Server and ZSS server configuration

values, and list, add, update, and delete plugins. Most of the features require RBAC to be enabled and for

your user to have RBAC access to utilize these endpoints. For more information see documentation on how

to use RBAC

The API returns the following information in a JSON response:

API Description

/server (GET)
Returns a list of accessible server endpoints for

the Zowe App Server.

https://docs.zowe.org/stable/user-guide/mvd-configuration.html#controlling-access-to-dataservices

API Description

/server/config (GET)
Returns the Zowe App Server configuration

which follows this specification.

/server/log (GET)
Returns the contents of the Zowe App Server

log file.

/server/loglevels (GET)
Returns the verbosity levels set in the Zowe App

Server logger.

/server/environment (GET)

Returns Zowe App Server environment

information, such as the operating system

version, node server version, and process ID.

/server/reload (GET)
Reloads the Zowe App Server. Only available in

cluster mode.

/server/agent (GET)
Returns a list of accessible server endpoints for

the ZSS server.

/server/agent/config (GET)
Returns the ZSS server configuration which

follows this specification.

/server/agent/log (GET) Returns the contents of the ZSS log file.

/server/agent/loglevels (GET) Returns the verbosity levels of the ZSS logger.

/server/agent/environment (GET) Returns ZSS environment information.

/server/logLevels/name/:componentName/level/:level

(POST)

Specify the logger that you are using and a

verbosity level.

/plugins (GET)
Returns a list of all plugins and their

dataservices.

https://github.com/zowe/zlux-app-server/blob/v2.x/master/schemas/app-server-config.json
https://github.com/zowe/zss/blob/v2.x/staging/schemas/zss-config.json

API Description

/plugins (PUT)
Adds a new plugin or upgrades an existing

plugin. Only available in cluster mode (default).

/plugins/:id (DELETE)
Deletes a plugin. Only available in cluster mode

(default).

Swagger API documentation is provided in the <zowe.runtimeDirectory>/components/app-

server/share/zlux-app-server/doc/swagger/server-plugins-api.yaml file. To see it in HTML

format, you can paste the contents into the Swagger editor at https://editor.swagger.io/.

Note: The "agent" end points interact with the agent specified in the zowe configuration file. By default this

is ZSS.

https://editor.swagger.io/

Version: v2.2.x LTS

Configuring Zowe CLI environment variables

This section explains how to configure Zowe CLI using environment variables.

By default, Zowe CLI configuration is stored on your computer in the C:\Users\user01\.zowe directory.

The directory includes log files, profile information, and installed CLI plug-ins. When troubleshooting, refer to

the logs in the imperative and zowe folders.

Setting the CLI home directory

You can set the location on your computer where Zowe CLI creates the .zowe directory, which contains log

files, profiles, and plug-ins for the product:

Environment

Variable
Description Values Default

ZOWE_CLI_HOME
Zowe CLI home

directory location

Any valid path on your

computer

Your computer default

home directory

Setting CLI log levels

You can set the log level to adjust the level of detail that is written to log files:

Important! Setting the log level to TRACE or ALL might result in "sensitive" data being logged. For example,

command line arguments will be logged when TRACE is set.

Environment Variable Description Values Default

ZOWE_APP_LOG_LEVEL
Zowe CLI logging

level

Log4JS log levels (OFF, TRACE,

DEBUG, INFO, WARN, ERROR,

FATAL)

WARN

Environment Variable Description Values Default

ZOWE_IMPERATIVE_LOG_LEVEL
Imperative CLI

Framework

logging level

Log4JS log levels (OFF, TRACE,

DEBUG, INFO, WARN, ERROR,

FATAL)

WARN

Setting CLI daemon mode properties

By default, the CLI daemon mode binary creates or reuses a file in the user's home directory each time a

Zowe CLI command runs. In some cases, this behavior might be undesirable. For example, the home

directory resides on a network drive and has poor file performance. To change the location that the daemon

uses, set the environment variables that are described in the following table:

Platform Environment Variable Description Values Defaul

All ZOWE_DAEMON_DIR

Lets you override the

complete path to the

directory that will hold

daemon files related to

this user. The directory

can contain the following

files:

daemon.lock

daemon.sock

daemon_pid.json

Any valid

path on

your

computer

<your_home_dir>/.z

Examples:

Windows:

%HOMEPATH%\.zo

Linux: $HOME/.zo

Windows

(only)
ZOWE_DAEMON_PIPE

Lets you override the last

two segments of the

name of the

communication pipe

between the daemon

executable (.exe) and the

daemon.

Any valid

path on

your

computer

\\.\pipe\%USERNAME

Version: v2.2.x LTS

Configuring the Zowe APIs

Review the security considerations for Zowe APIs and learn how to prevent the Denial of Service (DoS)

attacks.

The default configuration before Zowe version 1.14.0 contains Data sets and Unix files and Jobs API

microservices which might be vulnerable to DoS attacks in the form of slow https attacks. You can add

additional configuration to the start script of these components in order to prevent resource starvation via

slow https attacks.

To update the configuration of the Data sets and Unix files component, modify the start.sh script

within the runtime component directory /zowe/runtime/components/files-api/bin .

To update the configuration of the Jobs component, modify the start.sh script within the runtime

component directory /zowe/runtime/components/jobs-api/bin .

Ensure that the -Dserver.connection-timeout=8000 parameter is set. This parameter specifies how

long the component waits to receive all the required information from the client that makes a request.

See a snippet of a configured start.sh script for the Jobs component as follows:

In version 1.14.0 and later, the preceding snippet reflects the default configuration.

Version: v2.2.x LTS

Advanced Gateway features configuration

As a system programmer who wants to configure advanced Gateway features of the API Mediation Layer,

you can customize Gateway parameters by modifying either of the following files:

<Zowe runtime directory>/components/gateway/bin/start-gateway.sh

<Zowe runtime directory>/components/gateway/manifest.yaml

zowe.yaml

The parameters begin with the -D prefix, similar to all the other parameters in the file.

Note: Restart Zowe to apply changes to the parameter.

Follow the procedures in the following sections to customize Gateway parameters according to your

preferences:

Prefer IP Address for API Layer services

SAF as an Authentication provider

Enable JWT token refresh endpoint

Change password with SAF provider

Gateway retry policy

Gateway client certificate authentication

Gateway timeouts

CORS handling

Encoded slashes

Connection limits

Routed instance header

Distributed load balancer cache

Replace or remove catalog with another service

API Mediation Layer as a standalone component

SAF resource checking

SAF as an Authentication provider

By default, the API Gateway uses z/OSMF as an authentication provider. It is possible to switch to SAF as the

authentication provider instead of z/OSMF. The intended usage of SAF as an authentication provider is for

systems without z/OSMF. If SAF is used and the z/OSMF is available on the system, the created tokens are

not accepted by z/OSMF. Use the following procedure to switch to SAF.

Follow these steps:

�. Open the zowe.yaml configuration file.

�. Find or add the property components.gateway.apiml.security.auth.provider and set the

value to saf .

�. Restart Zowe&trade.

Authentication requests now utilize SAF as the authentication provider. API ML can run without z/OSMF

present on the system.

Enable JWT token refresh endpoint

Enable the /gateway/api/v1/auth/refresh endpoint to exchange a valid JWT token for a new token

with a new expiration date. Call the endpoint with a valid JWT token and trusted client certificate. In case of

z/OSMF authentication provider, enable API Mediation Layer for passticket generation and configure z/OSMF

APPLID. Configure Passtickets

Follow these steps:

�. Open the file zowe.yaml .

�. Configure the following properties:

components.gateway.apiml.security.allowtokenrefresh: true

Add this property to enable the refresh endpoint.

components.gateway.apiml.security.zosmf.applid

If you use z/OSMF as an authentication provider, provide a valid APPLID . The API ML generates a

passticket for the specified APPLID and subsequently uses this passticket to authenticate to

z/OSMF. The default value in the installation of z/OSMF is IZUDFLT .

�. Restart Zowe.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-passtickets

Change password with SAF provider

Update the user password using the SAF Authentication provider. To use this functionality, add the

parameter newPassword on the login endpoint /gateway/api/v1/auth/login . The Gateway service

returns a valid JWT with the response code 204 as a result of successful password change. The user is

then authenticated and can consume APIs through the Gateway. If it is not possible to change the password

for any reason, the response code is 401 .

This feature is also available in the API Catalog.

This feature is also available in the API Catalog.

Use a POST REST call against the URL /gateway/api/v1/auth/login :

Note: It is a common practice to set the limit for changing the password in the ESM. This value is set by the

parameter MINCHANGE for PASSWORD . The password can be changed once. Subsequently, it is

necessary to wait the specified time period before changing the password again.

Example:

MINCHANGE=120

where:

120

Specifies the number of days before the password can be reset

Change password with z/OSMF provider

Update the user password using the z/OSMF Authentication provider. To use this functionality, add the

parameter newPassword on the login endpoint /gateway/api/v1/auth/login . The Gateway service

returns a valid JWT with the response code 204 as a result of successful password change. The user is

then authenticated and can consume APIs through the Gateway. If it is not possible to change the password

for any reason, the response code is 401 .

This feature is also available in the API Catalog.

Use a POST REST call against the URL /gateway/api/v1/auth/login :

Note: In order to use the password change functionality via z/OSMF, it is necessary to install the PTF for

APAR PH34912.

Gateway retry policy

To change the Gateway retry policy, edit properties in the <Zowe install

directory>/components/gateway/bin/start.sh file:

All requests are disabled as the default configuration for retry with one exception: the server retries GET

requests that finish with status code 503 . To change this default configuration, include the following

parameters:

ribbon.retryableStatusCodes

Provides a list of status codes, for which the server should retry the request.

Example: -Dribbon.retryableStatusCodes="503, 404"

ribbon.OkToRetryOnAllOperations

Specifies whether to retry all operations for this service. The default value is false . In this case, only

GET requests are retried if they return a response code that is listed in

ribbon.retryableStatusCodes . Setting this parameter to true enables retry requests for all

methods which return a response code listed in ribbon.retryableStatusCodes .

Note: Enabling retry can impact server resources due to request body buffering.

ribbon.MaxAutoRetries

Specifies the number of times a failed request is retried on the same server. This number is multiplied

with ribbon.MaxAutoRetriesNextServer . The default value is 0 .

ribbon.MaxAutoRetriesNextServer

Specifies the number of additional servers that attempt to make the request. This number excludes the

first server. The default value is 5 .

Gateway client certificate authentication

Use the following procedure to enable the feature to use a client certificate as the method of authentication

for the API Mediation Layer Gateway.

Follow these steps:

�. Open the zowe.yaml configuration file.

�. Configure the following properties:

components.gateway.apiml.security.x509.enabled

This property is the global feature toggle. Set the value to true to enable client certificate

functionality.

components.gateway.apiml.security.zosmf.applid

When z/OSMF is used as an authentication provider, provide a valid APPLID to allow for client

certificate authentication. The API ML generates a passticket for the specified APPLID and

subsequently uses this passticket to authenticate to z/OSMF. The default value in the installation of

z/OSMF is IZUDFLT .

Note: The following steps are only required if the ZSS hostname or default Zowe user name are

altered:

�. Change the following property if user mapping is provided by an external API:

components.gateway.apiml.security.x509.externalMapperUrl

Note: Skip this step if user mapping is not provided by an external API.

The API Mediation Gateway uses an external API to map a certificate to the owner in SAF. This property

informs the Gateway about the location of this API. ZSS is the default API provider in Zowe. You can

provide your own API to perform the mapping. In this case, it is necessary to customize this value.

The following URL is the default value for Zowe and ZSS:

�. Add the following property if the Zowe runtime userId is altered from the default ZWESVUSR :

components.gateway.apiml.security.x509.externalMapperUser

Note: Skip this step if the Zowe runtime userId is not altered from the default ZWESVUSR .

To authenticate to the mapping API, a JWT is sent with the request. The token represents the user that

is configured with this property. The user authorization is required to use the IRR.RUSERMAP resource

within the FACILITY class. The default value is ZWESVUSR . Permissions are set up during

installation with the ZWESECUR JCL or workflow.

If you customized the ZWESECUR JCL or workflow (the customization of zowe runtime user: // SET

ZOWEUSER=ZWESVUSR * userid for Zowe started task) and changed the default USERID,

create the components.gateway.apiml.security.x509.externalMapperUser property and

set the value by adding a new line as in the following example:

Example:

�. Restart Zowe&trade .

Gateway timeouts

Use the following procedure to change the global timeout value for the API Mediation Layer instance.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.gateway.timeoutmillis , and set the

value to the desired value.

�. Restart Zowe&trade .

If you require finer control, you can edit the <Zowe install

directory>/components/gateway/bin/start.sh , and modify the following properties:

apiml.gateway.timeoutMillis

This property defines the global value for http/ws client timeout.

Add the following properties to the file for the API Gateway:

Note: Ribbon configures the client that connects to the routed services.

ribbon.connectTimeout

Specifies the value in milliseconds which corresponds to the period in which API ML should establish a

single, non-managed connection with the service. If omitted, the default value specified in the API ML

Gateway service configuration is used.

ribbon.readTimeout

Specifies the time in milliseconds of inactivity between two packets in response from this service to API

ML. If omitted, the default value specified in the API ML Gateway service configuration is used.

ribbon.connectionManagerTimeout

The HttpClient employs a special entity to manage access to HTTP connections called by the HTTP

connection manager. The purpose of an HTTP connection manager is to serve as a factory for new

HTTP connections, to manage the life cycle of persistent connections, and to synchronize access to

persistent connections. Internally, the connections that are managed serve as proxies for real

connections. ConnectionManagerTimeout specifies a period during which managed connections

with API ML should be established. The value is in milliseconds. If omitted, the default value specified in

the API ML Gateway service configuration is used.

CORS handling

You can enable the Gateway to terminate CORS requests for itself and also for routed services. By default,

Cross-Origin Resource Sharing (CORS) handling is disabled for Gateway routes gateway/api/v1/** and

for individual services. After enabling the feature as stated in the prodecure below, API Gateway endpoints

start handling CORS requests and individual services can control whether they want the Gateway to handle

CORS for them through the Custom Metadata parameters.

When the Gateway handles CORS on behalf of the service, it sanitizes defined headers from the

communication (upstream and downstream). Access-Control-Request-Method,Access-Control-

Request-Headers,Access-Control-Allow-Origin,Access-Control-Allow-Methods,Access-

Control-Allow-Headers,Access-Control-Allow-Credentials,Origin The resulting request to

the service is not a CORS request and the service does not need to do anything extra. The list can be

overridden by specifying different comma-separated list in the property

components.gateway.apiml.service.ignoredHeadersWhenCorsEnabled in zowe.yaml

Additionally, the Gateway handles the preflight requests on behalf of the service when CORS is enabled in

Custom Metadata, replying with CORS headers:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata
https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata

Access-Control-Allow-Methods: GET,HEAD,POST,DELETE,PUT,OPTIONS

Access-Control-Allow-Headers: origin, x-requested-with

Access-Control-Allow-Credentials: true

Access-Control-Allow-Origin: *

Alternatively, list the origins as configured by the service, associated with the value

customMetadata.apiml.corsAllowedOrigins in Custom Metadata.

If CORS is enabled for Gateway routes but not in Custom Metadata, the Gateway does not set any of the

previously listed CORS headers. As such, the Gateway rejects any CORS requests with an origin header for

the Gateway routes.

Use the following procedure to enable CORS handling.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.service.corsEnabled and set the value

to true .

�. Restart Zowe&trade .

Requests through the Gateway now contain a CORS header.

Encoded slashes

By default, the API Mediation Layer accepts encoded slashes in the URL path of the request. If you are

onboarding applications which expose endpoints that expect encoded slashes, it is necessary to keep the

default configuration. We recommend that you change the property to false if you do not expect the

applications to use the encoded slashes.

Use the following procedure to reject encoded slashes.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.service.allowEncodedSlashes and set

the value to false .

�. Restart Zowe&trade .

https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata
https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata

Requests with encoded slashes are now rejected by the API Mediation Layer.

Connection limits

By default, the API Gateway accepts up to 100 concurrent connections per route, and 1000 total concurrent

connections. Any further concurrent requests are queued until the completion of an existing request. The

API Gateway is built on top of Apache HTTP components that require these two connection limits for

concurrent requests. For more information, see Apache documentation.

Use the following procedure to change the number of concurrent connections.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.server.maxConnectionsPerRoute and set the

value to an appropriate positive integer.

�. Find or add the property components.gateway.server.maxTotalConnections and set the value

to an appropriate positive integer.

Routed instance header

The API Gateway can output a special header that contains the value of the instance ID of the API service

that the request has been routed to. This is useful for understanding which service instance is being called.

The header name is X-InstanceId , and the sample value is discoverable-

client:discoverableclient:10012 . This is identical to instanceId property in the registration of

the Discovery service.

Use the following procedure to output a special header that contains the value of the instance ID of the API

service.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property with value

components.gateway.apiml.routing.instanceIdHeader:true .

�. Restart Zowe.

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e393

Distributed load balancer cache

You can choose to distribute the load balancer cache between instances of the API Gateway. To distribute

the load balancer cache, it is necessary that the caching service is running. Gateway service instances are

reuqired to have the same DN (Distinguished name) on the server certificate.

Use the following procedure to distribute the load balancer cache between instances of the API Gateway.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property with value components.gateway.apiml.loadBalancer.distribute:

true .

�. Restart Zowe.

Replace or remove the Catalog with another service

By default, the API Mediation Layer contains API Catalog as a service showing available services. As the API

Mediation Layer can be successfully run without this component it is possible to replace or remove the

service from the Gateway home page and health checks. The following section describes the behavior of the

Gateway home page and health checks.

The default option displays the API Catalog.

A value can also be applied to components.gateway.apiml.catalog.serviceId .

Examples:

none

Nothing is displayed on the Gateway home page and the Catalog is removed from

/application/health

alternative-catalog

An alternative to the API Catalog is displayed

metrics-dashboard

A possible dashboard that could appear in place of the API Catalog

Notes:

If the application contains the homePageUrl and statusPageRelativeUrl , then the full set of

information is displayed.

If the application contains the homePageUrl the link is displayed without the UP information.

If the application contains the statusPageRelativeUrl then UP or DOWN is displayed based on

the statusPage without the link.

Use the following procedure to change or replace the Catalog service.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.catalog.serviceId . Set the value with

the following options:

Set the value to none to remove the Catalog service.

Set the value to the ID of the service that is onboarded to the API Mediation Layer.

API Mediation Layer as a standalone component

You can start the API Mediation Layer independently of other Zowe components. By default, the Gateway,

Zowe System Services, and Virtual Desktop start when Zowe runs. To limit consumed resources when the

Virtual Desktop or Zowe System Services are not required, it is possible to specify which components start

in the context of Zowe. No change is required during the installation process to support this setup.

Once Zowe is installed, use the following procedure to limit which components start.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.*.enabled and set this property to false for all

components that should not be started.

�. Restart Zowe&trade .

SAF Resource Checking

The API ML can check for the authorization of the user on certain endpoints. Access to a SAF resource is

checked with ESM.

Verification of the SAF resource is provided by the following three providers:

endpoint

This is the highest priority provider, such as a REST endpoint call (ZSS or similar one). This option is

disabled by default. In Zowe, ZSS has the API to check for SAF resource authorization.

native

The Native JZOS classes from Java are used to determine SAF resource access. This is the default

provider.

dummy

This is the lowest priority provider. This is the dummy implementation and is defined in a file.

Note: Verification of the SAF resource uses the first available provider based on the specified priority. The

default configuration resolves to the native provider.

You can select a specific provider by specifying the

components.gateway.apiml.security.authorization.provider key in the zowe.yaml file.

Use the parameter value to strictly define a provider. If verification is disabled, select the endpoint option.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property components.gateway.apiml.security.authorization.provider

and set desired value.

�. Restart Zowe&trade .

Examples:

Note: To configure the endpoint provider, add the following additional property:

components.gateway.apiml.security.authorization.endpoint.enabled: true

To use the endpoint provider, customize the URL corresponding to the SAF resource authorization. By

default, the ZSS API is configured and used.

Follow these steps:

�. Open the file zowe.yaml .

�. Find or add the property

components.gateway.apiml.security.authorization.endpoint.url and set desired value.

The default value for ZSS API is

https://${ZWE_haInstance_hostname}:${GATEWAY_PORT}/zss/api/v1/saf-auth

�. Restart Zowe&trade .

Checking providers

REST endpoint call

The REST provider calls the external API to retrieve information about access rights. To enable the feature

outside of the mainframe, such as when running in Docker, you can use a REST endpoint call using the GET

method:

Method: GET

URL: {base path}/{userId}/{class}/{entity}/{level}

Response:

Note: For more information about this REST endpoint call, see ZSS implementation.

Native

The Native provider is the easiest approach to use the SAF resource checking feature on the mainframe.

Enable this provider when classes com.ibm.os390.security.PlatformAccessControl and

com.ibm.os390.security.PlatformReturned are available on the classpath. This approach uses the

following method described in the IBM documentation: method.

Note: Ensure that the version of Java on your system has the same version of classes and method

signatures.

Dummy implementation

https://github.com/zowe/zss/blob/master/c/authService.c
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.zsecurity.api.80.doc/com.ibm.os390.security/com/ibm/os390/security/PlatformAccessControl.html?view=kc#checkPermission-java.lang.String-java.lang.String-java.lang.String-int-

The Dummy provider is for testing purpose outside of the mainframe.

Create the file saf.yml and locate it in the folder, where is application running or create file mock-

saf.yml in the test module (root folder). The highest priority is to read the file outside of the JAR. A file

(inner or outside) has to exist.

The following YAML presents the structure of the file:

Notes:

Classes and resources are mapped into a map, user IDs into a list.

The load method does not support formatting with dots, such as shown in the following example:

Example: {CLASS}.{RESOURCE} Ensure that each element is separated.

The field safAccess is not required to define an empty file without a definition.

Classes and resources cannot be defined without the user ID list.

When a user has multiple definitions of the same class and resource, only the most privileged access

level loads.

Version: v2.2.x LTS

Discovery Service configuration parameters

Zowe runtime configuration parameters

As an application developer who wants to run Zowe, set the following parameters during the Zowe runtime

configuration by modifying the <Zowe install

directory>/components/discovery/bin/start.sh file:

API ML configuration

Eureka configuration

API ML configuration

apiml.discovery.userid

The Discovery service in HTTP mode protects it's endpoints with basic authentication instead of client

certificate. This parameter specifies the userid. The default value is eureka .

apiml.discovery.password

This parameter specifies the password for the basic authentication used by the Discovery Service in

HTTP mode. The default value is password .

apiml.discovery.allPeersUrls

This parameter contains the list of URLs of the Discovery Service in case of multiple instances of the

service on different host. Example:

Note: Each URL within the list must be separated by a comma.

apiml.discovery.staticApiDefinitionsDirectories

The static definition directories can be specified as a parameter at startup and will be scanned by the

Discovery Service. These directories contains the definitions of static services. Example:

apiml.discovery.serviceIdPrefixReplacer

This parameter is used to modify the service ID of a service instance, before it registers to API ML.

Using this parameter ensures compatibility of services that use a non-conformant organization prefix

with v2, based on Zowe v2 conformance. The value of the

*apiml.discovery.serviceIdPrefixReplacer parameter is represented as a tuple that

contains two strings, separated by a comma. The format of this parameter contains the following two

elements:

First, the prefix that you want to replace in the service ID

Second, the new prefix that will be replaced

Example: The value of the parameter has the following format:

oldServiceIdPrefix,newServiceIdPrefix

Set this parameter in your Zowe YAML configuration (typically zowe.yaml) by defining

configs.apiml.discovery.serviceIdPrefixReplacer . For example, defining it globally:

Or defining it only for lpar1 high availability instance:

Eureka configuration

The Discovery Service contains a configuration for implementing the client-side service discovery and for

defining a Eureka Server for service registry. Such configuration is shown below:

eureka.client.registerWithEureka If we make this property as true then while the server starts the

inbuilt client will try to register itself with the Eureka server.

eureka.client.registerWithEureka The inbuilt client will try to fetch the Eureka registry if we configure

this property as true.

eureka.client.serviceUrl.defaultZone A fallback value that provides the Eureka service URL for any

client that does not express a preference (in other words, it is a useful default).

More information about the other Eureka parameters can be found in the Spring Cloud Netflix Eureka

documentation.

https://cloud.spring.io/spring-cloud-netflix/multi/multi__service_discovery_eureka_clients.html

Version: v2.2.x LTS

API Gateway configuration parameters

As an application developer who wants to change the default configuration of the API Mediation Layer, set

the following parameters by modifying the <Zowe install

directory>/components/gateway/bin/start.sh file:

Runtime configuration

Environment variables

Service configuration

Zuul configuration

Hystrix configuration

AT-TLS

Runtime configuration

This section describes runtime configuration properties.

apiml.service.hostname

This property is used to set the API Gateway hostname.

apiml.service.port

This property is used to set the API Gateway port.

apiml.service.discoveryServiceUrls

This property specifies the Discovery Service URL used by the service to register to Eureka.

apiml.service.preferIpAddress

Set the value of this property to true to advertize a service IP address instead of its hostname.

Notes:

If you set this property to true on the Discovery Service, ensure that you modify the value of

discoveryLocations: to use the IP address instead of the hostname. Failure to modify the

discoveryLocations: value prevents Eureka from detecting registered services. As a result,

the available-replicas is empty.

Enabling this property may also cause issues with SSL certificates and Subject Alternative Name

(SAN).

apiml.cache.storage.location

This property specifies the location of the EhCache used by Spring.

Note: It is necessary for the API ML process to have write access to the cache location.

apiml.security.ssl.verifySslCertificatesOfServices

This parameter makes it possible to prevent server certificate validation.

Important! Ensure that this parameter is set to true in production environments. Setting this

parameter to false in production environments significantly degrades the overall security of the

system.

apiml.security.auth.zosmfServiceId

This parameter specifies the z/OSMF service id used as authentication provider. The service id is

defined in the static definition of z/OSMF. The default value is zosmf .

apiml.zoweManifest

This parameter lets you view the Zowe version by using the /version endpoint. To view the version

requires setting up the launch parameter of the API Gateway - apiml.zoweManifest with a path to

the Zowe build manifest.json file. This file is usually located in the root folder of Zowe build. If the

encoding of manifest.json file is different from UTF-8 and IBM1047, ensure that you set up the

launch parameter of API Gateway - apiml.zoweManifestEncoding with correct encoding.

Note: It is also possible to know the version of API ML and Zowe (if API ML used as part of Zowe), using

the /gateway/api/v1/version endpoint in the API Gateway service in the following format:

apiml.security.auth.tokenProperties.expirationInSeconds

This property is relevant only when the JWT is generated by the API Mediation Layer. API ML generation

of the JWT occurs in the following cases:

z/OSMF is only available as an older version which does not support JWT tokens

The SAF provider is used

To use a custom configuration for z/OSMF which changes the expiration of the LTPA token, it is

necessary to also set the expiration in this parameter.

Note: The default value is 8 hours which mimicks the 8 hour default expiration of the LTPA token in

z/OSMF.

Follow these steps:

i. Open the file <Zowe install directory>/components/gateway/bin/start.sh .

ii. Find the line that contains -cp ${ROOT_DIR}"/components/gateway/gateway-

service.jar":/usr/include/java_classes/IRRRacf.jar .

iii. Before this line, add a new line in the following format:

where:

{expirationTimeInSeconds}

refers to the specific time before expiration

iv. Restart Zowe&trade.

ibm.serversocket.recover

In a multiple network stack environment (CINET), when one of the stacks fails, no notification or Java™

exception occurs for a Java program that is listening on an INADDR_ANY socket. When new stacks

become available, the Java application does not become aware of these stacks until the application

rebinds the INADDR socket. By default, this parameter is enabled in the API Gateway. As a result, the

NetworkRecycledException exception is thrown to the application to allow it to either fail or

attempt to rebind. For more information, see the IBM documentation.

java.io.tmpdir

This property is a standard Java system property which is used by the disk-based storage policies. This

property determines where the JVM writes temporary files, including those written by these storage

policies. The default value is typically /tmp on Unix-like platforms.

https://www.ibm.com/support/knowledgecenter/SSYKE2_7.1.0/com.ibm.java.zos.71.doc/user/cinet.html

spring.profiles.include

This property can be used to unconditionally add active profiles. For more information, see the Spring

documentation.

server.maxTotalConnections and server.maxConnectionsPerRoute

These two properties are used to set the number of concurrent connections. Further connection

requests that put the number of connections over either of these limits are queued until an existing

connection completes. The API Gateway is built on top of Apache HTTP components that require these

two connection limits for concurrent requests. For more information, see Apache documentation.

Environment variables

You can add additional environment variables to store configuration properties for the API Mediation Layer.

Note: Use either dot separation, or the UPPER_CASE naming convention when adding an additional

environmental variable.

One use case for adding an environmental variable is to change the authentication provider. The SAF

Authentication Provider allows the API Gateway to authenticate directly with the z/OS SAF provider

that is installed on the system. The user needs a SAF account to authenticate. Use this procedure to

customize authentication provider.

Follow the steps:

�. Open the file <Zowe instance directory>/instance.env .

�. Add a new line with the following property:

apiml.security.auth.provider=saf .

Service configuration

For information about service configuration parameters, see Onboarding a REST API service with the Plain

Java Enabler (PJE).

Zuul configuration

https://docs.spring.io/spring-boot/docs/1.2.0.M1/reference/html/boot-features-profiles.html#boot-features-adding-active-profiles
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e393
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler

As a provider for routing and filtering, the API Gateway contains a Zuul configuration as shown in the

following example.

Example:

The Zuul configuration allows the API Gateway to act as a reverse proxy server through which API requests

can be routed from clients on the northbound edge to z/OS servers on the southbound edge.

Note: For more information about Zuul configuration parameters, see the Spring Cloud Netflix

documentation.

Hystrix configuration

The API Gateway contains a Hystrix configuration as shown in the following example.

Example:

Hystrix is a latency and fault tolerance library designed to isolate points of access to remote systems,

services and third-party libraries, stop cascading failure, and enable resilience in complex distributed

systems where failure is inevitable.

Note: For more information about Hystrix configuration parameters, see the Netflix - Hystrix documentation.

AT-TLS

The communication server on z/OS provides a functionality to encrypt HTTP communication for on-platform

running jobs. This functionality is refered to as Application Transparent Transport Layer Security (AT-TLS).

Starting with Zowe version 1.24, it is possible to leverage AT-TLS within the API Mediation Layer. Each API

ML component can run with AT-TLS rules applied. Some components, such as the Discovery service, can be

made AT-TLS aware by enabling the AT-TLS profile, whereby TLS information can be utilized. Such

information could be a client certificate. To enable the AT-TLS profile and disable the TLS application in API

ML, update zowe.yaml with following values under the respective component in the components

section:

While API ML can not handle TLS on its own, the Mediation Layer needs information about the server

certificate that is defined in the AT-TLS rule. Update the zowe.yaml file for each respective APIML

component in the components sections with the path to the SAF Key ring from the AT-TLS rule and

specify the alias that is used for Inbound communication:

https://cloud.spring.io/spring-cloud-netflix/multi/multi__router_and_filter_zuul.html
https://github.com/Netflix/Hystrix/wiki/Configuration#execution.isolation.strategy

Note: This procedure does not configure AT-TLS on z/OS, but rather enables API ML to work with AT-TLS in

place.

Version: v2.2.x LTS

Extending Zowe

Zowe is designed as an extensible tools platform. One of the Zowe architecture goals is to provide

consistent interoperability between all Zowe components including extensions. The Zowe Conformance

Program defines the criteria to help accomplish the aforementioned goal. By satisfying the Zowe

Conformance Program criteria, extension providers are assured that their software remains functional

throughout the Zowe release cycle. For more information, see the Zowe Conformance Program.

Zowe can be extended in the following ways:

Extend Zowe CLI

Extend Zowe API Mediation Layer

Dynamic API registration

Static API registration

Add a plug-in to the Zowe Desktop

Extend Zowe Explorer

To help Zowe extenders better understand how extensions are developed and deployed, we provide a set of

sample extensions. These sample extensions contain the necessary boilerplate project setup, application

code, and installation scripts to jumpstart the extension development and deployment to Zowe.

Note: For more information on the architecture of Zowe, see Zowe Architecture.

Extend Zowe CLI

Zowe CLI extenders can build plug-ins that provide new commands. Zowe CLI is built using Node.js and is

typically run on a machine other than z/OS, such as a PC, where the CLI can be driven through a terminal or

command prompt, or on an automation machine such as a DevOps pipeline orchestrator.

For more information about extending the Zowe CLI, see Developing a new plug-in. This article includes a

sample plug-in that is provided with the tutorial; see Installing the sample plug-in.

Extend Zowe API Mediation Layer

https://docs.zowe.org/v2.2.x/extend/zowe-conformance-program
https://docs.zowe.org/v2.2.x/getting-started/zowe-architecture
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-developing-a-plugin
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-installing-sample-plugin

Zowe API Mediation Layer extenders can build and onboard additional API services to the API ML

microservices ecosystem. REST APIs can register with the API Mediation Layer, which makes them available

in the API Catalog and for routing through the API Gateway.

To register a z/OS service with the API Mediation Layer, there are two approaches:

Dynamic API registration

Static API registration

For information about how to onboard REST APIs, see the Onboarding Overview.

To streamline the process of onboarding new REST API services to the API Mediation Layer, see Onboarding

a REST API service with the YAML Wizard

Dynamic API registration

Registration of a REST API service to the API ML is performed through a call to the Discovery Service by

sending registration data and metadata for the service being registered. Registration requires that the z/OS

service must know the web address of the API ML Discovery Service. When Dynamic registration is

performed, the service that performs the registration must periodically send heartbeat requests to the

Discovery Service for each registered service instance. These heartbeat requests serve to renew the

corresponding service instance registration with API ML. These requests enable the Discovery Service to

monitor the availability of registered service instances. Services that are registered dynamically display the

status of the service in the API Catalog after initial service registration.

For more information about how to build a service which is able to register, see the Onboarding Overview.

Static API registration

For services that cannot be modified to be dynamically discoverable, it is possible onboard them to the API

ML by providing the API ML a static definition file with API service details. This registration method does not

require modifications to the existing API service code. For more information, see Onboard a REST API

without code changes required. Unlike services that use Dynamic API registration, the status of services

onboarded through Static API registration is not displayed in the API Catalog.

Add a plug-in to the Zowe Desktop

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-wizard
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-static-definition

The Zowe Desktop allows a user to interact with z/OS applications through a web browser. The Desktop is

served by the Zowe Application Framework Server on z/OS, also known as Z Lightweight User Experience

(ZLUX). The Zowe desktop comes with a set of default applications. You can extend it to add new

applications. For more information, see Developing for Zowe Application Framework.

The Zowe Desktop is an angular application that allows native plug-ins to be built that provide for a high level

of interoperability with other desktop components. The React JavaScript toolkit is also supported.

Additionally, you can include an existing web application in the Zowe Desktop using an iframe.

Notes: For more information, see the following samples:

Sample iframe App.

Sample Angular App.

Sample React App.

Extend Zowe Explorer

Zowe Explorer provides extension APIs that assist third party extenders to create extensions that access

Zowe Explorer resource entities to enrich the user experience. There are many ways Zowe Explorer can be

extended to support many different use cases.

For the kinds of extensions that are supported and how to get started with extending Zowe Explorer, see

Extensions for Zowe Explorer.

Sample extensions

Sample Zowe API and API Catalog extension

The repository https://github.com/zowe/sample-node-api contains a sample Zowe extension with a node

server providing sample APIs for looking at cars in a dealership. For more information, see sample-node-api.

Sample Zowe Desktop extension

The repository https://github.com/zowe/sample-trial-app contains a sample Zowe extension with a node

server providing a web page that gives a user interface to the APIs included with the API sample above.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-extendingzlux
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-extendingzlux#sample-iframe-app
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-extendingzlux#sample-angular-app
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-extendingzlux#sample-react-app
https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Extending.md
https://github.com/zowe/sample-node-api
https://github.com/zowe/sample-node-api/blob/master/README.md
https://github.com/zowe/sample-trial-app

Version: v2.2.x LTS

Packaging z/OS extensions

You can extend Zowe in multiple ways. You may extend Zowe with microservices, which may start a new

service within Zowe. You can also create Zowe App Framework plug-ins to provide users with a UI.

Before you start, review the following terms:

component:

Component refers to the most generic way to describe a program which can work within Zowe. It can be

a microservice, a Zowe App Framework plug-in, or even just a shared program to be used by other

Zowe components. This is also the generic word when referring to both Zowe core components and

extensions. In most of the cases described in this topic, this terminology does not include programs

running on the client side, like Zowe CLI plug-in or Zowe Explorer (VSCode extension).

extension

Extension is similar to component but excludes Zowe core components. It is recommended that you

install all Zowe extensions into a shared extension directory.

Zowe server component package format

You can package Zowe components (extensions) into various formats. You can package them as a stand-

alone PAX, ZIP, or TAR file. You can also bundle and ship your Zowe extension(s) within another product.

A typical component package, for example, jobs-api-package-1.0.4.zip , consists of the following

files and directories:

manifest.yaml

Refers to the Zowe component manifest file. You can find detailed definition of manifest in Server

Component Manifest File Reference.

schema.json

An example filename of the json schema file specified by the manifest property schemas.configs as

detailed in Server Component Manifest File Reference. The file details the parameters that are valid for

https://docs.zowe.org/v2.2.x/appendix/server-component-manifest
https://json-schema.org/
https://docs.zowe.org/v2.2.x/appendix/server-component-manifest

the component's configuration within Zowe server configuration files. See documentation on server

component schema files for more information.

apiml-static-registration.yaml.template

Refers to a supporting file that instructs the Zowe launch script how to register this extension service to

the API Mediation Layer Discovery service. In this case, this file is referred in the manifest.yaml

apimlServices.static[0].file field. This file is optional depending on the function of the

component and you can change and customize the file name in the manifest file.

bin/(configure|start|validate).sh

This file contains the Zowe component lifecycle scripts. You may not need these files depending on the

function of the component. You can find detailed definition of lifecycle scripts in Zowe component

runtime lifecycle.

It is also suggested that you put the following files into the package:

README.md

This file is a brief introduction to your extension in Markdown format, including how it should be

installed, configured, verified, and so on.

LICENSE

This is the full license text file.

If you decide to bundle and ship Zowe extensions within another product, you can put the whole directory

structure presented previously into your product package as subdirectories. Take the following structure as

an example.

Zowe component manifest

Zowe extensions, as well as core components, can use a manifest file to describe itself. Check Server

Component Manifest File Reference for details.

Sample manifests

For examples of manifests thoughout Zowe GitHub repositories, see the following links:

https://docs.zowe.org/v2.2.x/extend/server-schemas
https://docs.zowe.org/v2.2.x/extend/lifecycling-with-zwesvstc#zowe-component-runtime-lifecycle
https://docs.zowe.org/v2.2.x/appendix/server-component-manifest

API Catalog manifest.yaml

Jobs API manifest.yaml

Sample Node API and API Catalog extension manifest.yaml

Sample Zowe App Framework extension manifest.yaml

https://github.com/zowe/api-layer/blob/v2.x.x/api-catalog-package/src/main/resources/manifest.yaml
https://github.com/zowe/jobs/blob/v2.x/master/jobs-zowe-server-package/src/main/resources/manifest.yaml
https://github.com/zowe/sample-node-api/blob/master/manifest.yaml
https://github.com/zowe/sample-trial-app/blob/master/manifest.yaml

Version: v2.2.x LTS

Server component schemas

Starting with Zowe v2.0, each Component in Zowe must contain a json schema describing the configuration

parameters that are valid for its component section in Zowe's server configuration. If a component does not

have anything that can be configured, this file can just be boilerplate specifying that it fully inherits generic

Component parameters and nothing more.

The server infrastructure will utilize each components' schema files to validate a Zowe instance

configuration every startup, so this requirement is enforced by code.

Requirements

Server component json schema files must follow the json schema spec 2019-09.

Each component must state where its base schema file is located by the manifest parameter

"schemas.configs"

The schema file must use and/or extend the Zowe Component base schema by use of the "allOf"

attribute.

The schema must have an $id property which is a URI that has a domain related to the entity that

developed the Component.

The file should be tagged on z/OS but elsewhere must at least be encoded as ASCII-subset of UTF-8

Additional information

The schema file can reference other schema files within the component if compartmentalization of

definitions are desired

Example

Below is an example manifest and schema for a Component named "component1". The manifest file

specifies the location of the schema file, and the schema file specifies the configuration parameters that are

valid for this Component.

Example manifest

https://json-schema.org/
https://json-schema.org/draft/2019-09/schema

Example schema

Below is an example of the "schema.json" file referenced above. In it, we have 1 special property, "my-

custom-prop", which is just a boolean that can be true or false.

Validation

Zowe server infrastructure will validate that a user's server configuration is correct by checking every

schema file found in every component. If invalid, the servers will not start until the configuration is corrected.

Developers may wish to confirm their schema and there are several tools available such as Microsoft Visual

Studio Code for validating schema syntax is correct and jsonschemavalidator.net for testing a configuration

against a schema.

Version: v2.2.x LTS

Install Zowe server component

Learn how to install Zowe server components or extensions by using zwe components install

commands or manually.

Install component

Zowe ships zwe components install command to help end-user to install any Zowe server

components (extensions). Zowe core components are also installed with this command. In order to be

compatible with the command, components must follow Zowe server component package format standard.

Important this command will also enable the component globally by updating your zowe.yaml

configuration file. You can pass --skip-enable to disable this behavior.

Execute the command from z/OS USS. Use the following command line parameters:

--component-file|--component|-o

(String, Required) Defines the path to the component package or directory.

--config|-c

(String, Required) Defines the path to the Zowe YAML configuration. zwe components install

relies on the zowe.extensionDirectory definition to know where the component will be installed.

-- --skip-enable

(Boolean, Optional) Tells the command do not enable the component by updating zowe.yaml

configuration file.

--auto-encoding|-e

(String, Optional) Defines whether to automatically tag the encoding of the files that are shipped with

the component. The default value is auto , which indicates that the script determines whether the

automatic tagging is needed or not.

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install
https://docs.zowe.org/v2.2.x/extend/packaging-zos-extensions#zowe-server-component-package-format

Note: The automatic tagging process is opinionated about which file extensions should be in which

encoding. If this does not fit in your needs, a pax format is recommended to include the tagging

information into your package. This option is only applicable for z/OS. The following list presents the

allowed values:

yes

This option automatically tag the encoding of the files.

no

Do not automatically tag encoding of the files.

auto

Tag only when manifest is in ISO8859-1 encoding.

--log-dir|--log|-l

(String, Optional) Specifies the path to the log directory.

--debug|--verbose|-v

(Boolean, Optional) Enable debug level logging. This will help on troubleshooting issues.

--trace|-vv

(Boolean, Optional) Enable the most detail trace level logging. This will help on troubleshooting issues.

Examples:

The following command installs the my-zowe-component-1.2.3.pax into

/global/zowe/extensions which is defined as zowe.extensionDirectory in

/path/to/my/zowe.yaml .

Enable and disable component

Zowe ships zwe components enable and zwe components disable commands to help you enable

and disable Zowe server component (extension). In order to be compatible with these commands,

components must follow Zowe server component package format standard.

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable
https://docs.zowe.org/v2.2.x/extend/packaging-zos-extensions#zowe-server-component-package-format

Important these commands will update your zowe.yaml configuration file.

Note zwe components install command will enable the component globally if --skip-enable is

not passed.

Execute these commands from z/OS USS. Use the following command line parameters:

--component|-o

(String, Required) Defines the component name should be enabled or disabled.

--config|-c

(String, Required) Defines the path to the Zowe YAML configuration. zwe components install

relies on the zowe.extensionDirectory definition to know where the component will be installed.

--ha-instance|-i

(String, Optional) Defines the Zowe high availability instance ID of where the component will be enabled

or disabled. If this argument is not passed, the component will be enabled/disabled globally from

components.<component>.enabled . If this argument has a value, only specified HA instance will

be changed, which is haInstances.<ha-instance>.components.<component>.enabled .

--log-dir|--log|-l

(String, Optional) Specifies the path to the log directory.

--debug|--verbose|-v

(Boolean, Optional) Enable debug level logging. This will help on troubleshooting issues.

--trace|-vv

(Boolean, Optional) Enable the most detail trace level logging. This will help on troubleshooting issues.

Examples:

The following command enables my-zowe-component .

The following command will disable my-zowe-component on HA instance lpar1 . The configuration

logs write to /var/zowe/logs .

Install and configure manually

Zowe core components

The Zowe runtime directory delivers its core components in the <RUNTIME_DIR>/components/

directory. A typical components directory looks like this:

Same as all Zowe server components, Zowe core components can be enabled or disabled by setting

components.<component>.enabled to true or false .

Zowe z/OS extensions

All Zowe z/OS extension runtime programs are installed into a single location which is defined as

zowe.extensionDirectory in zowe.yaml . Each extension should be represented with the extension

name in this directory, and use either a directory or a symbolic link.

The Zowe launch script reads components.<component>.enabled and haInstances.<ha-

instance>.components.<component>.enabled defined in zowe.yaml to determine whether to start

an extension in current HA instance. The value of this enabled is boolean either true or false .

Example:

The vendor MYVENDOR has a product named MYAPP that installs into /usr/lpp/myvendor/myapp .

There is one Zowe extension shipped within the product in the directory

/usr/lpp/myvendor/myapp/zowe-ext . This subdirectory is a Zowe extension so that the product can

be started and stopped with Zowe and run as an address space under the ZWESLSTC started task in the

Zowe USS shell.

The directory /usr/lpp/myvendor/myapp/zowe-ext should include a manifest.yaml file to

describe the extension. The script /usr/lpp/myvendor/myapp/zowe-ext/bin/validate.sh checks

that the environment is configured correctly and the script /usr/lpp/myvendor/myapp/zowe-

ext/bin/start.sh starts the vendor application. The /usr/lpp/myvendor/myapp/zowe-

ext/manifest.yaml should look like this:

Because MYAPP is shipped within another product, the installation should create a symbolic link in

zowe.extensionDirectory directory.

Also, myapp is enabled in zowe.yaml like this.

When the Zowe instance is launched by running zwe start command, it will read manifest commands

instructions and call the /usr/lpp/myvendor/myapp/zowe-ext/bin/start.sh script. The started

task will create an address space under ZWESLSTC for the vendor component. When the Zowe instance is

stopped, the address space is terminated.

Version: v2.2.x LTS

Zowe server component runtime lifecycle

Zowe runtime lifecycle

This topic describes the runtime lifecycle of Zowe core components and how an offering that provides a

Zowe extension can set up runtime lifecycle for their component.

The Zowe UNIX System Services (USS) components are run as part of the started task ZWESLSTC . There

are two key USS directories that play different roles when launching Zowe.

The Zowe runtime directory <RUNTIME_DIR> that contains the executable files is an immutable set of

directories and files that are replaced each time a new release is applied. The initial release or an

upgrade is installed either with UNIX shell scripts (see Installing Zowe runtime from a convenience

build), or SMP/E where the runtime directory is laid down initially as FMID AZWE002 and then upgraded

through rollup PTF builds (see Installing Zowe SMP/E). The Zowe runtime directory is not altered during

operation of Zowe, so no data is written to it and no customization is performed on its contents.

Important, any customizations to the original Zowe runtime directory are not recommended. This may

include installing extensions to this directory, putting your zowe.yaml or Zowe workspace into this

directory, or changing any of the files in it, etc.

The Zowe workspace directory <WORKSPACE_DIR> contains information that is specific to a launch of

Zowe. It contains temporary configuration settings that helps an instance of the Zowe server to be

started, such as ports that are used or paths to dependent Java and Node.js runtimes. Zowe runtime

user should have write permission to this directory. More than one Zowe workspace directories can be

created to allow multiple launches of a Zowe runtime, each one isolated from each other and starting

Zowe depending on how Zowe YAML configuration is configured.

The Zowe logs directory <LOGS_DIR> contains USS file logs when running Zowe. Some components

like app-server and zss will always write USS log files. Some components like APIML Gateway will write

log files to this directory if you enabled debug mode. Zowe runtime user should have write permission

to this directory.

To start Zowe, the command zwe start is run from a USS shell. This uses a program ZWELNCH to

launch the started task ZWESLSTC , passing an optional HAINST parameter to define which Zowe HA

instance will be started. It is the equivalent of using the TSO command /S

https://docs.zowe.org/v2.2.x/user-guide/install-zowe-zos-convenience-build
https://docs.zowe.org/v2.2.x/user-guide/install-zowe-smpe

ZWESLSTC,HAINST='<HA_INSTANCE>',JOBNAME='<JOBNAME>' . The ZWELNCH program understands

your Zowe YAML configuration and will start components enabled in the <HA_INSTANCE> by executing

zwe internal start component command. If you execute zwe internal start directly, the USS

processes will not run as a started task and will run under the user ID of whoever ran the zwe internal

start command rather than the Zowe user ID of ZWESVUSR , likely leading to permission errors accessing

the contents of the <RUNTIME_DIR> as well as the Zowe certificate. For these reasons, the zwe start

script launches Zowe's USS process beneath the started task ZWESLSTC .

Zowe relies on zowe.yaml configuration file to know your customization for the instance. For more

information, see Zowe YAML Configuration File Reference.

Note:

The scripts of core Zowe components and some extensions use the helper library

<RUNTIME_DIR>/bin/libs . You can also use those functions but please keep away from functions

marked as internal or experimental .

Zowe component runtime lifecycle

Each Zowe component will be installed with its own USS directory, which contains its executable files. Within

each component's USS directory, a manifest file is required to describe itself and a bin directory is

recommended to contain scripts that are used for the lifecycle of the component. When Zowe is started, by

reading components manifest commands definition, it identifies the components that are configured to

launch and then execute the scripts of those components in the cycle of validate, configure, and start. All

components are validated, then all are configured, and finally all are started. This technique is used as

follows:

Used for the base Zowe components that are included with the core Zowe runtime.

Applies to extensions to allow vendor offerings to be able to have the lifecycle of their 'microservices'

within the Zowe USS shell and be included as address spaces under the ZWESLSTC started task.

Note:

All lifecycle scripts are executed from the root directory of the component. This directory is usually where

the component manifest is located.

Check Server Component Manifest File Reference to learn how to define lifecycle commands in component

manifest file.

https://docs.zowe.org/v2.2.x/appendix/zowe-yaml-configuration
https://docs.zowe.org/v2.2.x/appendix/server-component-manifest

Validate

Each component can optionally instruct Zowe runtime to validate itself with a USS command defined in

manifest commands.validate .

If present, the validate script performs tasks such as:

Check that the shell has the correct prerequisites.

Validate that ports are available.

Perform other steps to ensure that the component is able to be launched successfully.

During execution of the validate script, if an error is detected, then a component should echo a

message that contains information to assist a user diagnosing the problem.

Configure

Each component can optionally instruct Zowe runtime to configure itself with a USS command defined in

manifest commands.configure .

If the component has manifest defined, some configure actions will be performed automatically based on

manifest definition:

apimlServices.static : Zowe runtime will automatically parse and add your static definition to API

Mediation Layer.

appfwPlugins.[].path : Zowe runtime will automatically parse and install/configure the component

to Zowe App Framework.

It's possible to export configuration variables from the configure step to the start step. Each

component runs in separated shell space, which means that the variable of one component does not affect

the same variable of another component. For example, when you run export MY_VAR=val in

/bin/configure.sh , then the variable ${MY_VAR} will be available in your /bin/start.sh script.

However, ${MY_VAR} will not be available in other components.

Start

Each component can optionally instruct Zowe runtime to start itself with a USS command defined in

manifest commands.start . If this is not defined, for backward compatible purpose, a call to its

/bin/start.sh script will be executed if it exists. If your component is not supposed to be started by

itself, for example, the component is a shared library, you can skip this instruction.

It is up to each component to start itself based on how it has been written. We recommend that any variables

that someone who configure Zowe may need to vary, such as timeout values, port numbers, or similar, are

specified as variables in the instance.env file and then referenced as shell variables in the start.sh

script to be passed into the component runtime.

Version: v2.2.x LTS

Creating and adding Zowe extension
containers

Zowe extensions such as services and plug-ins that use Zowe component packaging can be used within a

Zowe container environment. To do this, you must deliver the extension as a container image that is

compatible with Zowe containers. You can follow Zowe's container conformance criteria to understand and

achieve compatibility.

Note: Missing z/OS dependencies must be checked before creating and adding Zowe extension containers.

You can add extension containers to a Zowe container environment the same way as Zowe's core

components by completing the following steps.

�. Build and publish an extension image to a registry. For details, see Build and publish an extension image

to a registry.

�. Define a deployment or job object. For details, see Define Deployment or Job object.

�. Start the extension from the deployment or job definition. For details, see Start your component.

1. Build and publish an extension image to a registry

An extension must have a container image to run in a Zowe container environment. To create such images,

you can use a Dockerfile and refer to the following examples of building images for Zowe core components.

Examples:

The core components define component Dockerfiles and use GitHub Actions to build images. For example,

jobs-api is a component which has built-in web service. To build the images, this component

defines a Dockerfile at https://github.com/zowe/jobs/blob/v2.x/master/container/Dockerfile and defines

a GitHub Actions workflow at https://github.com/zowe/jobs/blob/v2.x/master/.github/workflows/jobs-api-

images.yml.

explorer-jes is a Zowe App Server Framework plug-in but does not have a built-in web service. It

follows Zowe's container conformance criteria. It defines a Dockerfile at

https://github.com/zowe/explorer-jes/blob/v2.x/master/container/Dockerfile. Similar to jobs-api , it

https://docs.zowe.org/v2.2.x/extend/k8s-conformance
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://github.com/zowe/jobs/blob/v2.x/master/container/Dockerfile
https://github.com/zowe/jobs/blob/v2.x/master/.github/workflows/jobs-api-images.yml
https://github.com/zowe/zowe-install-packaging/blob/v2.x/staging/containers/conformance.md
https://github.com/zowe/explorer-jes/blob/v2.x/master/container/Dockerfile

also defines a GitHub Actions workflow at https://github.com/zowe/explorer-

jes/blob/v2.x/master/.github/workflows/build_test.yml to build the images.

The following GitHub Actions are used by the core components to build conformant images. They might not

be completely reusable for you, but are provided as an example.

zowe-actions/shared-actions/docker-prepare will prepare required environment variables used by

following steps.

zowe-actions/shared-actions/docker-build-local can build the Docker image directory on the GitHub

Actions virtual machine. By default, the Docker image directory is ubuntu-latest . You can use this

action to build images for amd64 CPU architecture.

zowe-actions/shared-actions/docker-build-zlinux can build Docker image on a Linux on Z virtual

machine. This is useful if you want to build images for s390x CPU architecture.

zowe-actions/shared-actions/docker-manifest can collect all related images and define them as Docker

manifests. This is useful for users to automatically pull the correct image based on cluster node CPU

architecture, and also pull images based on popular tags such as latest and latest-ubuntu .

After a component image is built, it is recommended that you publish it to a container registry before adding

it to the Zowe container environment. Alternatively, you can use docker save and docker load

commands to copy the offline images to your Kubernetes nodes.

2. Define Deployment or Job object

To start your component in Kubernetes, you must define a Deployment if your extension has built-in web

services, or a Job object if your extension is a Zowe Application Framework plug-in without built-in web

services.

To define Deployment for your component, you can copy from samples/sample-deployment.yaml

and modify all occurrences of the following variables:

<my-component-name> : this is your component name. For example, sample-node-api .

<my-component-image> : this is your component image described in Build and publish an extension

image to a registry. For example, zowe-docker-release.jfrog.io/ompzowe/sample-node-

api:latest-ubuntu .

<my-component-port> : this is the port of your service. For example, 8080 .

Continue to customize the specification to fit in your component requirements:

https://github.com/zowe/explorer-jes/blob/v2.x/master/.github/workflows/build_test.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-prepare/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-build-local/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-build-zlinux/action.yml
https://github.com/zowe-actions/shared-actions/blob/main/docker-manifest/action.yml
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/job/

spec.template.spec.containers[0].resources : defines the memory and CPU resource

required to start the container.

metadata.annotations , spec.template.spec.volumes and

spec.template.spec.securityContext and so on.

To define Job for your component, you can also copy from samples/sample-deployment.yaml .

Then, modify all entries mentioned above and make the following changes:

Change kind: Deployment to kind: Job ,

Add restartPolicy: OnFailure under spec.template.spec like this:

3. Start your component

After you define your component Deployment or Job object, you can run kubectl apply -f

/path/to/your/component.yaml to apply it to the Kubernetes cluster that runs Zowe.

If it's a Deployment , you should be able to see that the component pod is started and eventually

reached the Running status.

If it's a Job , you should be able to see that the plug-in pod is started and eventually reached the

Completed status.

Now you can follow common Kubernetes practice to manage your component workload.

Version: v2.2.x LTS

Zowe Containerization Conformance Criteria

These conformance criteria are applicable for all Zowe components intending to run in a containerized

environment. The containerized environment could be Kubernetes or OpenShift running on Linux or Linux on

Z.

Image

In general, the image should follow Best practices for writing Dockerfiles. The below requirements are in

addition to the list.

Base Image

You are free to choose a base image based on your requirements.

Here are our recommendations of base images:

Zowe base images:

ompzowe/base : zowe-docker-release.jfrog.io/ompzowe/base:latest-ubuntu and

zowe-docker-release.jfrog.io/ompzowe/base:latest-ubi .

ompzowe/base-node : zowe-docker-release.jfrog.io/ompzowe/base-node:latest-

ubuntu and zowe-docker-release.jfrog.io/ompzowe/base-node:latest-ubi has

node.js LTS (v14) version pre-installed.

ompzowe/base-jdk : zowe-docker-release.jfrog.io/ompzowe/base-jdk:latest-

ubuntu and zowe-docker-release.jfrog.io/ompzowe/base-jdk:latest-ubi has JRE

v8 pre-installed.

Red Hat Universal Base Image 8 Minimal

Ubuntu

The image should contain as few software packages as possible for security and should be as small as

possible such as by reducing package count and layers.

Zowe base images,

are based on both Ubuntu and Red Hat Universal Base Image,

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://developers.redhat.com/articles/ubi-faq?redirect_fragment=resources#ubi_details
https://hub.docker.com/_/ubuntu

provide common dependencies including JDK and/or node.js,

support both amd64 and s390x CPU architecture.

If you use your own base image other than Zowe base images, please check this list and make sure it is

compatible with Zowe runtime:

The default shell /bin/sh must be bash . If it's not, you can fix it by installing and overwriting

/bin/sh with the symbolic link of /bin/bash .

These softwares must exist in the image: date , awk , sed , xargs .

These softwares are optional but good to have: ping , dig , netstat .

Multi-CPU Architecture

Zowe core components must release images based on both amd64 and s390x CPU architecture.

Zowe core component images must use multiple manifests to define if the image supports multiple CPU

architectures.

Image Label

These descriptive labels are required in the Dockerfile: name , maintainer , vendor , version ,

release , summary , and description .

Example line:

Tag

Zowe core component image tags must be a combination of the following information in this format:

<version>-<linux-distro>[-<cpu-arch>][-sources][.<customize-build>] .

version: must follow semantic versioning or partial semantic versioning with major or major + minor. It

may also be latest or lts . For example, 1 , 1.23 , 1.23.0 , lts , latest , etc.

linux-distro: for example, ubi , ubuntu , etc.

cpu-arch: for example, amd64 , s390x , etc.

customize-build: string sanitized by converting non-letters and non-digits to dashes. For example,

pr-1234 , users-john-fix123 , etc.

Source Build: must be a string -sources appended to the end of the tag.

If this is a source build, the tag must contain full version number (major+minor+patch) information.

https://semver.org/

Linux Distro information is recommended.

Must NOT contain customize build information.

For example: 1.23.0-ubi-sources .

For example, these are valid image tags:

latest

latest-ubuntu

latest-ubuntu-sources

latest-ubi

latest-ubi-sources

lts

lts-ubuntu

lts-ubi

1

1-ubuntu

1-ubi

1.23

1.23-ubuntu

1.23-ubi

1.23.0

1.23.0-ubuntu

1.23.0-ubuntu-amd64

1.23.0-ubuntu-sources

1.23.0-ubi

1.23.0-ubi-s390x

1.23.0-ubi-sources

1.23.0-ubuntu.pr-1234

1.23.0-ubi.users-john-test1

The same image tag pattern is recommended for Zowe extensions.

Files and Directories

These file(s) and folder(s) are REQUIRED for all Zowe components:

/licenses folder holds all license-related files. It MUST include at least the license information for

current application. It's recommended to include a license notice file for all pedigree dependencies. All

licenses files must be in UTF-8 encoding.

/component/README.md provides information about the application for end-user.

/component/manifest.(yaml|yml|json) provides basic information of the component. The

format of this file is defined at Zowe component manifest. Components must use the same manifest file

as when it's running on z/OS.

These file(s) and folder(s) are recommended:

/component/bin/<lifecycle-scripts> must remain the same as what it is when running on

z/OS.

User zowe

In the Dockerfile, a zowe user and group must be created. The zowe user UID and group GID must

be defined as ARG and with default values of UID=20000 and GID=20000 . Example commands:

USER zowe must be specified before the first CMD or ENTRYPOINT .

If you use Zowe base images, zowe user and group are already created.

Multi-Stage Build

A multi-stage build is recommended to keep images small and concise. Learn more from Use multi-stage

builds.

Runtime

This section is mainly for information. No actions are required for components except where it's specified

explicitly.

The below sections are mainly targeting Kubernetes or OpenShift environments. Starting Zowe containers in

a Docker environment with docker-compose is in a planning stage and may change some of the

requirements.

General rules

https://docs.zowe.org/stable/extend/packaging-zos-extensions/#zowe-component-manifest
https://docs.docker.com/develop/develop-images/multistage-build/

Components MUST:

NOT be started as root user in the container.

listen to only ONE port in the container except for API Mediation Layer Gateway.

be cloud-vendor neutral and must NOT rely on features provided by a specific cloud vendor.

NOT rely on host information such as hostIP , hostPort , hostPath , hostNetwork ,

hostPID and hostIPC .

accept zowe.yaml as a configuration file, the same as when running on z/OS.

Persistent Volume(s)

This persistent volume MUST be created:

zowe-workspace mounted to /home/zowe/instance/workspace .

Files and Directories

In the runtime, the Zowe content is organized in this structure:

/home/zowe/runtime is a shared volume initialized by the zowe-launch-scripts container.

/home/zowe/runtime/components/<component-id> is a symbolic link to the /component

directory. <component-id> is the name entry defined in /component/manifest.

(yaml|yml|json) .

/home/zowe/instance/zowe.yaml is a Zowe configuration file and MUST be mounted from a

ConfigMap.

/home/zowe/instance/logs is the logs directory of Zowe instance. This folder will be created

automatically by zowe-launch-scripts container.

/home/zowe/instance/workspace is the persistent volume mounted to every Zowe component

container.

Components writing to this directory should be aware of the potential conflicts of same-time

writing by multiple instances of the same component.

Components writing to this directory must NOT write container-specific information to this

directory as it may potentially be overwritten by another container.

/home/zowe/keystore is the directory where certificate is mounted. With a typical setup (by using

zwe migrate for kubernetes command), this folder contains keystore.p12 ,

truststore.p12 , keystore.key , keystore.cer and ca.cer .

Any confidential environment variables, for example, a Redis password, in zowe.yaml must be

extracted and stored as Secrets. These configurations must be imported back as environment

variables.

ConfigMap and Secrets

zowe.yaml must be stored in a ConfigMap and be mounted under /home/zowe/instance

directory.

All certificates must be stored in Secrets. Those files will be mounted under the

/home/zowe/keystore directory.

Secrets must be defined manually by a system administrator. Zowe Helm Chart and Zowe Operator do

NOT define the content of Secrets.

ompzowe/zowe-launch-scripts Image and initContainers

The zowe-docker-release.jfrog.io/ompzowe/zowe-launch-scripts:latest-ubuntu or

zowe-docker-release.jfrog.io/ompzowe/zowe-launch-scripts:latest-ubi image

contains necessary scripts to start Zowe components in Zowe context.

This image has a /component directory and it will be used to prepare /home/zowe/runtime and

/home/zowe/instance volumes to help Zowe component start.

In Kubernetes and OpenShift environments this step is defined with initContainers specification.

Command Override

Component CMD and ENTRYPOINT directives will be overwritten with the Zowe launch script used to

start it in Zowe context.

Components running in Zowe context requires to be started with bash with argument

/home/zowe/runtime/bin/internal/run-zowe.sh -c /home/zowe/instance . Here is

example start command:

Environment Variables

These runtime environment variable(s) are REQUIRED to start Zowe components.

ZWE_POD_NAMESPACE : holds the current Kubernetes namespace. This variable can be optional if the

service account automountServiceAccountToken attribute is true . The value of this variable

can be assigned to metadata.namespace (which default value is zowe) in Pod spec section:

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

These runtime environment variable(s) are OPTIONAL to start Zowe components.

ZWE_POD_CLUSTERNAME : holds the Kubernetes cluster name. This variable has default value

cluster.local . If your cluster name is not default value, you should pass the variable to all

workloads. The value of this variable can be assigned in Pod spec section:

CI/CD

Build, Test and Release

Zowe core component and extension images MUST be built, tested, and released on their own

cadence.

The component CI/CD pipeline MUST NOT rely on the Zowe level CI/CD pipeline and Zowe release

schedule.

Zowe core component images must be tested. This includes starting the component and verifying the

runtime container works as expected.

It is recommended to build snapshot images before release. Zowe core components MUST publish

snapshot images to the zowe-docker-snapshot.jfrog.io registry with proper tags.

Zowe core component images MUST be released before Zowe is released.

Zowe core components MUST publish release images to both zowe-docker-release.jfrog.io

and Docker Hub registry under ompzowe/ prefix.

Release images MUST also update relevant major/minor version tags and the latest tag. For

example, when a component releases a 1.2.3 image, the component CI/CD pipeline MUST also tag

the image as 1.2 , 1 , and latest . Update the lts tag when it is applicable.

Zowe core component release images MUST be signed by Zowe committer(s).

https://hub.docker.com/

Version: v2.2.x LTS

Developing for Zowe CLI

You can extend Zowe™ CLI by developing plug-ins and contributing code to the base Zowe CLI or existing

plug-ins.

How to contribute

You can contribute to Zowe CLI in the following ways:

Add new commands, options, or other improvements to the base CLI.

Develop a plug-in that users can install to Zowe CLI.

You might want to contribute to Zowe CLI to accomplish the following objectives:

Provide new scriptable functionality for yourself, your organization, or to a broader community.

Make use of Zowe CLI infrastructure (profiles and programmatic APIs).

Participate in the Zowe CLI community space.

Getting started

If you want to start working with the code immediately, review the Readme file in the Zowe CLI core

repository and the Zowe contribution guidelines. The zowe-cli-sample-plugin GitHub repository is a sample

plug-in that adheres to the guidelines for contributing to Zowe CLI projects.

Tutorials

Follow these tutorials to get started working with the sample plug-in:

�. Setting up: Clone the project and prepare your local environment.

�. Installing a plug-in: Install the sample plug-in to Zowe CLI and run as-is.

�. Extending a plug-in: Extend the sample plug-in with a new by creating a programmatic API, definition,

and handler.

�. Creating a new plug-in: Create a new CLI plug-in that uses Zowe CLI programmatic APIs and a diff

package to compare two data sets.

�. Implementing user profiles: Implement user profiles with the plug-in.

https://github.com/zowe/zowe-cli#zowe-cli--
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md#contribution-guidelines
https://github.com/zowe/zowe-cli-sample-plugin#zowe-cli-sample-plug-in
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-setting-up
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-installing-sample-plugin
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-extending-a-plugin
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-developing-a-plugin
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-implement-profiles

Plug-in development overview

At a high level, a plug-in must have imperative-framework configuration (sample here). This

configuration is discovered by imperative-framework through the package.json imperative key.

A Zowe CLI plug-in will minimally contain the following:

�. Programmatic API: Node.js programmatic APIs to be called by your handler or other Node.js

applications.

�. Command definition: The syntax definition for your command.

�. Handler implementation: To invoke your programmatic API to display information in the format that you

defined in the definition.

The following guidelines and documentation will assist you during development:

Imperative CLI Framework documentation

Imperative CLI Framework documentation is a key source of information to learn about the features of

Imperative CLI Framework (the code framework that you use to build plug-ins for Zowe CLI). Refer to these

supplementary documents during development to learn about specific features such as:

Auto-generated help

JSON responses

User profiles

Logging, progress bars, experimental commands, and more!

Contribution guidelines

The Zowe CLI contribution guidelines contain standards and conventions for developing Zowe CLI plug-ins.

The guidelines contain critical information about working with the code, running/writing/maintaining

automated tests, developing consistent syntax in your plug-in, and ensuring that your plug-in integrates with

Zowe CLI properly:

For more information about ... See:

General guidelines that apply to contributing to Zowe CLI and Plug-ins Contribution Guidelines

https://github.com/zowe/zowe-cli-sample-plugin/blob/master/src/imperative.ts
https://github.com/zowe/zowe-cli-sample-plugin/blob/master/package.json
https://github.com/zowe/imperative/wiki
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md

For more information about ... See:

Conventions and best practices for creating packages and plug-ins for

Zowe CLI

Package and Plug-in

Guidelines

Guidelines for running tests on Zowe CLI Testing Guidelines

Guidelines for running tests on the plug-ins that you build Plug-in Testing Guidelines

Versioning conventions for Zowe CLI and Plug-ins Versioning Guidelines

https://github.com/zowe/zowe-cli/blob/master/docs/PackagesAndPluginGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/TESTING.md
https://github.com/zowe/zowe-cli/blob/master/docs/PluginTESTINGGuidelines.md
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md

Version: v2.2.x LTS

Setting up your development environment

Before you follow the development tutorials for creating a Zowe™ CLI plug-in, follow these steps to set up

your environment.

Prerequisites

Install Zowe CLI.

Initial setup

To create your development space, clone and build zowe-cli-sample-plugin from source.

Before you clone the repository, create a local development folder named zowe-tutorial . You will clone

and build all projects in this folder.

Branches

There are two branches in the repository that correspond to different Zowe CLI versions. You can develop

two branches of your plug-in so that users can install your plug-in into @latest or @zowe-v2-lts CLI.

Developing for both versions will let you take advantage of new core features quickly and expose your plug-

in to a wider range of users.

The master branch of Sample Plug-in is compatible with the @zowe-v2-lts version of core CLI (Zowe

LTS release).

The master branch of Sample Plug-in is also compatible with the @latest version of core CLI (Zowe

Active Development release) at this time.

For more information about the versioning scheme, see Maintainer Versioning in the Zowe CLI repository.

Clone zowe-cli-sample-plugin and build from source

Clone the repository into your development folder to match the following structure:

https://docs.zowe.org/v2.2.x/extend/user-guide/cli-installcli#methods-to-install-zowe-cli
https://github.com/zowe/zowe-cli-sample-plugin/#zowe-cli-sample-plug-in
https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md

Follow these steps:

�. cd to your zowe-tutorial folder.

�. git clone https://github.com/zowe/zowe-cli-sample-plugin

�. cd to your zowe-cli-sample-plugin folder.

�. git checkout master

�. npm install

�. npm run build

(Optional) Run the automated tests

We recommend running automated tests on all code changes. Follow these steps:

�. cd to the __tests__/__resources__/properties folder.

�. Copy example_properties.yaml to custom_properties.yaml .

�. Edit the properties within custom_properties.yaml to contain valid system information for your

site.

�. cd to your zowe-cli-sample-plugin folder

�. npm run test

Next steps

After you complete your setup, follow the Installing the sample plug-in tutorial to install this sample plug-in

to Zowe CLI.

https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-installing-sample-plugin

Version: v2.2.x LTS

Installing the sample plug-in

Before you begin, set up your local environment to install a plug-in.

Overview

This tutorial covers installing and running this bundled Zowe™ CLI plugin as-is (without modification), which

will display your current directory contents.

The plug-in adds a command to the CLI that lists the contents of a directory on your computer.

Installing the sample plug-in to Zowe CLI

To begin, cd into your zowe-tutorial folder.

Issue the following commands to install the sample plug-in to Zowe CLI:

zowe plugins install ./zowe-cli-sample-plugin

Viewing the installed plug-in

Issue zowe --help in the command line to return information for the installed zowe-cli-sample

command group:

Using the installed plug-in

To use the plug-in functionality, issue: zowe zowe-cli-sample list directory-contents :

Testing the installed plug-in

https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-setting-up

To run automated tests against the plug-in, cd into your zowe-tutorial/zowe-cli-sample-plugin

folder.

Issue the following command:

Next steps

You successfully installed a plug-in to Zowe CLI! Next, try the Extending a plug-in tutorial to learn about

developing new commands for this plug-in.

https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-extending-a-plugin

Version: v2.2.x LTS

Extending a plug-in

Before you begin, be sure to complete the Installing the sample plug-in tutorial.

Overview

This tutorial demonstrates how to extend the plug-in that is bundled with this sample by:

�. Creating a Typescript interface for the Typicode response data

�. Creating a programmatic API

�. Creating a command definition

�. Creating a command handler

We'll do this by using @zowe/imperative infrastructure to surface REST API data on our Zowe™ CLI

plug-in.

Specifically, we're going to show data from this URI by Typicode. Typicode serves sample REST JSON data

for testing purposes.

At the end of this tutorial, you will be able to use a new command from the Zowe CLI interface: zowe

zowe-cli-sample list typicode-todos

Completed source for this tutorial can be found on the typicode-todos branch of the zowe-cli-sample-

plugin repository.

Creating a Typescript interface for the Typicode response data

First, we'll create a Typescript interface to map the response data from a server.

Within zowe-cli-sample-plugin/src/api , create a folder named doc to contain our interface

(sometimes referred to as a "document" or "doc"). Within the doc folder, create a file named ITodo.ts .

The ITodo.ts file will contain the following:

Creating a programmatic API

https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-installing-sample-plugin
https://jsonplaceholder.typicode.com/todos
https://jsonplaceholder.typicode.com/

Next, we'll create a Node.js API that our command handler uses. This API can also be used in any Node.js

application, because these Node.js APIs make use of REST APIs, Node.js APIs, other NPM packages, or

custom logic to provide higher level functions than are served by any single API.

Adjacent to the existing file named zowe-cli-sample-plugin/src/api/Files.ts , create a file

Typicode.ts .

Typicode.ts should contain the following:

The Typicode class provides two programmatic APIs, getTodos and getTodo , to get an array of

ITodo objects or a specific ITodo respectively. The Node.js APIs use @zowe/imperative

infrastructure to provide logging, parameter validation, and to call a REST API. See the Imperative CLI

Framework documentation for more information.

Exporting interface and programmatic API for other Node.js applications

Update zowe-cli-sample-plugin/src/index.ts to contain the following:

A sample invocation of your API might look similar to the following, if it were used by a separate, standalone

Node.js application:

Checkpoint one

Issue npm run build to verify a clean compilation and confirm that no lint errors are present. At this

point in this tutorial, you have a programmatic API that will be used by your handler or another Node.js

application. Next you'll define the command syntax for the command that will use your programmatic

Node.js APIs.

Creating a command definition

Within Zowe CLI, the full command that we want to create is zowe zowe-cli-sample list typicode-

todos . Navigate to zowe-cli-sample-plugin/src/cli/list and create a folder typicode-

todos . Within this folder, create TypicodeTodos.definition.ts . Its content should be as follows:

This describes the syntax of your command.

Defining command to list group

https://github.com/zowe/imperative/wiki
https://github.com/zowe/zowe-cli-sample-plugin/src/index.ts

Within the file zowe-cli-sample-plugin/src/cli/list/List.definition.ts , add the following

code below other import statements near the top of the file:

Then add TypicodeTodosDefinition to the children array. For example:

Creating a command handler

Also within the typicode-todos folder, create TypicodeTodos.handler.ts . Add the following code

to the new file:

The if statement checks if a user provides an --id flag. If yes, we call getTodo . Otherwise, we call

getTodos . If the Typicode API throws an error, the @zowe/imperative infrastructure will automatically

surface this.

Checkpoint two

Issue npm run build to verify a clean compilation and confirm that no lint errors are present. You now

have a handler, definition, and your command has been defined to the list group of the command.

Using the installed plug-in

Issue the command: zowe zowe-cli-sample list typicode-todos

Refer to zowe zowe-cli-sample list typicode-todos --help for more information about your

command and to see how text in the command definition is presented to the end user. You can also see how

to use your optional --id flag:

Summary

You extended an existing Zowe CLI plug-in by introducing a Node.js programmatic API, and you created a

command definition with a handler. For an official plugin, you would also add JSDoc to your code and create

automated tests.

Next steps

Try the Developing a new plug-in tutorial next to create a new plug-in for Zowe CLI.

http://usejsdoc.org/
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-developing-a-plugin

Version: v2.2.x LTS

Developing a new plug-in

Before you begin this tutorial, complete the Extending an existing plug-in tutorial.

Overview

This tutorial demonstrates how to create a brand new Zowe™ CLI plug-in that uses Zowe CLI Node.js

programmatic APIs.

At the end of this tutorial, you will have created a data set diff utility plug-in for Zowe CLI, from which you can

pipe your plugin's output to a third-party utility for a side-by-side diff of data set member contents.

Completed source for this tutorial can be found on the develop-a-plugin branch of the zowe-cli-

sample-plugin repository.

Cloning the sample plug-in source

Clone the sample repo, delete the irrelevant source, and create a brand new plug-in. Follow these steps:

�. cd into your zowe-tutorial folder

�. git clone https://github.com/zowe/zowe-cli-sample-plugin files-util

�. cd files-util

�. Delete the .git (hidden) folder.

�. Delete all content within the src/api , src/cli , and docs folders.

�. Delete all content within the __tests__/__system__/api , __tests__/__system__/cli ,

__tests__/api , and __tests__/cli folders

�. git init

�. git add .

�. git commit -m "initial"

Changing package.json

Use a unique npm name for your plugin. Change package.json name field as follows:

https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-extending-a-plugin

Issue the command npm install against the local repository.

Adjusting Imperative CLI Framework configuration

Change imperative.ts to contain the following:

Here we adjusted the description and other fields in the imperative JSON configuration to be relevant to

this plug-in.

Adding third-party packages

We'll use the following packages to create a programmatic API:

npm install --save diff

npm install -D @types/diff

Creating a Node.js programmatic API

In files-util/src/api , create a file named DataSetDiff.ts . The content of DataSetDiff.ts

should be the following:

Exporting your API

In files-util/src , change index.ts to contain the following:

Checkpoint

At this point, you should be able to rebuild the plug-in without errors via npm run build . You included

third party dependencies, created a programmatic API, and customized this new plug-in project. Next, you'll

define the command to invoke your programmatic API.

Defining commands

In files-util/src/cli , create a folder named diff . Within the diff folder, create a file

Diff.definition.ts . Its content should be as follows:

Also within the diff folder, create a folder named data-sets . Within the data-sets folder create

DataSets.definition.ts and DataSets.handler.ts .

DataSets.definition.ts should contain:

DataSets.handler.ts should contain the following:

Trying your command

Be sure to build your plug-in via npm run build .

Install your plug-in into Zowe CLI via zowe plugins install .

Issue the following command. Replace the data set names with valid mainframe data set names on your

system:

The raw diff output is displayed as a command response:

Bringing together new tools!

The advantage of Zowe CLI and of the CLI approach in mainframe development is that it allows for

combining different developer tools for new and interesting uses.

diff2html is a free tool to generate HTML side-by-side diffs to help see actual differences in diff output.

Install the diff2html CLI via npm install -g diff2html-cli . Then, pipe your Zowe CL plugin's

output into diff2html to generate diff HTML and launch a web browser that contains the content in the

screen shot at the top of this file.

zowe files-util diff data-sets "IBMUSER.work.jcl(iefbr14)"

"IBMUSER.work.jcl(iefbr15)" | diff2html -i stdin

Next steps

Try the Implementing profiles in a plug-in tutorial to learn about using profiles with your plug-in.

https://diff2html.xyz/
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-implement-profiles

Version: v2.2.x LTS

Implementing profiles in a plug-in

You can use this profile template to create a profile for your product.

The profile definition is placed in the imperative.ts file.

The type: "someproduct" property represents the profile name that you might require on various

commands to have credentials loaded from a secure credential manager and retain the host/port

information, so that you can easily swap to different servers from the CLI.

By default, if your plug-in that is installed into Zowe™ CLI contains a profile definition that is similar to the

following example, a profile template is added automatically to team config JSON when you run the zowe

config init command. Any properties for which includeInTemplate is true are included in the

template. Additionally, commands that manage V1 profiles are created automatically under zowe

profiles . For example, create , validate , set-default , list , and so on.

Next steps

If you completed all previous tutorials, you now understand the basics of extending and developing plug-ins

for Zowe CLI. Next, we recommend reviewing the project contribution guidelines and Imperative CLI

Framework documentation to learn more.

https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-devTutorials#contribution-guidelines
https://docs.zowe.org/v2.2.x/extend/extend-cli/cli-devTutorials#imperative-cli-framework-documentation

Version: v2.2.x LTS

Onboarding Overview

As an API developer, you can onboard a REST API service to the Zowe™ API Mediation Layer (API ML).

Onboarding your REST service to the Zowe™ API Mediation Layer will make your service discoverable by the

API ML Discovery Service, enable routing through the API Gateway, and make service information and API

documentation available through the API Catalog.

The specific method you use to onboard a REST API to the API ML depends on the programming language

or framework used to build your REST service.

Note: To streamline the process of onboarding new REST API services to the Zowe API Mediation Layer, see

Onboarding a REST API service with the YAML Wizard

This Onboarding Overview article addresses the following topics:

Prerequisites

Service Onboarding Guides to onboard your REST service with the API ML

Verify successful onboarding to the API ML

Using the Sample REST API Service to learn how to onboard a REST service to the API ML

Prerequisites

Meet the following prerequisites before you onboard your service:

Running instance of Zowe

Note: For static onboarding, access to Zowe runtime is required to create the static service definition.

A certificate that is trusted by Zowe and certificate(s) to trust Zowe services

Zowe uses secured communication over TLSv1.2. As such, the protocol version and the certificate is

required. For more information, see API Mediation Layer security setup and Zowe API ML TLS

requirements.

A REST API-enabled service that you want to onboard

If you do not have a specific REST API service, you can use the sample service.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-wizard
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-static-definition
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#certificate-management-in-zowe-api-mediation-layer
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#Zowe-API-ML-TLS-requirements

Your service should be documented in a valid OpenApi 2.0/3.0 Swagger JSON format.

Access to the Zowe artifactory

Either the Gradle or Maven build automation system

Service Onboarding Guides

Services can be updated to support the API Mediation Layer natively by updating the service code. Use one

of the following guides to onboard your REST service to the Zowe API Mediation Layer:

Recommended guides for services using Java

Onboard a REST API service with the Plain Java Enabler (PJE)

Onboard a Spring Boot based REST API Service

Onboard a Micronaut based REST API service

Recommended guides for services using Node.js

Onboard a Node.js based REST API Service

Guides for Static Onboarding and Direct Call Onboarding

Use one of the following guides if your service is not built with Java, or you do not want to change your

codebase or use the previously mentioned libraries:

Onboard a REST API using static definition without code changes

Onboard a REST API directly calling Zowe Discovery Service

Documentation for legacy enablers

For legacy enabler documentation (version 1.2 and lower), refer to the previous version of the

documentation:

Zowe Docs version 1.8.x

Note: Enabler version 1.2 and previous versions are no longer supported.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-micronaut-enabler
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-nodejs-enabler
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-static-definition
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-direct-eureka-call
https://docs.zowe.org/v1-8-x/extend/extend-apiml/api-mediation-onboard-overview

Tip: We recommend you use the enabler version 1.3 or higher to onboard your REST API service to the Zowe

API Medaition Layer.

Verify successful onboarding to the API ML

Verifying that your service was successfully onboraded to the API ML can be done by ensuring service

registration in the API ML Discovery Service or visibility of the service in the API ML Catalog.

Verifying service discovery through Discovery Service

Verify that your service is discovered by the Discovery Service with the following procedure.

Follow these steps:

�. Issue a HTTP GET request to the Discovery Service endpoint /eureka/apps to get service instance

information:

Note: The endpoint is protected by client certificate verification. A valid trusted certificate must be

provided with the HTTP GET request.

�. Check your service metadata.

Response example:

Tips:

Ensure that addresses and user credentials for individual API ML components correspond to your

target runtime environment.

If you work with local installation of API ML and you use our dummy identity provider, enter user

for both username and password . If API ML was installed by system administrators, ask them

to provide you with actual addresses of API ML components and the respective user credentials.

Verifying service discovery through the API Catalog

Services may not be immediately visible in the API Catalog. We recommend you wait for 2 minutes as it may

take a moment for your service to be visible in the Catalog. If your service still does not appear in the

Catalog, ensure that your configuration settings are correct.

Follow these steps:

�. Check to see that your API service is displayed in the API Catalog UI, and that all information including

API documentation is correct.

�. Ensure that you can access your API service endpoints through the Gateway.

Sample REST API Service

To demonstrate the concepts that apply to REST API services, we use an example of a Spring Boot REST API

service. This example is used in the REST API onboarding guide REST APIs without code changes required

(static onboarding).

You can build this service using instructions in the source code of the Spring Boot REST API service

example.

The Sample REST API Service has a base URL. When you start this service on your computer, the service

base URL is: http://localhost:8080 .

Note: If a service is deployed to a web application server, the base URL of the service (application) has the

following format: https://application-server-hostname:port/application-name .

This sample service provides one API that has the base path /v2 , which is represented in the base URL of

the API as http://localhost:8080/v2 . In this base URL, /v2 is a qualifier of the base path that was

chosen by the developer of this API. Each API has a base path depending on the particular implementation

of the service.

This sample API has only one single endpoint:

/pets/{id} - Find pet by ID.

This endpoint in the sample service returns information about a pet when the {id} is between 0 and 10. If

{id} is greater than 0 or a non-integer, an error is returned. These are conditions set in the sample

service.

Tip: Access http://localhost:8080/v2/pets/1 to see what this REST API endpoint does. You should get the

following response:

Note: The onboarding guides demonstrate how to add the Sample REST API Service to the API Mediation

Layer to make the service available through the petstore service ID.

https://github.com/swagger-api/swagger-samples/tree/master/java/java-spring-boot
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-static-definition
https://github.com/swagger-api/swagger-samples/blob/master/java/java-spring-boot/README.md

The following diagram shows the relations between the Sample REST API Service and its corresponding API,

REST API endpoint, and API Gateway:

«Service»
petstore

«API»
/v2
/pets

API Gateway
/api/v2/petstore

API Gateway routes
HTTP requests to /v2 of the API in the petstore service

The petstore service provides one API (/v2)
This service runs in its own embedded web server

This sample service provides a Swagger document in JSON format at the following URL:

The Swagger document is used by the API Catalog to display API documentation.

Version: v2.2.x LTS

Onboarding a REST API service with the Plain
Java Enabler (PJE)

This article is part of a series of onboarding guides, which outline the process of onboarding REST API

services to the Zowe API Mediation Layer (API ML). As a service developer, you can onboard a REST service

with the API ML with the Zowe API Mediation Layer using our Plain Java Enabler (PJE). This enabler is built

without a dependency on Spring Cloud, Spring Boot, or SpringFramework.

Tip: For more information about onboarding API services with the API ML, see the Onboarding Overview.

Introduction

Zowe API ML is a lightweight API management system based on the following Netflix components:

Eureka - a discovery service used for services registration and discovery

Zuul - reverse proxy / API Gateway

Ribbon - load balancer

The API ML Discovery Service component uses Netflix/Eureka as a REST services registry. Eureka endpoints

are used to register a service with the API ML Discovery Service.

The API ML provides onboarding enabler libraries. The libraries are JAR artifacts available through an

artifactory. Using these libraries is the recommended approach to onboard a REST service with the API ML.

The PJE library serves the needs of Java developers who are not using either Spring Boot or the Spring

Framework. If Spring Boot or the Spring framework are used in the project you would like to onboard, see the

Onboarding Overview for the corresponding enablers.

Additionally, this enabler is not intended for use in projects that depend on Spring Cloud Netflix components.

Configuration settings in the PJE and Spring Cloud Netflix Eureka Client are different. Using the two

configuration settings in combination makes the result state of the discovery registry unpredictable.

Tip: For more information about how to utilize another API ML enablers, see the documentation in the

Onboarding Overview.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://spring.io/projects/spring-boot
https://spring.io/
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://spring.io/projects/spring-cloud-netflix
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview

Onboarding your REST service with API ML

The following steps outline the overall process to onboard a REST service with the API ML using the PJE.

Each step is described in further detail in this article.

�. Prerequisites

�. Configuring your project

Gradle build automation system

Maven build automation system

�. Configuring your service

REST service identification

Administrative endpoints

API info

API routing information

API Catalog information

Authentication parameters

API Security

SAF Keyring configuration

Eureka Discovery Service

�. Registering your service with API ML

�. (Optional) Validating the discoverability of your API service by the Discovery Service

�. (Optional) Troubleshooting

Log messages during registration problems

Prerequisites

Ensure that the prerequisites from the Onboarding Overview are met.

The REST API service to onboard is written in Java

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview

The service is enabled to communicate with API ML Discovery Service over a TLS v1.2 secured

connection

Notes:

This documentation is valid for API ML version ZoweApimlVersion 1.3.0 and higher. We

recommend that you check the Zowe Artifactory for latest stable versions.

Following this guide enables REST services to be deployed on a z/OS environment. Deployment to a

z/OS environment, however, is not required. As such, you can first develop on a local machine before

you deploy on z/OS.

The API Mediation Layer provides the sample application using the Plain Java Enabler in the api-layer

repository

Configuring your project

Use either Gradle or Maven build automation systems to configure the project with the service to be

onboarded. Use the appropriate configuration procedure that corresponds to your build automation system.

Note: You can use either the Zowe Artifactory or an artifactory of your choice. If you decide to build the API

ML from source, you are required to publish the enabler artifact to your artifactory. Publish the enabler

artifact by using the Gradle tasks provided in the source code.

Gradle build automation system

Use the following procedure to use Gradle as your build automation system.

Follow these steps:

�. Create a gradle.properties file in the root of your project if one does not already exist.

�. In the gradle.properties file, set the URL of the specific artifactory containing the PJE artifact.

Provide the corresponding credentials to gain access to the Maven repository.

�. Add the following Gradle code block to the repositories section of your build.gradle file:

�. In the same build.gradle file, add the necessary dependencies for your service. If you use the Java

enabler from the Zowe Artifactory, add the following code block to your build.gradle script.

https://zowe.jfrog.io/zowe/libs-release/org/zowe/apiml/sdk/onboarding-enabler-java/
https://github.com/zowe/api-layer/tree/master/onboarding-enabler-java-sample-app

Replace the $zoweApimlVersion with the proper version of the enabler, for example: 1.3.0 :

The published artifact from the Zowe Artifactory also contains the enabler dependencies from other

software packages. If you are using an artifactory other than Zowe, add also the following dependencies

in your service build.gradle script:

Notes:

You may need to add more dependencies as required by your service implementation.

The information provided in this file is valid for ZoweApimlVersion 1.3.0 and higher.

�. In your project home directory, run the gradle clean build command to build your project.

Alternatively, you can run gradlew to use the specific gradle version that is working with your project.

Maven build automation system

Use the following procedure if you use Maven as your build automation system.

Follow these steps:

�. Add the following XML tags within the newly created pom.xml file:

Tip: If you want to use snapshot version, replace libs-release with libs-snapshot in the

repository url and change snapshots->enabled to true .

�. Add the proper dependencies:

�. In the directory of your project, run the mvn clean package command to build the project.

Configuring your service

To configure your service, create the configuration file service-configuration.yml in your service

source tree resources directory. The default path for a java application is src/main/resources . The

service-configuration.yml file is used to set the application properties and eureka metadata.

Application properties are for your service runtime. For example, the ssl section specifies the keystore

and trustore. The eureka metadata is used for registration with API Mediation Layer.

Note: To externalize service onboarding configuration, see: Externalizing onboarding configuration.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler-external-configuration

The following code snippet shows an example of service-configuration.yml . Some parameters

which are specific for your service deployment are in ${parameterValue} format. For your service

configuration file, provide actual values or externalize your onboarding configuration.

Example:

Optional metadata section

The following snippet presents additional optional metadata that can be added.

Example:

The onboarding configuration parameters are broken down into the following groups:

REST service identification

Administrative endpoints

API info

API routing information

API catalog information

Authentication parameters

API security

SAF Keyring configuration

Eureka Discovery Service

Custom Metadata

Connection Timeout

REST service identification

serviceId

The serviceId uniquely identifies one or more instance of a microservice in the API ML and is used

as part of the service URL path in the API ML Gateway address space. Additionally, the API ML Gateway

uses the serviceId for routing to the API service instances. When two API services use the same

serviceId , the API Gateway considers the services as clones of each other. An incoming API request

can be routed to either of them through utilized load balancing mechanism.

Important! Ensure that the serviceId is set properly with the following considerations:

The same servicedId should only be set for multiple API service instances for API scalability.

The servicedId value must only contain lowercase alphanumeric characters.

The servicedId cannot contain more than 40 characters.

Example:

If the serviceId is sampleservice , the service URL in the API ML Gateway address space

appears as the following path:

title

This parameter specifies the human readable name of the API service instance. This value is displayed

in the API Catalog when a specific API service instance is selected. This parameter can be externalized

and set by the customer system administrator.

Tip: We recommend that service developer provides a default value of the title . Use a title that

describes the service instance so that the end user knows the specific purpose of the service instance.

description

This parameter is a short description of the API service. This value is displayed in the API Catalog when

a specific API service instance is selected. This parameter can be externalized and set by the customer

system administrator.

Tip: Describe the service so that the end user understands the function of the service.

baseUrl

This parameter specifies the base URL for the following administrative endpoints:

homePageRelativeUrl

statusPageRelativeUrl

healthCheckRelativeUrl

Use the following format to include your service name in the URL path:

protocol://host:port/servicename

Note: Ensure that the baseUrl does not end with a trailing / . Inclusion of / causes a

malformed URL if any of the above administrative endpoints begin with a / . It is expected that

each administrative endpoint begins with a / . Warnings will be logged if this recommendation is

not followed.

serviceIpAddress (Optional)

This parameter specifies the service IP address and can be provided by a system administrator in the

externalized service configuration. If this parameter is not present in the configuration file or is not set

as a service context parameter, it is resolved from the hostname part of the baseUrl .

preferIpAddress (Optional)

Set the value of this parameter to true to advertise a service IP address instead of its hostname.

Administrative endpoints

The following snippet presents the format of the administrative endpoint properties:

where:

homePageRelativeUrl

specifies the relative path to the home page of your service.

Start this path with / . If your service has no home page, leave this parameter blank.

Examples:

homePageRelativeUrl: This service has no home page

homePageRelativeUrl: / This service has a home page with URL ${baseUrl}/

statusPageRelativeUrl

specifies the relative path to the status page of your service.

Start this path with / .

Example:

statusPageRelativeUrl: /application/info

This results in the URL: ${baseUrl}/application/info

healthCheckRelativeUrl

specifies the relative path to the health check endpoint of your service.

Start this path with / .

Example:

healthCheckRelativeUrl: /application/health

This results in the URL: ${baseUrl}/application/health

API info

REST services can provide multiple APIs. Add API info parameters for each API that your service wants to

expose on the API ML.

The following snippet presents the information properties of a single API:

where:

apiInfo.apiId

specifies the API identifier that is registered in the API ML installation. The API ID uniquely identifies the

API in the API ML. The apiId can be used to locate the same APIs that are provided by different

service instances. The API developer defines this ID. The apiId must be a string of up to 64

characters that uses lowercase alphanumeric characters and a dot: . .

apiInfo.version

specifies the api version . This parameter is used to correctly retrieve the API documentation

according to requested version of the API.

apiInfo.gatewayUrl

specifies the base path at the API Gateway where the API is available. Ensure that this value is the same

path as the gatewayUrl value in the routes sections that apply to this API.

apiInfo.swaggerUrl (Optional)

specifies the Http or Https address where the Swagger JSON document is available.

apiInfo.documentationUrl (Optional)

specifies the link to the external documentation. A link to the external documentation can be included

along with the Swagger documentation.

apiInfo.defaultApi (Optional)

specifies that this API is the default one shown in the API Catalog. If no apiInfo fields have

defaultApi set to true , the default API is the one with the highest API version .

API routing information

The API routing group provides the required routing information used by the API ML Gateway when routing

incoming requests to the corresponding REST API service. A single route can be used to direct REST calls to

multiple resources or API endpoints. The route definition provides rules used by the API ML Gateway to

rewrite the URL in the Gateway address space. Currently, the routing information consists of two parameters

per route: The gatewayUrl and serviceUrl . These two parameters together specify a rule for how the

API service endpoints are mapped to the API Gateway endpoints.

The following snippet is an example of the API routing information properties.

Example:

where:

routes

specifies the container element for the route.

routes.gatewayUrl

The gatewayUrl parameter specifies the portion of the gateway URL which is replaced by the

serviceUrl path part.

routes.serviceUrl

The serviceUrl parameter provides a portion of the service instance URL path which replaces the

gatewayUrl part.

Examples:

is routed to:

API major version 1:

is routed to:

APIs docs major version 1:

is routed to:

API Catalog information

The API ML Catalog UI displays information about discoverable REST services registered with the API ML

Discovery Service. Information displayed in the Catalog is defined by the metadata provided by your service

during registration. The following image is an example of a tile in the API Catalog:

The Catalog groups correlated services in the same tile if these services are configured with the same

catalog.tile.id metadata parameter.

The following code block is an example of configuration of a service tile in the Catalog:

Example:

where:

catalog.tile.id

specifies the unique identifier for the product family of API services. This is a value used by the API ML

to group multiple API services into a single tile. Each unique identifier represents a single API dashboard

tile in the Catalog.

Tip: Specify a value that does not interfere with API services from other products. We recommend that

you use your company and product name as part of the ID.

catalog.tile.title

specifies the title of the product family of the API service. This value is displayed in the API Catalog

dashboard as the tile title.

catalog.tile.description

is the detailed description of the API services product family. This value is displayed in the API Catalog

UI dashboard as the tile description.

catalog.tile.version

specifies the semantic version of this API Catalog tile.

Note: Ensure that you increase the version number when you introduce changes to the API service

product family details.

Authentication parameters

These parameters are not required. Default values are used when parameters are not specified. For more

information, see Authentication Parameters for Onboarding REST API Services.

API Security

REST services onboarded with the API ML act as both a client and a server. When communicating to API ML

Discovery service, a REST service acts as a client. When the API ML Gateway is routing requests to a

service, the REST service acts as a server. These two roles have different requirements. The Zowe API ML

Discovery Service communicates with its clients in secure Https mode. As such, TLS/SSL configuration

setup is required when a service is acting as a server. In this case, the system administrator decides if the

service will communicate with its clients securely or not.

Client services need to configure several TLS/SSL parameters in order to communicate with the API ML

Discovery service. When an enabler is used to onboard a service, the configuration is provided in the ssl

section/group in the same YAML file that is used to configure the Eureka parameters and the service

metadata.

For more information about API ML security, see API ML security.

TLS/SSL configuration consists of the following parameters:

verifySslCertificatesOfServices

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler/api-mediation-security#authentication-parameters
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler/api-mediation-security

This parameter makes it possible to prevent server certificate validation.

Important! Ensure that this parameter is set to true in production environments. Setting this

parameter to false in production environments significantly degrades the overall security of the

system.

protocol

This parameter specifies the TLS protocol version currently used by Zowe API ML Discovery Service.

Tip: We recommend you use TLSv1.2 as your security protocol

keyAlias

This parameter specifies the alias used to address the private key in the keystore.

keyPassword

This parameter specifies the password associated with the private key.

keyStore

This parameter specifies the keystore file used to store the private key. When using keyring, the value

should be set to the SAF keyring location. For information about required certificates, see Zowe API ML

TLS requirements.

If you have an issue with loading the keystore file in your environment, try to provide the absolute path

to the keystore file. The sample keystore file for local deployment is in api-layer repository

keyStorePassword

This parameter specifies the password used to unlock the keystore.

keyStoreType

This parameter specifies the type of the keystore.

trustStore

This parameter specifies the truststore file used to keep other parties public keys and certificates.

When using keyring, this value should be set to the SAF keyring location. For information about required

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler/api-mediation-security#zowe-api-ml-tls-requirements
https://github.com/zowe/api-layer/tree/master/keystore/localhost

certificates, see Zowe API ML TLS requirements.

If you have an issue with loading the truststore file in your environment, try to provide the absolute path

to the truststore file. The sample truststore file for local deployment is in api-layer repository

trustStorePassword: password

This parameter specifies the password used to unlock the truststore.

trustStoreType: PKCS12

This parameter specifies the truststore type. The default for this parameter is PKCS12.

Note: Ensure that you define both the keystore and the truststore even if your server is not using an Https

port.

SAF Keyring configuration

You can choose to use SAF keyring instead of keystore and truststore for storing certificates. For information

about required certificates, see Zowe API ML TLS requirements. For information about running Java on z/OS

with keyring, see SAF Keyring. Make sure that the enabler can access and read the keyring. Please refer to

documentation of your security system for details.

The following example shows enabler configuration with keyrings.

Example:

Eureka Discovery Service

The Eureka Discovery Service parameters group contains a single parameter used to address Eureka

Discovery Service location. An example is presented in the following snippet:

Example:

where:

discoveryServiceUrls

Specifies the public URL of the Discovery Service. The system administrator at the customer site

defines this parameter. It is possible to provide multiple values in order to utilize fail over and/or load

balancing mechanisms.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler/api-mediation-security#zowe-api-ml-tls-requirements
https://github.com/zowe/api-layer/tree/master/keystore/localhost
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler/api-mediation-security#zowe-api-ml-tls-requirements
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler/api-mediation-security#api-ml-saf-keyring

Custom Metadata

For information about custom metadata, see the topic Custom Metadata.

Registering your service with API ML

The following steps outline the process of registering your service with API ML. Each step is described in

detail in this article. The process describes the integration with the usage of the Java application server. The

guideline is tested with the Tomcat application server. The specific steps that apply for other application

servers may differ.

�. Add a web application context listener class

�. Register a web application context listener

�. Load service configuration

�. Register with Eureka discovery service

�. Unregister your service

Follow these steps:

�. Implement and add a web application context listener class:

implements javax.servlet.ServletContextListener

The web application context listener implements two methods to perform necessary actions at

application start-up time as well as when the application context is destroyed:

The contextInitialized method invokes the apiMediationClient.register(config)

method to register the application with API Mediation Layer when the application starts.

The contextDestroyed method invokes the apiMediationClient.unregister()

method when the application shuts down. This unregisters the application from the API Mediation

Layer.

�. Register a web application context listener.

Add the following code block to the deployment descriptor web.xml to register a context listener:

�. Load the service configuration.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler/custom-metadata

Load your service configuration from a file service-configuration.yml file. The configuration

parameters are described in the preceding section, Configuring your service.

Use the following code as an example of how to load the service configuration.

Example:

Note: The ApiMediationServiceConfigReader class also provides other methods for loading the

configuration from two files, java.util.Map instances, or directly from a string. Check the

ApiMediationServiceConfigReader class JavaDoc for details.

�. Register with Eureka Discovery Service.

Use the following call to register your service instance with Eureka Discovery Service:

Example:

�. Unregister your service.

Use the contextDestroyed method to unregister your service instance from Eureka Discovery

Service in the following format:

Example:

The following code block is a full example of a context listener class implementation.

Example:

Validating the discoverability of your API service by the
Discovery Service

Once you are able to build and start your service successfully, you can use the option of validating that your

service is registered correctly with the API ML Discovery Service.

Follow these steps:

�. Validate successful onboarding

�. Check that you can access your API service endpoints through the Gateway.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

�. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target

runtime environment.

Note: If you are working with local installation of API ML and you are using our dummy identity provider,

enter user for both username and password . If API ML was installed by system administrators, ask

them to provide you with actual addresses of API ML components and the respective user credentials.

Tip: Wait for the Discovery Service to discover your service. This process may take a few minutes after your

service was successfully started.

Troubleshooting

Log messages during registration problems

When an Enabler connects to the Discovery service and fails, an error message prints to the Enabler log. The

default setting does not suppress these messages as they are useful to resolve problems during the Enabler

registration. Possible reasons for failure include the location of Discovery service is not correct, the

Discovery Service is down, or the TLS certificate is invalid.

These messages continue to print to the Enabler log, while the Enabler retries to connect to the Discovery

Service. To fully suppress these messages in your logging framework, set the log levels to OFF on the

following loggers:

Some logging frameworks provide other tools to suppress repeated messages. Consult the documentation

of the logging framework you use to find out what tools are available. The following example demonstrates

how the Logback framework can be used to suppress repeated messages.

Example:

The Logback framework provides a filter tool, DuplicateMessageFilter.

Add the following code to your configuration file if you use XML configuration:

Note: For more information, see the full configuration used in the Core Services in GitHub.

http://logback.qos.ch/manual/filters.html#DuplicateMessageFilter
https://github.com/zowe/api-layer/blob/master/apiml-common/src/main/resources/logback.xml

Version: v2.2.x LTS

API Mediation Layer onboarding
configuration

This article describes the process of configuring a REST service to onboard with the Zowe API Mediation

Layer using the API ML Plain Java Enabler. As a service developer, you can provide basic configuration of a

service to onboard to the API ML. You can also externalize configuration parameters for subsequent

customization by a systems administrator.

Introduction

Configuring a REST service for API ML onboarding

Plain Java Enabler service onboarding

Automatic initialization of the onboarding configuration by a single method call

Validating successful onboarding with the API Mediation Layer

Loading YAML configuration files

Loading a single YAML configuration file

Loading and merging two YAML configuration files

Introduction

The API ML Plain Java Enabler (PJE) is a library which helps to simplify the process of onboarding a REST

service with the API ML. This article describes how to provide and externalize the Zowe API ML onboarding

configuration of your REST service using the PJE.

Note: For more information about specific configuration parameters and their possible values, and the

service registration process, see the specific documentation of the onboarding approach you are using for

your project:

Direct REST call registration (No enabler)

Plain Java Enabler

The PJE is the most universal Zowe API ML enabler. This enabler uses only Java, and does not use advanced

Inversion of Control (IoC) or Dependency Injection (DI) technologies. The PJE enables you to onboard any

REST service implemented in Java, avoiding dependencies, versions collisions, unexpected application

behavior, and unnecessarily large service executables.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-direct-eureka-call
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler

Service developers provide onboarding configuration as part of the service source code. While this

configuration is valid for the development system environment, it is likely to be different for an automated

integration environment. Typically, system administrators need to deploy a service on multiple sites that have

different system environments and requirements such as security.

The PJE supports both the service developer and the system administrator with the functionality of

externalizing the service onboarding configuration.

The PJE provides a mechanism to load API ML onboarding service configuration from one or two YAML files.

Configuring a REST service for API ML onboarding

In most cases, the API ML Discovery Service, Gateway, and service endpoint addresses are not known at the

time of building the service executables. Similarly, security material such as certificates, private/public keys,

and their corresponding passwords depend on the specific deployment environment, and are not intended

to be publicly accessible. Therefore, to provide a higher level of flexibility, the PJE implements routines to

build service onboarding configuration by locating and loading one or two YAML file sources:

internal service-configuration.yml

The first configuration file is typically internal to the service deployment artifact. This file must be

accessible on the service classpath . This file contains basic API ML configuration based on values

known at development time. Usually, this basic API ML configuration is provided by the service

developer and is located in the /resources folder of the Java project source tree. This file is usually

found in the deployment artifacts under /WEB-INF/classes . The configuration contained in this file

is provided by the service developer or builder. As such, it will not match every possible production

environment and its corresponding requirements.

external or additional service-configuration.yml

The second configuration file is used to externalize the configuration. This file can be stored anywhere

on the local file system, as long as that the service has access to that location. This file is provided by

the service deployer/system administrator and contains the correct parameter values for the specific

production environment.

At service start-up time, both YAML configuration files are merged, where the externalized configuration (if

provided) has higher priority.

The values of parameters in both files can be rewritten by Java system properties or servlet context

parameters that were defined during service installation/configuration, or at start-up time.

In the YAML file, standard rewriting placeholders for parameter values use the following format:

${apiml.parameter.key}

The actual values are taken from [key, value] pairs defined as Java system properties or servlet context

parameters. The system properties can be provided directly on a command line. The servlet context

parameters can be provided in the service web.xml or in an external file.

The specific approach of how to provide the servlet context to the user service application depends on the

application loading mechanism and the specific Java servlet container environment.

Example:

If the service is deployed in a Tomcat servlet container, you can configure the context by placing an XML file

with the same name as the application deployment unit into

_$CATALINA_BASE/conf/[enginename]/[hostname]/_ .

Other containers provide different mechanisms for the same purpose.

Plain Java Enabler service onboarding API

You can initialize your service onboarding configuration using different methods of the Plain Java Enabler

class ApiMediationServiceConfigReader :

Automatic initialization of the onboarding configuration by a single method call

The following code block shows automatic initialization of the onboarding configuration by a single method

call:

This method receives the ServletContext parameter, which holds a map of parameters that provide all

necessary information for building the onboarding configuration. The following code block is an example of

Java Servlet context configuration.

Example:

Where the two parameters corresponding to the location of the configuration files are:

apiml.config.location

This parameter describes the location of the basic configuration file.

apiml.config.additional-location

This parameter describes the location of the external configuration file.

The method in this example uses the provided configuration file names in order to load them as YAML

files into the internal Java configuration object of type ApiMediationServiceConfig.

The other context parameters with the apiml prefix are used to rewrite values of properties in the

configuration files.

Validating successful onboarding with the API Mediation
Layer

Ensure that you successfully onboarded a service with the API Mediation Layer.

Follow these steps:

�. Validate successful onboarding

�. Check that you can access your API service endpoints through the Gateway.

�. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Loading YAML configuration files

YAML configuration files can be loaded either as a single YAML file, or by merging two YAML files. Use the

loadConfiguration method described later in this article that corresponds to your service

requirements.

After successfully loading a configuration file, the loading method loadConfiguration uses Java system

properties to substitute corresponding configuration properties.

Loading a single YAML configuration file

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

To build your configuration from multiple sources, load a single configuration file, and then rewrite

parameters as needed using values from another configuration source. See: Loading and merging two YAML

configuration files described later in this article.

Use the following method to load a single YAML configuration file:

This method receives a single String parameter and can be used to load an internal or an external

configuration file.

Note: This method first attempts to load the configuration as a Java resource. If the file is not found, the

method attempts to resolve the file name as an absolute. If the file name still cannot be found, this method

attempts to resolve the file as a relative path. When the file is found, the method loads the contents of the

file and maps them to internal data classes. After loading the configuration file, the method attempts to

substitute/rewrite configuration property values with corresponding Java System properties.

Loading and merging two YAML configuration files

To load and merge two configuration files, use the following method:

where:

String internalConfigurationFileName

references the basic configuration file name.

String externalizedConfigurationFileName

references the external configuration file name.

Note: The external configuration file takes precedence over the basic configuration file in order to match the

target deployment environment. After loading and before merging, each configuration will be separately

patched using Java System properties.

The following code block presents an example of how to load and merge onboarding configuration from

YAML files.

Example:

Version: v2.2.x LTS

Onboarding a service with the Zowe API
Meditation Layer without an onboarding
enabler

This article is part of a series of guides to onboard a REST service with the Zowe API Mediation Layer (API

ML). Onboarding with API ML makes services accessible through the API Gateway and visible in the API

Catalog. Once a service is successfully onboarded, users can see if the service is currently available and

accepting requests.

This guide describes how a REST service can be onboarded with the Zowe API ML independent of the

language used to write the service. As such, this guide does not describe how to onboard a service with a

specific enabler. Similarly, various Eureka client implementations are not used in this onboarding method.

Tip: If possible, we recommend that you onboard your service using the API ML enabler libraries. The

approach described in this article should only be used if other methods to onboard your service are not

suitable.

For more information about how to onboard a REST service, see the following links:

API ML onboarding overview

python-eureka-client

eureka-js-client

Rest API developed based on Java

This article outlines a process to make an API service available in the API Mediation Layer by making a direct

call to the Eureka Discovery Service.

Introduction

Registering with the Discovery Service

API Mediation Layer Service onboarding metadata

Catalog parameters

Service parameters

Routing parameters

API Info Parameters

Sending a heartbeat to API Mediation Layer Discovery Service

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://pypi.org/project/py-eureka-client/
https://www.npmjs.com/package/eureka-js-client
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#sample-rest-api-service

Validating successful onboarding with the API Mediation Layer

External Resources

Introduction

The API ML Discovery Service uses Netflix/Eureka as a REST services registry. Eureka is a REST-based

service that is primarily used to locate services.

Eureka endpoints are used to register a service with the API ML Discovery Service. Endpoints are also used

to send a periodic heartbeat to the Discovery Service to indicate that the onboarded service is available.

Note: Required parameters should be defined and sent at registration time.

Registering with the Discovery Service

Begin the onboarding process by registering your service with the API ML Discovery Service.

Use the POST Http call to the Eureka server together with the registration configuration in the following

format:

The following code block shows the format of the parameters in your POST call, which are sent to the

Eureka registry at the time of registration.

where:

app

uniquely identifies one or more instances of a microservice in the API ML.

The API ML Gateway uses the serviceId for routing to the API service instances. As such, the

serviceId is part of the service URL path in the API ML Gateway address space.

Important! Ensure that the service ID is set properly with the following considerations:

The service ID value contains only lowercase alphanumeric characters.

The service ID does not contain more than 40 characters.

https://github.com/Netflix/eureka
https://github.com/Netflix/eureka/wiki/Eureka-REST-operations

The same service ID is only set for multiple API service instances to support API scalability. When

two API services use the same service ID, the API Gateway considers the services as clones of

each other. An incoming API request can be routed to either instance through load balancing.

Example:

If the serviceId is sampleservice , the service URL in the API ML Gateway address space

appears as:

ipAddr

specifies the IP address of this specific service instance.

port

specifies the port of the instance when you use Http. For Http, set enabled to true .

securePort

specifies the port of the instance for when you use Https. For Https, set enabled to true .

hostname

specifies the hostname of the instance.

vipAddress

specifies the serviceId when you use Http.

Important! Ensure that the value of vipAddress is the same as the value of app . Furthermore, be

sure not to omit vipAddress , even if you provided secureVipAddress . Due to a current limitation

in Spring Cloud Netflix, routes are created only for instances in which vipAddress is defined.

secureVipAddress

specifies the serviceId when you use Https.

Important! Ensure that the value of secureVipAddress is the same as the value of app .

instanceId

specifies a unique id for the instance. Define a unique value for the instanceId in the following

format:

{hostname}:{serviceId}:{port}

metadata

specifies the set of parameters described in the following section addressing API ML service metadata.

API Mediation Layer Service onboarding metadata

At registration time, provide metadata in the following format. Metadata parameters contained in this code

block are described in the following section.

Metadata parameters are broken down into the following categories:

Catalog parameters

Service parameters

Routing parameters

Authentication parameters

API Info parameters

Catalog parameters

Catalog parameters are grouped under the prefix: apiml.catalog.tile .

The API ML Catalog displays information about services registered with the API ML Discovery Service.

Information displayed in the Catalog is defined in the metadata provided by your service during registration.

The Catalog groups correlated services in the same tile when these services are configured with the same

catalog.tile.id metadata parameter.

The following parameters are used to populate the API Catalog:

apiml.catalog.tile.id

This parameter specifies the specific identifier for the product family of API services. This is a value

used by the API ML to group multiple API services into a single tile. Each identifier represents a single

API dashboard tile in the Catalog.

Important! Specify a value that does not interfere with API services from other products. We

recommend that you use your company and product name as part of the ID.

apiml.catalog.tile.title

This parameter specifies the title of the API services product family. This value is displayed in the API

Catalog dashboard as the tile title.

apiml.catalog.tile.description

This parameter is the detailed description of the API services product family. This value is displayed in

the API Catalog UI dashboard as the tile description.

apiml.catalog.tile.version

This parameter specifies the semantic version of this API Catalog tile.

Note: Ensure that you increase the version number when you introduce changes to the API service

product family details.

Service parameters

Service parameters are grouped under the prefix: apiml.service

The following parameters define service information for the API Catalog:

apiml.service.title

This parameter specifies the human-readable name of the API service instance.

This value is displayed in the API Catalog when a specific API service instance is selected.

apiml.service.description

This parameter specifies a short description of the API service.

This value is displayed in the API Catalog when a specific API service instance is selected.

apiml.enableUrlEncodedCharacters

When this parameter is set to true , the Gateway allows encoded characters to be part of URL

requests redirected through the Gateway. The default setting of false is the recommended setting.

Change this setting to true only if you expect certain encoded characters in your application's

requests.

Important! When the expected encoded character is an encoded slash or backslash (%2F , %5C),

make sure the Gateway is also configured to allow encoded slashes. For more info see Installing the

Zowe runtime on z/OS.

apiml.connectTimeout

The value in milliseconds that specifies a period in which API ML should establish a single, non-

managed connection with this service. If omitted, the default value specified in the API ML Gateway

service configuration is used.

apiml.readTimeout

The value in milliseconds that specifies maximum time of inactivity between two packets in response

from this service to API ML. If omitted, the default value specified in the API ML Gateway service

configuration is used.

apiml.connectionManagerTimeout

HttpClient employs a special entity to manage access to HTTP connections called by HTTP connection

manager. The purpose of an HTTP connection manager is to serve as a factory for new HTTP

connections, to manage the life cycle of persistent connections, and to synchronize access to

persistent connections. Internally, an HTTP connection manager works with managed connections,

which serve as proxies for real connections. ConnectionManagerTimeout specifies a period in

which managed connections with API ML should be established. The value is in milliseconds. If omitted,

the default value specified in the API ML Gateway service configuration is used.

apiml.okToRetryOnAllOperations

Specifies whether all operations can be retried for this service. The default value is false . The

false value allows retries for only GET requests if a response code of 503 is returned. Setting this

value to true enables retry requests for all methods, which return a 503 response code. Enabling

retry can impact server resources resulting from buffering of the request body.

apiml.service.corsEnabled

When this parameter is set to true , CORS is enabled on the service level for all service routes. The

same parameter can also be set on the service level, by providing the parameter as customMetadata

https://docs.zowe.org/v2.2.x/extend/user-guide/install-zos

as shown in the Custom Metadata.

apiml.response.compress

When this parameter is set to true , API ML compresses content for all responses from these services

using GZIP. API ML also adds the Content-Encoding header with the value gzip to responses.

customMetadata.apiml.response.compressRoutes

When the customMetadata.apiml.response.compress parameter is set to true , this

parameter allows the services to further limit the compressed routes. The parameter accepts ant style

routes deliminated by , . The expectation is to provide the absolute paths. If relative paths are

provided, the starting / is added. If the beginning of the pattern does not require specification, use

**/{pathYouAreInterestedIn}

Examples

/service/**

Compresses all paths starting with /service/

/service/api/v1/compress,/service/api/v1/custom-compress

Compresses the specific two routes

/**/compress/**

Compresses all paths that contain compress as a specific path

Routing parameters

Routing parameters are grouped under the prefix: apiml.routes

The API routing group provides necessary routing information used by the API ML Gateway when routing

incoming requests to the corresponding service. A single route can be used to make direct REST calls to

multiple resources or API endpoints. The route definition provides rules used by the API ML Gateway to

rewrite the URL in the Gateway address space.

Routing information consists of two parameters per route:

gatewayUrl

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-direct-eureka-call/custom-metadata
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/AntPathMatcher.html

serviceUrl

These two parameters together specify a rule of how the API service endpoints are mapped to the API

Gateway endpoints.

The following snippet is an example of the API routing information properties.

Example:

where:

apiml.routes.{route-prefix}.gatewayUrl

The gatewayUrl parameter specifies the portion of the gateway URL which is replaced by the

serviceUrl path.

apiml.routes.{route-prefix}.serviceUrl

The serviceUrl parameter provides a portion of the service instance URL path which replaces the

gatewayUrl part.

Note: The routes configuration used for a direct REST call to register a service must also contain a prefix

before the gatewayUrl and serviceUrl . This prefix is used to differentiate the routes. This prefix must

be provided manually when XML configuration is used.

For more information about API ML routing, see API Gateway Routing.

Authentication parameters

Authentication parameters are grouped under the prefix: apiml.authentication . When unspecified,

the default values are used.

This parameter enables a service to accept the Zowe JWT token. The API Gateway translates the token to

an authentication method supported by a service.

The following parameters define the service authentication method:

apiml.authentication.scheme

This parameter specifies a service authentication scheme. The following schemes are supported by the

API Gateway:

https://github.com/zowe/api-layer/wiki/API-Gateway-Routing

bypass

This value specifies that the token is passed unchanged to the service.

Note: This is the default scheme when no authentication parameters are specified.

zoweJwt

This value specifies that a service accepts the Zowe JWT token. No additional processing is done

by the API Gateway.

httpBasicPassTicket

This value specifies that a service accepts PassTickets in the Authorization header of the HTTP

requests using the basic authentication scheme. It is necessary to provide a service APPLID in the

apiml.authentication.applid parameter.

Tip: For more information, see Enabling PassTicket creation for API Services that Accept

PassTickets.

zosmf

This value specifies that a service accepts z/OSMF LTPA (Lightweight Third-Party Authentication).

This scheme should only be used for a z/OSMF service used by the API Gateway Authentication

Service, and other z/OSMF services that are using the same LTPA key.

Tip: For more information about z/OSMF Single Sign-on, see Establishing a single sign-on

environment.

safIdt

This value specifies that the application recognizes the SAF IDT scheme and fills the X-SAF-

Token header with the token produced by the Saf IDT provider implementation. For more

information, see Implement a New SAF IDT provider.

x509

This value specifies that a service accepts client certificates forwarded in the HTTP header. The

Gateway service extracts information from a valid client certificate. For validation, the certificate

needs to be trusted by API Mediation Layer, and needs to contain a Client Authentication

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-direct-eureka-call/api-mediation-passtickets
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zosmfcore.multisysplex.help.doc/izuG00hpManageSecurityCredentials.html
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-direct-eureka-call/implement-new-saf-provider

(1.3.6.1.5.5.7.3.2) entry in Extended Key Usage. To use this scheme, it is also necessary to specify

which headers to include. Specify these parameters in headers .

zosmf

This value specifies that a service accepts z/OSMF LTPA (Lightweight Third-Party Authentication).

This scheme should only be used for a z/OSMF service used by the API Gateway Authentication

Service, and other z/OSMF services that are using the same LTPA key.

Tip: For more information about z/OSMF Single Sign-on, see Establishing a single sign-on

environment.

authentication.headers

When the x509 scheme is specified, use the headers parameter to select which values to send to a

service. Use one of the following values:

X-Certificate-Public

The public part of the client certificate base64 encoded

X-Certificate-DistinguishedName

The distinguished name the from client certificate

X-Certificate-CommonName

The common name from the client certificate

apiml.authentication.applid

This parameter specifies a service APPLID. This parameter is valid only for the

httpBasicPassTicket authentication scheme.

API Info parameters

API Info parameters are grouped under the prefix: apiml.apiInfo .

REST services can provide multiple APIs. Add API info parameters for each API that your service wants to

expose on the API ML. These parameters provide information for API (Swagger) documentation that is

displayed in the API Catalog.

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zosmfcore.multisysplex.help.doc/izuG00hpManageSecurityCredentials.html

The following parameters provide the information properties of a single API:

apiml.apiInfo.{api-index}.apiId

The API ID uniquely identifies the API in the API ML. Multiple services can provide the same API. The API

ID can be used to locate the same APIs that are provided by different services. The creator of the API

defines this ID. The API ID needs to be a string of up to 64 characters that uses lowercase alphanumeric

characters and a dot: . .

Tip: We recommend that you use your organization as the prefix.

apiml.apiInfo.{api-index}.version

This parameter specifies the API version. This parameter is used to correctly retrieve the API

documentation according to the requested version of the API.

apiml.apiInfo.{api-index}.gatewayUrl

This parameter specifies the base path at the API Gateway where the API is available. Ensure that this

value is the same path as the gatewayUrl value in the routes sections for the routes, which

belong to this API.

apiml.apiInfo.{api-index}.swaggerUrl

(Optional) This parameter specifies the Http or Https address where the Swagger JSON document is

available.

apiml.apiInfo.{api-index}.documentationUrl

(Optional) This parameter specifies the link to the external documentation. A link to the external

documentation can be included along with the Swagger documentation.

apiml.apiInfo.{api-index}.defaultApi

(Optional) This parameter specifies if the API is the default one shown in the API Catalog. If no API has

this parameter set to true , or multiple APIs have it set to true , then the default API becomes the

API with the highest major version seen in apiml.apiInfo.{api-index}.version .

Note: The {api-index} is used to differentiate the service APIs. This index must be provided manually

when XML configuration is used. In the following example, 0 represents the api-index .

Sending a heartbeat to API Mediation Layer Discovery
Service

After registration, a service must send a heartbeat periodically to the Discovery Service to indicate that the

service is available. When the Discovery Service does not receive a heartbeat, the service instance is

deleted from the Discovery Service.

If the server does not receive a renewal in 90 seconds, it removes the instance from its registry.

Note: We recommend that the interval for the heartbeat is no more than 30 seconds.

Use the Http PUT method in the following format to tell the Discovery Service that your service is available:

https://{eureka_hostname}:{eureka_port}/eureka/apps/{serviceId}/{instanceId}

Validating successful onboarding with the API Mediation
Layer

Ensure that you successfully onboarded a service with the API Mediation Layer.

Follow these steps:

�. Validate successful onboarding

�. Check that you can access your API service endpoints through the Gateway.

�. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

External Resources

https://blog.asarkar.org/technical/netflix-eureka/

https://medium.com/@fahimfarookme/the-mystery-of-eureka-health-monitoring-5305e3beb6e9

https://github.com/Netflix/eureka/wiki/Eureka-REST-operations

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml
https://blog.asarkar.org/technical/netflix-eureka/
https://medium.com/@fahimfarookme/the-mystery-of-eureka-health-monitoring-5305e3beb6e9
https://github.com/Netflix/eureka/wiki/Eureka-REST-operations

Version: v2.2.x LTS

Onboarding a Spring Boot based REST API
Service

This guide is part of a series of guides to onboard a REST API service with the Zowe API Mediation Layer. As

an API developer, you can onboard your REST API service built with the Spring Boot framework with the

Zowe API Mediation Layer.

Note: Before API ML version 1.2, the API ML provided an integration enabler based on Spring Cloud Netflix

components. From version 1.3 and later, the API ML uses a new implementation based on the Plain Java

Enabler (PJE) that is not backwards compatible with the previous enabler versions. API ML core services

(Discovery Service, Gateway, and API Catalog) support both the old and new enabler versions.

Tip: For more information about how to utilize another onboarding method, see:

Onboard a REST API service with the Plain Java Enabler (PJE)

Onboard a REST service directly calling eureka with xml configuration

Onboard an existing REST API service without code changes

Outline of onboarding a REST service using Spring Boot

The following steps outline the overall process to onboard a REST service with the API ML using a Spring

Boot enabler. Each step is described in further detail in this article.

�. Selecting a Spring Boot Enabler

�. Configuring your project

Gradle build automation system

Maven build automation system

�. Configuring your Spring Boot based service to onboard with API ML

Sample API ML Onboarding Configuration

Authentication properties

API ML Onboarding Configuration Sample

SAF Keyring configuration

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-direct-eureka-call
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-static-definition

Custom Metadata

Api Mediation Layer specific metadata

�. Registering and unregistering your service with API ML

Unregistering your service with API ML

Basic routing

�. Adding API documentation

�. (Optional) Validating the discoverability of your API service by the Discovery Service

�. (Optional) Troubleshooting

Log messages during registration problems

Selecting a Spring Boot Enabler

Add a dependency on the Spring Enabler version to your project build configuration that corresponds to the

Spring Boot version that you use for the whole project:

onboarding-enabler-spring-v1

onboarding-enabler-spring-v2

Note: The process of onboarding an API service is the same for both Spring Boot enabler versions.

Configuring your project

Use either Gradle or Maven as your build automation system to manage your project builds.

Note: You can download the selected enabler artifact from the Zowe Artifactory for latest stable versions..

Alternatively, if you decide to build the API ML from source, it is necessary to publish the enabler artifact to

your Artifactory. Publish the enabler artifact by using the Gradle tasks provided in the source code.

Gradle build automation system

Use the following procedure to use Gradle as your build automation system.

Follow these steps:

https://zowe.jfrog.io/zowe/libs-release/org/zowe/apiml/sdk/onboarding-enabler-java/

�. Create a gradle.properties file in the root of your project if one does not already exist.

�. In the gradle.properties file, set the URL of the specific Artifactory containing the SpringEnabler

artifact.

�. Add the following Gradle code block to the repositories section of your build.gradle file:

�. In the same build.gradle file, add the necessary dependencies for your service. If you use the

SpringEnabler from the Zowe Artifactory, add the following code block to your build.gradle script:

Use the corresponding artifact according to the Zowe APIML version you are using.

For Zowe APIML versions greater than 1.23.5 use the following artifact:

For Zowe APIML version 1.23.5 use the following artifact:

For Zowe APIML versions 1.22.3, 1.22.4, and 1.23.0 - 1.23.4 use the following artifact:

For Zowe APIML versions 1.21.6 - 1.21.13 and 1.22.0 - 1.22.2 use the following artifact:

For Zowe APIML versions earlier than 1.21.6 that use Spring 2.1.1 use the following artifact:

For Zowe APIML versions earlier than 1.21.6 that use Spring 1.5.9 use the following artifact:

Notes:

You may need to add additional dependencies as required by your service implementation.

The information provided in this file is valid for ZoweApimlVersion 1.3.0 and above.

�. In your project home directory, run the gradle clean build command to build your project.

Alternatively, you can run gradlew to use the specific gradle version that is working with your project.

Maven build automation system

Use the following procedure if you use Maven as your build automation system.

Follow these steps:

�. Add the following XML tags within the newly created pom.xml file:

Tip: If you want to use snapshot version, replace libs-release with libs-snapshot in the repository url

and change snapshots->enabled to true.

�. Add the proper dependencies

For Zowe APIML versions greater than 1.23.5 use the following artifact:

For Zowe APIML version 1.23.5 use the following artifact:

For Zowe APIML versions 1.22.3, 1.22.4, and 1.23.0 - 1.23.4 use the following artifact:

For Zowe APIML versions 1.21.6 - 1.21.13 and 1.22.0 - 1.22.2 use the following artifact:

For Zowe APIML versions earlier than 1.21.6 that use Spring 2.1.1 use the following artifact:

For Zowe APIML versions earlier than 1.21.6 that use Spring 1.5.9 use the following artifact:

�. In the directory of your project, run the mvn clean package command to build the project.

Configuring your Spring Boot based service to onboard with
API ML

To configure a Spring Boot based service, it is useful to first understand how API ML enabled service Spring

Boot based configuration relates to configuration using the Plain Java Enabler.

Spring Boot expects to find the default configuration of an application in an application.yml file that is

placed on the classpath. Typically application.yml contains Spring Boot specific properties such as

properties that are used to start a web application container including TLS security, different spring

configuration profiles definitions, and other properties. This application.yml must contain the Plain

Java Enabler API ML service configuration under the apiml.service prefix. The API ML configuration

under this prefix is necessary to synchronize the configuration of apiml.service with the spring

server configuration.

Configuration properties belong to two categories:

Service related properties which include endpoints, relative paths, or API documentation definitions.

Environment related properties which include host names, ports, context etc.

Execution environment related properties should be provided by additional configuration mechanisms that

are specific to the target execution environment. Execution environment related properties for development

deployments on a local machine differ with those properties on a mainframe system.

In a development environment, provide execution environment related properties in an additional

YAML file with the system property in the following format:

On the mainframe system, provide additional configuration properties and values for existing

configuration properties through Java system properties.

Execution environments for local development deployments and mainframe deployment are described

in detail later in this article.

Follow these steps:

�. Provide a configuration section for onboarding with API ML in the application.yml file.

If you have already onboarded your service with API ML, copy and paste the contents of your

existing API ML onboarding configuration file. The default of the API ML onboarding configuration

file is the service-configuration.yml in the application.yml file under the

apiml.service prefix.

If you have not yet onboarded your REST service with API ML, use the Sample API Onboarding

Configuration to get started.

�. If you are reusing your existing API ML onboarding configuration, modify the API ML related properties

of the application.yml file.

a) Remove certain properties under the apiml.service section, which must be externalized.

Properties for removal are described in the following sample of API ML onboarding configuration.

b) Provide the following additional properties under the apiml section:

These additional properties are contained in the following sample.

Sample API ML Onboarding Configuration

In the following sample API ML onboarding configuration, properties prefixed with ### (3 hashtags)

indicate that their value must be provided as -Dsystem.property.key=PROPERTY_VALUE defined in the

mainframe execution environment. The -Dsystem.property.key must be the same as the flattened

path of the YAML property which is commented out with ### . These properties must not be defined

(uncommented) in your default service YAML configuration file.

Example:

In this example from the YAML configuration file, when the application service is run on the mainframe,

provide your mainframe hostname value on the Java execution command line in the following format:

Since this value is provided in the Java execution command line, leave the property commented out in the

application.yml .

For development purposes, you can replace or add any property by providing the same configuration

structure in an external YAML configuration file. When running your application, provide the name of the

external/additional configuration file on the command line in the following format:

A property notation provided in the format -Dproperty.key=PROPERTY_VALUE can be used for two

purposes:

To provide a runtime value for any YAML property if ${property.key} is used as its value (after

:) in the YAML configuration file

Example:

To add a property to configuration if the property does not already exist

Example:

Note: System properties provided with -D notation on the command line will not replace properties

defined in any of the YAML configuration files.

Authentication properties

These parameters are not required. If a parameter is not specified, a default value is used. See

Authentication Parameters for Onboarding REST API Services for more details.

API ML Onboarding Configuration Sample

Some parameters which are specific for your service deployment are written in

${fill.your.parameterValue} format. For your service configuration file, provide actual values or

externalize your configuration using -D java commandline parameters.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#authentication-parameters

Tip: To determine if your configuration is complete, set the logging level to debug and run your

application. Setting the logging level to 'debug' enables you to troubleshoot issues with certificates for

HTTPS and connections with other services.

�. Provide the suitable parameter corresponding to your runtime environment:

For a local machine runtime environment, provide the following parameter on your command line:

At runtime, Spring will merge the two YAML configuration files, whereby the properties in the external

file have higher priority.

For a mainframe execution environment, provide environment specific configuration properties. Define

these configuration properties and provide them using Java System Properties on the application

execution command line.

Important! Ensure that the default configuration contains only properties which are not dependent on

the deployment environment. Do not include security sensitive data in the default configuration.

Note: For details about the configuration properties, see Configuring your service in the article

Onboarding a REST API service with the Plain Java Enabler (PJE).

SAF Keyring configuration

You can choose to use a SAF keyring instead of keystore and truststore for storing certificates. For

information about required certificates, see Zowe API ML TLS requirements. For information about running

Java on z/OS with a keyring, see SAF Keyring. Make sure that the enabler can access and read the keyring.

Please refer to documentation of your security system for details.

The following example shows enabler configuration with keyrings:

Custom Metadata

Custom metadata are described here.

Registering and unregistering your service with API ML

Onboarding a REST service to the API ML means registering the service with the API ML Discovery Service.

The registration is triggered automatically by Spring after the service application context is fully initialized by

firing a ContextRefreshed event.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-plain-java-enabler#configuring-your-service
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#zowe-api-ml-tls-requirements
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#API-ML-SAF-Keyring
https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata

To register your REST service with API ML using a Spring Boot enabler, annotate your application main

class with @EnableApiDiscovery .

Unregistering your service with API ML

Unregistering a service onboarded with API ML is done automatically at the end of the service application

shutdown process in which Spring fires a ContextClosed event. The Spring onboarding enabler listens

for this event and issues an unregister REST call to the API ML Discovery Service.

Basic routing

See API ML Basic Routing for more information about basic routing in the API ML.

Adding API documentation

Use the following procedure to add Swagger API documentation to your project.

Follow these steps:

�. Add a SpringFox Swagger dependency.

For Gradle, add the following dependency in build.gradle :

For Maven, add the following dependency in pom.xml :

�. Add a Spring configuration class to your project.

Example:

�. Customize this configuration according to your specifications. For more information about

customization properties, see Springfox documentation.

Note: The current SpringFox Version 2.9.2 does not support OpenAPI 3.0. For more information about

the open feature request see this issue.

Validating the discoverability of your API service by the
Discovery Service

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-routing
https://springfox.github.io/springfox/docs/snapshot/#configuring-springfox
https://github.com/springfox/springfox/issues/2022

Once you build and start your service successfully, you can use the option of validating that your service is

registered correctly with the API ML Discovery Service.

Follow these steps:

�. Validate successful onboarding

�. Check that you can access your API service endpoints through the Gateway.

�. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target

runtime environment.

Note: If you are working with local installation of API ML and you are using our dummy identity provider,

enter user for both username and password . If API ML was installed by system administrators, ask

them to provide you with actual addresses of API ML components and the respective user credentials.

Tip: Wait for the Discovery Service to fully register your service. This process may take a few minutes after

your service was successfully started.

Troubleshooting

Log messages during registration problems

When an Enabler connects to the Discovery Service and fails, an error message prints to the Enabler log.

The default setting does not suppress these messages as they are useful to resolve problems during the

Enabler registration. Possible reasons for failure include the location of Discovery Service is not correct, the

Discovery Service is down, or the TLS certificate is invalid. These messages continue to print to the Enabler

log, while the Enabler retries to connect to the Discovery Service.

To fully suppress these messages in your logging framework, set the log levels to OFF on the following

loggers:

Some logging frameworks provide other tools to suppress repeated messages. Consult the documentation

of the logging framework you use to find out what tools are available. The following example demonstrates

how the Logback framework can be used to suppress repeated messages.

Example:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

The Logback framework provides a filter tool, DuplicateMessageFilter.

Add the following code to your configuration file if you use XML configuration:

Note: For more information, see the full configuration used in the Core Services in GitHub.

http://logback.qos.ch/manual/filters.html#DuplicateMessageFilter
https://github.com/zowe/api-layer/blob/master/apiml-common/src/main/resources/logback.xml

Version: v2.2.x LTS

Onboarding a Micronaut based REST API
service

As an API developer, you can onboard a REST service to the Zowe API Mediation Layer using the Micronaut

framework. While using the Spring framework to develop a JVM-based service to register to the API ML is

the recommended method, you can use the procedure described in this article to onboard a service using

the Micronaut framework.

Note: For more information about onboarding API services with the API ML, see the Onboarding Overview.

For Micronaut-related documentation, see the Micronaut website.

Set up your build automation system

Specify the main class

Define the output jar file

(Optional) Create a shadow jar

Start the application

Configure the Micronaut application

Add API ML configuration

Add Micronaut configuration

Set up logging configuration

Validate successful registration

Set up your build automation system

Currently, the only build automation system for use with onboarding a Micronaut based service is Gradle.

Follow these steps:

�. Create a gradle.properties file in the root of your project if one does not already exist.

�. In the gradle.properties file, set the URL of the specific Artifactory containing the SpringEnabler

artifact.

�. Add the following Gradle code block to the repositories section of your build.gradle file:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://docs.micronaut.io/latest/guide/index#introduction

�. In the build.gradle file, add the micronaut enabler as a dependency:

�. (Optional) Add a shadow plug-in to create a runnable jar file. Update the gradle.build file with a

plugin:

�. Specify the main class with the following script:

�. Define the output jar file.

Add the following script to define the output of the jar file:

The following example shows a sample gradle.build file:

Example:

�. (Optional) Create a shadow jar.

To create a shadow jar, execute the gradle shadowJar task. For this sample, the plugin produces the

jar micronaut-enabler-1.0.jar in build/libs directory.

You can now run your application with the command java -jar micronaut-enabler-1.0.jar .

�. Start the application.

From the root directory of your project, start the application with the gradle run command.

Configure the Micronaut application

Use a yaml file to configure your Micronaut application. Create the following two sections in your yaml file:

apiml for API ML configuration

micronaut for micronaut configuration

Add API ML configuration

Use the following procedure to add API ML configuration to the application.yaml.

Follow these steps:

�. Add the following configuration to the apiml section in the yaml file:

where:

fill.your.service

specifies the ID of your service

�. Add SSL-resolving properties as shown in the following example. Ensure that you structure the nested

objects within apiml.service as arrays. Be sure to include - (hyphen) before enabled thereby

indicating the first element of the array.

Example:

Note: For a sample of this configuration, see API ML Onboarding Configuration Sample.

The yaml now contains configuration to register to the API Mediation Layer.

Add Micronaut configuration

Once you complete API ML configuration, add configuration to provide correct mapping between API ML

and micronaut parameters.

Follow these steps:

�. Add the following yaml snippet with the micronaut configuration parameters:

where:

apiml.service.serviceId

specifies the ID of your service

apiml.service.port

specifies the port on which the service listens

apiml.service.ssl[0].keyPassword

specifies the password that protects the key in keystore

apiml.service.ssl[0].keyStoreType

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-spring-boot-enabler#api-ml-onboarding-configuration-sample

specifies the type of the keystore, (Example: PKCS12)

apiml.service.ssl[0].keyStore

specifies the location of the keystore

apiml.service.ssl[0].keyAlias

specifies the alias under which the key is stored in the keystore

apiml.service.ssl[0].trustStorePassword

specifies the password that protects the certificates in the truststore

apiml.service.ssl[0].trustStore

specifies the location of the truststore

apiml.service.ssl[0].trustStoreType

specifies the type of the truststore, (Example: PKCS12)

apiml.service.ssl[0].ciphers

specifies the list of ciphers that user wants to enable for TLS communication

apiml.service.ssl[0].protocol

specifies the type of SSL/TLS protocol (Example: TLSv1.2)

(Optional) Set up logging configuration

Set up custom logging configuration to have more structured output and better control of logs.

Create a logback.xml file in the resources folder and include the application.yml . Update the

logback.xml file with the following configuration:

Validate successful registration

After you complete the configuration, ensure that your application is visible within Zowe API ML. For more

information, see the article validating the discoverability of your API service by teh Discovery Service, which

describes the validation procedure common for all enablers.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-spring-boot-enabler#validating-the-discoverability-of-your-api-service-by-the-discovery-service

Version: v2.2.x LTS

Onboarding a Node.js based REST API
service

This article is part of a series of onboarding articles, which outline the process of onboarding REST API

services to the Zowe API Mediation Layer (API ML). As a service developer, you can onboard a REST service

based on NodeJS with the API ML with the Zowe API Mediation Layer using our Node.js Enabler.

Note: For more information about onboarding API services with the API ML, see the Onboarding Overview.

Introduction

The API ML onboarding Node.js enabler is an NPM package which helps to simplify the process of

onboarding a REST service written in Node.js with the API ML.

For more information about how to utilize another API ML enablers, see the Onboarding Overview.

Onboarding your Node.js service with API ML

The following steps outline the overall process to onboard a REST service with the API ML using the

onboarding Node.js enabler. Each step is described in further detail in this article.

�. Prerequisites

�. Install the npm dependency

�. Configure your service

�. Register your service with API ML

�. (Optional) Validate the discoverability of your API service by the Discovery Service

Prerequisites

Ensure that you meet the following prerequisites:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview
https://www.npmjs.com/package/@zowe/apiml-onboarding-enabler-nodejs
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview

You satisfy the prerequisites from the Onboarding Overview.

The REST API service to onboard is written in Node.js.

The service is enabled to communicate with API ML Discovery Service over a TLS v1.2 secured

connection.

Installing the npm dependency

Install the onboarding Node.js enabler package as a dependency of your service. Run the following npm

command from your project directory:

Note: If you have a multi-module project, you have to run the npm command from the submodule where

your Node.js project is located.

Configuring your service

Create a yaml file named service-configuration.yml inside a /config directory at the same level

of your index.js , and add the following configuration properties.

The following example shows a sample configuration.

Example:

Registering your service with API ML

To register your service with API ML, use the following procedure.

Follow these steps:

�. Inside your Node.js service index.js , add the following code block to register your service with

Eureka:

�. Start your Node.js service and verify that the service is registered to the Zowe API Mediation Layer.

Validating the discoverability of your API service by the
Discovery Service

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview

Once you build and start your service successfully, you can use the option of validating that your service is

registered correctly with the API ML Discovery Service.

Follow these steps:

�. Validate successful onboarding

�. Check that you can access your API service endpoints through the Gateway.

�. (Optional) Check that you can access your API service endpoints directly outside of the Gateway.

Specific addresses and user credentials for the individual API ML components depend on your target

runtime environment.

Note: If you are working with a local installation of API ML, and you are using our dummy identity provider,

enter user for both username and password . If API ML was installed by system administrators, ask

them to provide you with actual addresses of API ML components and the respective user credentials.

Note: Wait for the Discovery Service to fully register your service. This process may take a few minutes after

your service starts successfully.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

Version: v2.2.x LTS

Onboard a REST API without code changes
required

As a user of Zowe™, onboard an existing REST API service to the Zowe™ API Mediation Layer without

changing the code of the API service. This form of onboarding is also refered to as, "static onboarding".

Note: When developing a new service, it is not recommended to onboard a REST service using this method,

as this method is non-native to the API Mediation Layer. For a complete list of methods to onboard a REST

service natively to the API Mediation Layer, see the Onboarding Overview.

The following procedure outlines the steps to onboard an API service through the API Gateway in the API

Mediation Layer without requiring code changes.

Identify the API that you want to expose

Define your service and API in YAML format

Route your API

Customize configuration parameters

Add and validate the definition in the API Mediation Layer running on your machine

Add a definition in the API Mediation Layer in the Zowe runtime

(Optional) Check the log of the API Mediation Layer

(Optional) Reload the services definition after the update when the API Mediation Layer is already

started

Tip: For more information about the structure of APIs and which APIs to expose in the Zowe API Mediation

Layer, see the Onboarding Overview.

Identify the APIs that you want to expose

The first step in API service onboarding is to identify the APIs that you want to expose.

Follow these steps:

�. Identify the following parameters of your API service:

Hostname

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#service-onboarding-guides
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview

Port

(Optional) base path where the service is available. This URL is called the base URL of the service.

Example:

In the sample service described in the Onboarding Overview, the URL of the service is:

http://localhost:8080 .

�. Identify the API of the service that you want to expose through the API Gateway.

Example:

The API provided by the sample service is a second version of the Pet Store API. All the endpoints to be

onboarded are available through http://localhost:8080/v2/ URL. This REST API is therefore

available at the path /v2 relative to base URL of the service. There is no version 1 in this case.

�. Choose the service ID of your service. The service ID identifies the service uniquely in the API

Gateway. The service ID is an alphanumeric string in lowercase ASCII.

Example:

In the sample service, the service ID is petstore .

�. Decide which URL to use to make this API available in the API Gateway. This URL is referred to as the

gateway URL and is composed of the API type and the major version. The usually used types are: api ,

ui and ws but you can use any valid URL element you want.

Example:

In the sample service, we provide a REST API. The first segment is /api as the service provides only

one REST API. To indicate that this is version 2, the second segment is /v2 . This version is required by

the Gateway. If your service does not have a version, use v1 on the Gateway.

Define your service and API in YAML format

After you identify the APIs you want to expose, you need to define your service and API in YAML format as

presented in the following sample petstore service example.

Example:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#sample-rest-api-service

To define your service in YAML format, provide the following definition in a YAML file as in the following

sample petstore service. This configuration is the minimal configuration necessary for the Gateway to

properly route the requests to the application and to show the Service in the Catalog UI.

Note: For more details about configuration, see Customize configuration parameters.

In this example, a suitable name for the file is petstore.yml .

Notes:

The filename does not need to follow specific naming conventions but it requires the .yml extension.

The file can contain one or more services defined under the services: node.

Each service has a service ID. In this example, the service ID is petstore . The service id is used as a

part of the request URL towards the Gateway. It is removed by the Gateway when forwarding the

request to the service.

The service can have one or more instances. In this case, only one instance

http://localhost:8080 is used.

One API is provided and the requests with the relative base path api/v2 at the API Gateway (full

gateway URL: https://gateway:port/serviceId/api/v2/...) are routed to the relative base

path /v2 at the full URL of the service (http://localhost:8080/v2/...).

The file on USS should be encoded in ASCII to be read correctly by the API Mediation Layer.

Tips:

There are more examples of API definitions at this link.

For more details about how to use YAML format, see this link.

Route your API

Routing is the process of sending requests from the API Gateway to a specific API service. Route your API by

using the same format as in the following petstore example. The configuration parameters are explained

in Customize configuration parameters. Gateway URL format:

Note: The API Gateway differentiates major versions of an API.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-static-definition#customize-configuration-parameters
https://github.com/zowe/api-layer/tree/master/config/local/api-defs
https://learnxinyminutes.com/docs/yaml/

Example:

When the configuration parameters are:

To access API version 2 of the service petstore , gateway URL will be:

It will be routed to:

To access resource pets of the petstore version 2 API, gateway URL will be:

It will be routed to:

Note: This method enables you to access the service through a stable URL, and move the service to another

machine without changing the gateway URL. Accessing a service through the API Gateway also enables you

to have multiple instances of the service running on different machines to achieve high-availability.

Customize configuration parameters

This part contains a more complex example of the configuration and an explanation of all the possible

parameters:

serviceId

This parameter specifies the service instance identifier that is registered in the API Mediation Layer

installation. The service ID is used in the URL for routing to the API service through the Gateway. The

service ID uniquely identifies the service in the API Mediation Layer. The system administrator at the

customer site defines this parameter.

Important! Ensure that the service ID is set properly with the following considerations:

When two API services use the same service ID, the API Gateway considers the services to be

clones (i.e. two instances for the same service). An incoming API request can be routed to either of

them.

The same service ID should be set only for multiple API service instances for API scalability.

The service ID value must contain only lowercase alphanumeric characters.

The service ID cannot contain more than 40 characters.

The service ID is linked to security resources. Changes to the service ID require an update of

security resources.

Examples:

If the customer system administrator sets the service ID to monitoringpr1 , the API URL in the

API Gateway appears as the following URL:

If customer system administrator sets the service ID to authenticationprod1 , the API URL in

the API Gateway appears as the following URL:

title

This parameter specifies the human readable name of the API service instance (for example,

Monitoring Prod or systemInfo LPAR1). This value is displayed in the API catalog when a

specific API service instance is selected. This parameter is externalized and set by the customer system

administrator.

Tip: We recommend that you provide a specific default value of the title . Use a title that describes

the service instance so that the end user knows the specific purpose of the service instance.

description

This parameter specifies a short description of the API service.

Examples:

Monitoring Service - Production Instance

System Info Service running on LPAR1

This value is displayed in the API Catalog when a specific API service instance is selected. This

parameter is externalized and set by the customer system administrator.

Tip: Describe the service so that the end user knows the function of the service.

instanceBaseUrls

This parameter specifies a list of base URLs to your service's REST resource. It will be the prefix for the

following URLs:

homePageRelativeUrl

statusPageRelativeUrl

healthCheckRelativeUrl

Examples:

- http://host:port/ftpservice for an HTTP service

- https://host:port/source-code-mngmnt for an HTTPS service

You can provide one URL if your service has one instance. If your service provides multiple

instances for the high-availability then you can provide URLs to these instances.

Examples:

- https://host1:port1/source-code-mngmnt

- https://host2:port2/source-code-mngmnt

homePageRelativeUrl

This parameter specifies the relative path to the homepage of your service. The path should start with

/ . If your service has no homepage, omit this parameter. The path is relative to the instanceBaseUrls.

Examples:

homePageRelativeUrl: / The service has homepage with URL ${baseUrl}/

homePageRelativeUrl: /ui/ The service has homepage with URL ${baseUrl}/ui/

homePageRelativeUrl: The service has homepage with URL ${baseUrl}

statusPageRelativeUrl

This parameter specifies the relative path to the status page of your service. Start this path with / . If

you service doesn't have a status page, omit this parameter. The path is relative to the

instanceBaseUrls.

Example:

statusPageRelativeUrl: /application/info

the result URL will be:

${baseUrl}/application/info

healthCheckRelativeUrl

This parameter specifies the relative path to the health check endpoint of your service. Start this URL

with / . If your service does not have a health check endpoint, omit this parameter. The path is relative

to the instanceBaseUrls.

Example:

healthCheckRelativeUrl: /application/health

This results in the URL:

${baseUrl}/application/health

routes

The following parameters specify the routing rules between the Gateway service and your service. Both

specify how the API endpoints are mapped to the API Gateway endpoints.

routes.gatewayUrl

The gatewayUrl parameter sets the target endpoint on the Gateway. This is the portion of the final

URL that is Gateway specific.

Example:

For the petstore example, the full Gateway URL would be:

https://gatewayUrl:1345/petstore/api/v2/pets/1

In this case, the URL that will be called on the service is:

http://localhost:8080/v2/pets/1

routes.serviceRelativeUrl

The serviceRelativeUrl parameter points to the target endpoint on the service. This is the base path

on the service called through the Gateway.

authentication

Parameters under this grouping allow a service to accept the Zowe JWT token. The API Gateway

translates the token to an authentication method supported by a service.

authentication.scheme

This parameter specifies a service authentication scheme. The following schemes are supported

by the API Gateway:

bypass

This value specifies that the token is passed unchanged to the service. This is the default

scheme when no authentication parameters are specified.

zoweJwt

This value specifies that a service accepts the Zowe JWT token. No additional processing is

done by the API Gateway.

httpBasicPassTicket

This value specifies that a service accepts PassTickets in the Authorization header of the

HTTP requests using the basic authentication scheme. It is necessary to provide a service

APPLID in the apiml.authentication.applid parameter.

Tip: For more information, see Enabling PassTicket creation for API Services that accept

PassTickets.

safIdt

This value specifies that the application recognizes the SAF IDT scheme and fills the X-SAF-

Token header with the token produced by the Saf IDT provider implementation.

For more information, see SAF IDT provider

x509

This value specifies that a service accepts client certificates forwarded in the HTTP header.

The Gateway service extracts information from a valid client certificate. For validation, the

certificate needs to be trusted by API Mediation Layer, and needs to contain a Client

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-passtickets
https://docs.zowe.org/v2.2.x/extend/extend-apiml/implement-new-saf-provider

Authentication (1.3.6.1.5.5.7.3.2) entry in Extended Key Usage. To use this scheme, it is also

necessary to specify which headers to include. Specify these parameters in headers .

zosmf

This value specifies that a service accepts z/OSMF LTPA (Lightweight Third-Party

Authentication). This scheme should only be used for a z/OSMF service used by the API

Gateway Authentication Service, and other z/OSMF services that are using the same LTPA key.

Tip: For more information about z/OSMF Single Sign-on, see Establishing a single sign-on

environment.

authentication.headers

When the x509 scheme is specified, use the headers parameter to select which values to

send to a service. Use one of the following values:

X-Certificate-Public

The public part of client certificate base64 encoded

X-Certificate-DistinguishedName

The distinguished name from client certificate

X-Certificate-CommonName

The common name from the client certificate

authentication.applid

This parameter specifies a service APPLID. This parameter is only valid for the

httpBasicPassTicket authentication scheme.

apiInfo

This section defines APIs that are provided by the service. Currently, only one API is supported.

apiInfo.apiId

that uses lowercase alphanumeric characters and a dot: . .

https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zosmfcore.multisysplex.help.doc/izuG00hpManageSecurityCredentials.html

apiInfo.gatewayUrl

This parameter specifies the base path at the API Gateway where the API is available. Ensure that

this path is the same as the gatewayUrl value in the routes sections.

apiInfo.swaggerUrl

(Optional) This parameter specifies the HTTP or HTTPS address where the Swagger JSON

document is available.

apiInfo.documentationUrl

(Optional) This parameter specifies a URL to a website where external documentation is provided.

This can be used when swaggerUrl is not provided.

apiInfo.version

(Optional) This parameter specifies the actual version of the API in semantic versioning format. This

can be used when swaggerUrl is not provided.

apiInfo.defaultApi

(Optional) This parameter specifics that the API is the default one to show in the API Catalog. If this

not set to true for any API, or multiple APIs have it set to true, then the default API becomes the API

with the highest major version as seen in apiInfo.version .

customMetadata

Custom metadata are described here.

catalogUiTileId

This parameter specifies the unique identifier for the API services group. This is the grouping value used

by the API Mediation Layer to group multiple API services together into "tiles". Each unique identifier

represents a single API Catalog UI dashboard tile. Specify the value based on the ID of the defined tile.

catalogUiTile

This section contains definitions of tiles. Each tile is defined in a section that has its tile ID as a key. A tile

can be used by multiple services.

https://semver.org/
https://docs.zowe.org/v2.2.x/extend/extend-apiml/custom-metadata

catalogUiTile.{tileId}.title

This parameter specifies the title of the API services product family. This value is displayed in the

API Catalog UI dashboard as the tile title.

catalogUiTile.{tileId}.description

This parameter specifies the detailed description of the API Catalog UI dashboard tile. This value is

displayed in the API Catalog UI dashboard as the tile description.

additionalServiceMetadata

This section contains a list of changes that allows adding or modifying metadata parameters for the

corresponding service.

additionalServiceMetadata.serviceId

This parameter specifies the service identifier for which metadata is updated.

additionalServiceMetadata.mode

This parameter specifies how the metadata are updated. The following modes are available:

UPDATE

Only missing parameters are added. Already existing parameters are ignored.

FORCE_UPDATE

All changes are applied. Existing parameters are overwritten.

additionalServiceMetadata.{updatedParameter}

This parameter specifies any metadata parameters that are updated.

Add and validate the definition in the API Mediation Layer
running on your machine

After you define the service in YAML format, you are ready to add your service definition to the API

Mediation Layer ecosystem.

The following procedure describes how to add your service to the API Mediation Layer on your local

machine.

Follow these steps:

�. Copy or move your YAML file to the config/local/api-defs directory in the directory with API

Mediation Layer.

�. Start the API Mediation Layer services.

Tip: For more information about how to run the API Mediation Layer locally, see Running the API

Mediation Layer on Local Machine.

�. Run your Java application.

Tip: Wait for the services to be ready. This process may take a few minutes.

�. Validate successful onboarding

You successfully defined your Java application if your service is running and you can access the service

endpoints. The following example is the service endpoint for the sample application:

https://localhost:10010/petstore/api/v2/pets/1

Add a definition in the API Mediation Layer in the Zowe
runtime

After you define and validate the service in YAML format, you are ready to add your service definition to the

API Mediation Layer running as part of the Zowe runtime installation on z/OS.

Follow these steps:

�. Locate the Zowe instance directory. The Zowe instance directory is the directory from which Zowe was

launched, or else was passed as an argument to the SDSF command used to start Zowe. If you are

unsure which instance directory a particular Zowe job is using, open the JESJCL spool file and

navigate to the line that contains STARTING EXEC ZWESVSTC,INSTANCE= . This is the fully qualified

path to the instance directory.

Note: We use the ${zoweInstanceDir} symbol in following instructions.

https://github.com/zowe/api-layer/blob/master/docs/local-configuration.md
https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml

�. Add the fully qualified zFS path of your YAML file to ZWE_STATIC_DEFINITIONS_DIR in

zowe.yaml .

To hold your YAML file outside of the instance directory, add ZWE_STATIC_DEFINITIONS_DIR

variable to the zowe.environments section of zowe.yaml . Append the fully qualified zFS

path of the YAML file to the ZWE_STATIC_DEFINITIONS_DIR variable. You may specify multiple

zFS paths, separating each path by a semicolon.

To place your YAML file within the instance directory, copy your YAML file to the

${zoweInstanceDir}/workspace/api-mediation/api-defs directory.

Notes:

The ${zoweInstanceDir}/workspace/api-mediation/api-defs directory is created the

first time that Zowe starts. If you have not yet started Zowe, this directory might be missing.

The user ID ZWESVUSR that runs the Zowe started task must have permission to read the YAML

file.

�. Ensure that your application that provides the endpoints described in the YAML file is running.

�. Restart Zowe runtime or follow steps in section (Optional) Reload the services definition after the

update when the API Mediation Layer is already started which allows you to add your static API service

to an already running Zowe.

�. Validate successful onboarding

You successfully defined your Java application if your service is running and you can access its endpoints.

The endpoint displayed for the sample application is:

(Optional) Check the log of the API Mediation Layer

The API Mediation Layer log can contain messages based on the API ML configuration. The API ML prints

the following messages to its log when the API definitions are processed:

Note: If these messages are not displayed in the log, ensure that the API ML debug mode is active.

(Optional) Reload the services definition after the update
when the API Mediation Layer is already started

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview#verify-successful-onboarding-to-the-api-ml
https://docs.zowe.org/stable/troubleshoot/troubleshoot-apiml#enable-api-ml-debug-mode

The following procedure enables you to refresh the API definitions after you change the definitions when the

API Mediation Layer is already running.

Follow these steps:

�. Use a REST API client to issue a POST request to the Discovery Service (port 10011):

http://localhost:10011/discovery/api/v1/staticApi

The Discovery Service requires authentication by a client certificate. If the API Mediation Layer is

running on your local machine, the certificate is stored at keystore/localhost/localhost.pem .

This example uses the HTTPie command-line HTTP client and is run with Python 3 installed:

Alternatively, it is possible to use curl to issue the POST call if it is installed on your system:

�. Check if your updated definition is effective.

Note: It can take up to 30 seconds for the API Gateway to pick up the new routing.

https://httpie.org/

Version: v2.2.x LTS

Onboarding a REST API service with the
YAML Wizard

As an API developer, you can use the Yaml Onboarding Wizard to simplify the process of onboarding new

REST API services to the Zowe API Mediation Layer. The wizard offers a walkthrough of the required steps to

create a correct configuration file which is used to set the application properties and Eureka metadata.

Onboarding your REST service with the Wizard

The following procedure describes how to onboard your REST service with the Wizard.

Follow these steps:

�. In the dashboard of the API Catalog, click the Onboard New API dropdown located in the navbar.

�. Choose the type of onboarding according to your preference (static or via enablers).

�. (Optional) To prefill the fields, click Choose File to upload a complete or partial YAML file. The YAML file

is validated and the form fields are populated.

�. Fill in the input fields according to your service specifications.

�. Address each of the categories in the dialog dropdown.

�. Click Save to apply your changes.

�. Validate successful onboarding with the following step according to your onboarding method.

For static onboarding, the following validation message appears after successful onboarding:

For onboarding using an enabler, click Copy to save the generated yaml file to your clipboard. Then

paste this yaml file in your project's service-configuration.yml file.

If you see your service in the list of API Catalog available services, you have onboarded your service

successfully.

Version: v2.2.x LTS

Zowe API Mediation Layer Single-Sign-On
Overview

You can extend Zowe and utilize Zowe Single-Sign-On (SSO) provided by Zowe API Mediation Layer (API

ML) to enhance system security and improve the user experience.

This article provides an overview of the API ML single-sign-on feature, the principle participants in the SSO

process, and links to detailed Zowe SSO documentation. Zowe Single-Sign-On is based on single-user

authentication which produces an access token that represents the user in communication with z/OS

services accessible through the API Mediation Layer. The access token is issued by the Zowe Authentication

and Authorization Service (ZAAS), which is part of API ML. ZAAS issues an access token based on valid

z/OS credentials. This token can be validated by any component participating in SSO.

Note: Currently, API ML can provide SSO only in a single security domain.

Zowe API ML client

API service accessed via Zowe API ML

Existing services that cannot be modified

The following diagram describes the interactions between the general participants in the single-sign-on

process.

There are two main types of components that participate in Zowe SSO through API ML:

Zowe API ML client

This type of component is user-facing and can obtain user credentials through a user interface

(web, CLI, desktop).

API ML clients can be confidential or public.

A Zowe API ML client calls API services through the API ML.

An example of such clients are Zowe CLI or Zowe Desktop.

An API service accessed through Zowe API ML

A service that is registered to API ML and is accessed through the API Gateway.

Services are protected by an access token or PassTicket.

The access token or PassTicket can be validated by the called API service.

The following sections describe what is necessary to utilize SSO for both types of components.

Zowe API ML client

The Zowe API ML client needs to obtain an access token via the /login endpoint of ZAAS by

providing z/OS credentials.

A client can call the ZAAS /query endpoint to validate the token and get information from the token.

This is useful when the API client has the token but does not store the associated data such as the user

ID.

The API client needs to provide the access token to API services in the form of a Secure HttpOnly

cookie with the name apimlAuthenticationToken , or in the Authorization: Bearer HTTP

header as described in Authenticated Request.

API service accessed via Zowe API ML

This section describes the requirements that an API service needs to satisfy to adopt a Zowe SSO access

token.

The token received by the Gateway is first validated and then may be passed directly to the service.

Alternatively, the Gateway can exchange the token for a PassTicket if the API service is configured to

expect a PassTicket.

The API service can validate the token and extract information about the user ID by calling the ZAAS

/query endpoint.

The alternative is to validate the signature of the JWT token using the public key of the token issuer

(e.g. the API ML Gateway). The API service needs to have the API ML Gateway certificate along with the

full CA certification chain in the API service truststore.

Note: The REST API of ZAAS can easily be called from a Java application using the ZAAS Client.

Existing services that cannot be modified

If you have a service that cannot be changed to adopt the Zowe authentication token, the service can utilize

Zowe SSO if the API service is able to handle PassTickets.

https://github.com/zowe/sample-spring-boot-api-service/blob/master/zowe-rest-api-sample-spring/docs/api-client-authentication.md#authenticated-request
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#zaas-client

Note: For more information, see Enabling PassTicket creation for API Services that Accept PassTickets for

more details.

Further resources

Authentication Methods

User guide for SSO in Zowe CLI

System requirements for using web tokens for SSO in Zlux and ZSS

Certificate configuration for the usage of web tokens for SSO in Zlux and ZSS

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-passtickets
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#Supported-authentication-methods
https://docs.zowe.org/stable/user-guide/cli-usingcli#accessing-multiple-services-with-sso
https://docs.zowe.org/stable/user-guide/systemrequirements#using-web-tokens-for-sso-on-zlux-and-zss
https://docs.zowe.org/stable/user-guide/configure-certificates#using-web-tokens-for-sso-on-zlux-and-zss

Version: v2.2.x LTS

Obtaining Information about API Services

As an API Mediation Layer user, information about API services can be obtained for various purposes. The

following list presents some of the use cases for using the API Mediation Layer:

To display available services based on a particular criterion (API ID, hostname, or custom metadata)

To locate a specific API service based on one or more specific criteria (for example the API ID)

To obtain information that permits routing through the API Gateway such as baseUrl or basePath

To obtain information about an API service, the service APIs, or instances of the service

This article provides further detail about each of these use cases.

API ID in the API Mediation Layer

Protection of Service Information

API Endpoints

Obtain Information about a Specific Service

Obtain Information about All Services

Obtain Information about All Services with a Specific API ID

API ID in the API Mediation Layer

The API ID uniquely identifies the API in the API ML. The API ID can be used to locate the same APIs that are

provided by different service instances. The API developer defines this ID.

For more information about baseUrl or basePath, see Components of URL.

Protection of Service Information

Information about API services is considered sensitive as it contains partial information about the internal

topology of the mainframe system. As such, this information should be made accessible only by authorized

users and services.

Access to this information requires authentication using mainframe credentials, and a SAF resource check is

done. The resource class and resource is defined in the ZWESECUR job. You can find more details about the

ZWESECUR job in Configuring the z/OS system for Zowe.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-components-of-URL
https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system

The security administrator needs to permit READ access to the APIML.SERVICES resource in the ZOWE

resource class to the your that can access the information about API services.

In IBM RACF, the access to the service information can be given by:

In Top Secret:

In ACF2:

API Gateway can be configured to check for SAF resource authorization in several ways. For details, see SAF

Resource Checking

API Endpoints

Obtain Information about a Specific Service

Use the following method to get information about a specific service:

GET /gateway/{serviceId}/api/v1/services

where:

{serviceId} is the service ID of the API service (Example: apicatalog)

This method returns a JSON response that describes the service. For more information, see Response

Format.

Obtain Information about All Services

Use the following method to get information about all services:

GET /gateway/api/v1/services

This method returns a JSON response with a list of all services. For more information, see Response Format.

Obtain Information about All Services with a Specific API ID

Use the following method to get information about all services with a specific API ID:

GET /gateway/api/v1/services?apiId={apiId}

https://docs.zowe.org/v2.2.x/user-guide/api-mediation/api-gateway-configuration#saf-resource-checking

where:

{apiId} is the API ID that represents required API (e.g. zowe.apiml.apicatalog)

This method returns a JSON response with a list of services provided by a specified API ID. For more

information, see Response Format.

Response Format

This section provides basic information about the structure of the response. The full reference on the field in

the response is presented in the API Catalog.

The apiml section provides information about the following points:

The service in the service subsection is displayed.

The APIs that are provided by the service in the apiInfo section. This section presents each major

API version that is provided by at least one instance. For each major version, the lowest minor version is

displayed.

The authentication methods that are supported by all instances are displayed.

API clients can use this information to locate the API based on API ID. baseUrl or basePath are used to

access the API through the API Gateway.

The instances section contains more details about the instances of the service. An API service can

provide more application specific details in customMetadata that can be used by API clients. Do not use

information in this section for use cases that API Gateway supports, such as routing or load balancing.

Example:

Version: v2.2.x LTS

WebSocket support in API Gateway

The API Gateway includes a basic WebSocket proxy which enables the Gateway to access applications that

use the WebSocket protocol together with a web UI and REST API.

The service can define what WebSocket services are exposed using Eureka metadata.

Example:

These metadata make it possible for requests from

wss://gatewayHost:port/serviceId/ws/v1/path to map to

ws://serviceHost:port/discoverableclient/ws/path , where:

serviceId
is the service ID of the service

path
is the remaining path segment in the URL.

Security and Authentication

The API Gateway usually uses TLS with the wss protocol. Services that use TLS enable the API Gateway to

use wss to access these services. Services that do not use TLS require the API Gateway to use the ws

protocol without TLS. The API Gateway also supports basic authentication via WebSocket.

Subprotocols

In addition to plain WebSocket support, API Mediation Layer also supports WebSocket subprotocols.

Currently, only STOMP v1.2 and STOMP v1.1 are supported and tested.

Note: It is possible to update the list of currently supported WebSocket subprotocols. Update the API

Gateway configuration using the environment variable SERVER_WEBSOCKET_SUPPORTEDPROTOCOLS with

the value of comma-separated subprotocol names. Support for additional subprotocols is not guaranteed as

these subprotocols are not being tested.

Example:

High availability

In the high availability scenario, the API Gateway makes it possible to open a new Websocket session by

utilizing the load balancing mechanism. Communication between the client and the server is handled by the

API Gateway by propagating the session to a live instance.

Diagnostics

The list of active routed WebSocket sessions is available at the Actuator endpoint websockets . On

localhost , it is available at https://localhost:10010/application/websockets.

Limitations

Different HTTP status code errors may result. The WebSocket session starts before the session between the

Gateway and the service starts. When a failure occurs when connecting to a service, the WebSocket session

terminates with a WebSocket close code and a description of the failure rather than an HTTP error code.

Version: v2.2.x LTS

Create an Extension for API ML

Zowe allows extenders to define their own extension for API ML. Follow the steps in this article to create your

extension and add it to the API Gateway classpath.

Note: The api-sample-extension-package contains a sample manifest.yml and the apiml-

sample-extension JAR that contains the extension.

Follow these steps:

�. Create a JAR file from your extension. See the API ML sample extension to model the format of the JAR.

�. Create a manifest.yml with the following structure. See the sample manifest.yml to model the

format of the yaml file.

For more information, see Packaging z/OS extensions.

Example:

The extension directory <instance>/workspace/gateway/sharedLibs/ is then added to the API

Gateway class path as part of the Zowe instance preparation.

Note: The paths defined under gatewaySharedLibs can either be a path to the directory where the

extensions JARs are located, or a path to the files.

Example:

After the JAR file and manifest.yml are customized according to your application, the extension is

extracted, scanned and added to the extension directory during the Zowe instance preparation. When the

API Gateway starts, the the API Gateway consumes the sample extension.

The extension should now be correctly added to the API Gateway classpath.

Call the REST endpoint for validation

Follow these steps to validate that you can call the REST endpoint defined in the controller via the API

Gateway:

https://github.com/zowe/api-layer/blob/master/apiml-sample-extension
https://github.com/zowe/api-layer/blob/master/apiml-sample-extension-package/src/main/resources/manifest.yaml
https://docs.zowe.org/v2.2.x/extend/packaging-zos-extensions

�. Call the https://<hostname>:<gatewayPort>/api/v1/greeting endpoint though Gateway.

�. Verify that you receive the message, Hello, I'm a sample extension! as the response.

Version: v2.2.x LTS

API Mediation Layer Message Service
Component

The API ML Message Service component unifies and stores REST API error messages and log messages in a

single file. The Message Service component enables users to mitigate the problem of message definition

redundancy which helps to optimize the development process.

API Mediation Layer Message Service Component

Message Definition

Creating a message

Mapping a message

API ML Logger

Message Definition

API ML uses a customizable infrastructure to format both REST API error messages and log messages.

yaml files make it possible to centralize both API error messages and log messages. Messages have the

following definitions:

Message key - a unique ID in the form of a dot-delimited string that describes the reason for the

message. The key enables the UI or the console to show a meaningful and localized message.

Tips:

We recommend using the format org.zowe.sample.apiservice.{TYPE}.greeting.empty

to define the message key. {TYPE} can be the api or log keyword.

Use the message key and not the message number . The message number makes the code

less readable, and increases the possibility of errors when renumbering values inside the number .

Message number - a typical mainframe message ID (excluding the severity code)

Message type - There are two Massage types:

REST API error messages: ERROR

Log messages: ERROR , WARNING , INFO , DEBUG , or TRACE

Message text - a description of the issue

Message reason - A reason for why this issue occured

Message action - What should I as a user do to correct the problem

The following example shows the message definition.

Example:

Creating a message

Use the following classes when you create a message:

org.zowe.apiml.message.core.MessageService - lets you create a message from a file.

org.zowe.apiml.message.yaml.YamlMessageService - implements

org.zowe.apiml.message.core.MessageService so that

org.zowe.apiml.message.yaml.YamlMessageService can read message information from a

yaml file, and create a message with message parameters.

Use the following process to create a message.

Follow these steps:

�. Load messages from the yaml file.

Example:

�. Use the Message createMessage(String key, Object... parameters); method to create a

message.

Example:

Mapping a message

You can map the Message either to a REST API response or to a log message.

When you map a REST API response, use the following methods:

mapToView - returns a UI model as a list of API Message, and can be used for Rest API error

messages

mapToApiMessage - returns a UI model as a single API Message

The following example is a result of using the mapToView method.

Example:

The following example is the result of using the mapToApiMessage method.

Example:

API ML Logger

The org.zowe.apiml.message.log.ApimLogger component controls messages through the

Message Service component.

The following example uses the log message definition in a yaml file.

Example:

When you map a log message, use mapToLogMessage to return a log message as text. The following

example is the output of the mapToLogMessage .

Example:

Use the ApimlLogger to log messages which are defined in the yaml file.

Example:

The following example shows the output of a successful ApimlLogger usage.

Example:

Version: v2.2.x LTS

Zowe API Mediation Layer Security

Zowe API Mediation Layer Security

How API ML transport security works

Transport layer security

Authentication

Zowe API ML services

Zowe API ML TLS requirements

Authentication for API ML services

Authentication endpoints

Supported authentication methods

Authentication with Username Password

Authentication with Client certificate

Authentication with JWT Token

Authentication parameters

Authentication providers

z/OSMF Authentication Provider

SAF Authentication Provider

Dummy Authentication Provider

Authorization

JWT Token

z/OSMF JSON Web Tokens Support

API ML truststore and keystore

API ML SAF Keyring

Discovery Service authentication

Setting ciphers for API ML services

ZAAS Client

Pre-requisites

API Documentation

Obtain a JWT token (login)

Validate and get details from the token (query)

Invalidate a JWT token (logout)

Obtain a PassTicket (passTicket)

Getting Started (Step by Step Instructions)

Certificate management in Zowe API Mediation Layer

Running on localhost

How to start API ML on localhost with full HTTPS

Certificate management script

Generate certificates for localhost

Generate a certificate for a new service on localhost

Add a service with an existing certificate to API ML on localhost

Service registration to Discovery Service on localhost

Zowe runtime on z/OS

Import the local CA certificate to your browser

Generate a keystore and truststore for a new service on z/OS

Add a service with an existing certificate to API ML on z/OS

Procedure if the service is not trusted

How API ML transport security works

Security within the API Mediation Layer (API ML) is performed on several levels. This article describes how

API ML uses Transport Layer Security (TLS). As a system administrator or API developer, use this guide to

familiarize yourself with the following security concepts:

Transport layer security

The TLS protocol should be used to ensure secure data-transport for all connections to API Mediation Layer

services. While it is possible to disable the TLS protocol for debugging purposes or other use-cases, the

enabled TLS protocol is the default mode.

Authentication

Authentication is how an entity, whether it be a user (API Client), or an application (API Service), proves its

true identity.

API ML uses the following authentication methods:

User ID and password

The user ID and password are used to retrieve authentication tokens

Requests originate from a user

The user ID and password are validated by a z/OS security manager whereby a token is issued that

is then used to access the API service

TLS client certificates

Certificates are used for service-only requests

Zowe API ML services

The following range of service types apply to the Zowe™ API ML:

Zowe API ML services

Gateway Service (GW) The Gateway is the access point for API clients that require access to API

services. API services can be accessed through the Gateway by API Clients. The Gateway receives

information about an API Service from the Discovery Service.

Discovery Service (DS) The Discovery Service collects information about API services and

provides this information to the Gateway and other services. API ML internal services also register

to the Discovery Service.

API Catalog (AC) The Catalog displays information about API services through a web UI. The

Catalog receives information about an API service from the Discovery Service.

Authentication and Authorization Service (AAS)

AAS provides authentication and authorization functionality to check user access to resources on z/OS.

The API ML uses z/OSMF API for authentication. For more information, see the API ML wiki

API Clients

API Clients are external applications, users, or other API services that access API services through the

API Gateway

API Services

API services are applications that are accessed through the API Gateway. API services register

themselves to the Discovery Service and can access other services through the Gateway. If an API

https://github.com/zowe/api-layer/wiki/Zowe-Authentication-and-Authorization-Service

service is installed so that direct access is possible, API services can access other services without the

Gateway. When APIs access other services, they can also function as API clients.

Zowe API ML TLS requirements

The API ML TLS requires servers to provide HTTPS ports. Each API ML service has the following specific

requirements:

API Client

The API Client is not a server

Requires trust of the API Gateway

Has a truststore or SAF keyring that contains certificates required to trust the Gateway

Gateway Service

Provides an HTTPS port

Has a keystore or SAF keyring with a server certificate

The certificate needs to be trusted by API Clients

This certificate should be trusted by web browsers because the API Gateway can be used to

display web UIs

Has a truststore or SAF keyring that contains certificates needed to trust API Services

API Catalog

Provides an HTTPS port

Has a keystore or SAF keyring with a server certificate

The certificate needs to be trusted by the API Gateway

This certificate does not need to be trusted by anyone else

Discovery Service

Provides an HTTPS port

Has a keystore or SAF keyring with a server certificate

Has a truststore or SAF keyring that contains certificates needed to trust API services

API Service

Provides an HTTPS port

Has a keystore or SAF keyring with a server and client certificate

The server certificate needs to be trusted by the Gateway

The client certificate needs to be trusted by the Discovery Service

The client and server certificates can be the same

These certificates do not need to be trusted by anyone else

Has a truststore or SAF keyring that contains one or more certificates that are required to trust the

Gateway and Discovery Service

Authentication for API ML services

API Gateway

The API Gateway handles authentication

There are two authentication endpoints that allow authentication of the resource by providers

Diagnostic endpoints https://{gatewayUrl}:{gatewayPort}/application/** in API

Gateway are protected by basic authentication, Zowe JWT token, or a client certificate

API Catalog

API Catalog is accessed by users and requires a login

Protected access is performed by the Authentication and Authorization Service

Discovery Service

Discovery Service is accessed by API Services

This access (reading information and registration) requires protection by means of a client

certificate

(Optional) Access can be granted to users (administrators)

Diagnostic endpoints https://{gatewayUrl}:{gatewayPort}/application/** in

Discovery Service are protected by basic authentication, Zowe JWT token, or a client certificate

API Services

Authentication is service-dependent

It is recommended to use the Authentication and Authorization Service for authentication

Authentication endpoints

The API Gateway contains the following REST API authentication endpoints:

auth/login

The full path of the auth/login endpoint appears as https://{gatewayUrl} :

{gatewayPort}/gateway/api/v1/auth/login .

The auth/login endpoint authenticates mainframe user credentials and returns an authentication

token. The login request requires user credentials though one of the following methods:

Basic access authentication

JSON with user credentials

Client certificate

When authentication is successful, the response to the request is an empty body and a token is

contained in a secure HttpOnly cookie named apimlAuthenticationToken . When

authentication fails, the user receives a 401 status code.

auth/query

The full path of the auth/query endpoint appear as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/query .

The auth/query endpoint validates the token and retrieves the information associated with the

token. The query request requires the token through one of the following methods:

A cookie named apimlAuthenticationToken

Bearer authentication

When authentication is successful, the response to the request is a JSON object which contains

information associated with the token. When authentication fails, the user receives a 401 status

code.

auth/ticket

The auth/ticket endpoint generates a PassTicket for the user associated with a token. The full path

of the auth/ticket endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/ticket .

This endpoint is protected by a client certificate. The ticket request requires the token in one of the

following formats:

Cookie named apimlAuthenticationToken .

Bearer authentication

The request takes the applicationName parameter, which is the name of the application for which

the PassTicket should be generated. Supply this parameter.

The response is a JSON object, which contains information associated with the ticket.

auth/refresh

Notes:

The endpoint is disabled by default. For more information, see Enable JWT token endpoint.

The endpoint is protected by a client certificate.

The auth/refresh endpoint generates a new token for the user based on valid jwt token. The full

path of the auth/refresh endpoint appears as https://{gatewayUrl}:

{gatewayPort}/gateway/api/v1/auth/refresh . The new token overwrites the old cookie with a

Set-Cookie header. As part of the process, the old token gets invalidated and is not usable anymore.

The refresh request requires the token in one of the following formats:

Cookie named apimlAuthenticationToken .

Bearer authentication

For more information, see the OpenAPI documentation of the API Mediation Layer in the API Catalog.

Supported authentication methods

The API Mediation Layer provides multiple methods which clients can use to authenticate. When the API ML

is run as part of Zowe, all of the following methods are enabled and supported. All methods are supported at

least to some extent with each authentication provider.

Authentication with Username/Password

The client can authenticate via Username and password. There are multiple methods which can be used to

deliver

credentials. For more details, see the ZAAS Client documentation.

Authentication with Client certificate

https://docs.zowe.org/v2.2.x/user-guide/api-mediation/api-gateway-configuration#enable-jwt-token-refresh-endpoint

Beginning with release 1.19 LTS, it is possible to perform authentication with client certificates. This feature is

functional and tested, but automated testing on various security systems is not yet complete. As such, the

feature is provided as a beta release for early preview. If you would like to offer feedback using client

certificate authentication, please create an issue against the api-layer repository. Client Certificate

authentication will move out of Beta once test automation is fully implemented across different security

systems.

If the keyring or a truststore contains at least one valid certificate authority (CA) other than the CA of the API

ML, it is possible to use the client certificates issued by this CA to authenticate to the API ML. This feature is

not enabled by default and needs to be configured.

When providing credentials in any form together with client certificate on the same login request, the

credentials take precedence and client certificate is ignored.

Authentication is performed in the following ways:

The client calls the API ML Gateway login endpoint with the client certificate.

The client certificate and private key are checked as a valid TLS client certificate against the Gateway's

trusted CAs.

The public part of the provided client certificate is checked against SAF, and SAF subsequently returns

a user ID that owns this certificate. ZSS provides this API for the Mediation Layer.

The Gateway performs the login of the mapped user and returns a valid JWT token.

Prerequisites:

Alter the Zowe runtime user and set protection by password. The user is created with the

NOPASSWORD parameter by the Zowe installer. It is necessary to change this password. For RACF,

issue the following TSO command:

For other security systems, please refer to the documentation for an equivalent command.

Ensure that the Zowe runtime user is allowed to log in to z/OSMF (For example user is member of the

default IZUUSER group)

Ensure that you have an external Certificate Authority and signed client certificates, or generate these

certificates in SAF. The client certificate has to have correct Extended Key Usage metadata to allow

being used for TLS client authentication. (OID: 1.3.6.1.5.5.7.3.2)

Import the client certificates to SAF, or add them to a user profile. (Examples: RACDCERT ADD or

RACDCERT GENCERT). For more information, see your security system documentation.

Import the external CA to the truststore or keyring of the API Mediation Layer.

Configure Gateway for client certificate authentication.

To upgrade from Zowe 1.18 or lower, see the Additional security rights that need to be granted.

PassTicket generation must be enabled for the Zowe runtime user. The user has to be able to generate

PassTicket for itself and for the APPLID of z/OSMF. For more information, see Configure Passticket.

The Zowe runtime user has to be enabled to perform identity mapping in SAF. For more information, see

Additional security rights that need to be granted.

ZSS has to be configured to participate in Zowe SSO. For more information, see Using web tokens for

sso on Zlux and ZSS.

Authentication with JWT Token

When the client authenticates with the API ML, the client receives the JWT token in exchange. This token

can be used for further authentication. If z/OSMF is configured as the authentication provider and the client

already received a JWT token produced by z/OSMF, it is possible to reuse this token within API ML for

authentication.

Authentication parameters

Parameters are specified in the onboarding enablers.

Authentication parameters enable a service to accept a Zowe JWT or client certificate. The API Gateway

translates the authentication token to an authentication method supported by a service.

The following example shows the parameters that define the service authentication method:

Example:

authentication.scheme

The value of this parameter specifies a service authentication scheme. Any valid headers or X-Zowe-

Auth-Failure error headers are set and passed to southbound services. In addition, any X-Zowe-

Auth-Failure error headers coming from the northbound service are also be passed to the

https://docs.zowe.org/v2.2.x/user-guide/api-mediation/api-gateway-configuration#gateway-client-certificate-authentication
https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system#configure-main-Zowe-server-use-identity-mapping
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-passtickets
https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system#configure-main-Zowe-server-use-identity-mapping
https://docs.zowe.org/v2.2.x/user-guide/configure-certificates-keystore#using-web-tokens-for-sso-on-zlux-and-zss

southbound services without setting the valid headers. The X-Zowe-Auth-Failure error header

contains details about the error and suggests potential actions. The following schemes are supported

by the API Gateway:

bypass

This value specifies that the token is passed unchanged to service.

Note: This is the default scheme when no authentication parameters are specified.

zoweJwt

When a Zowe JWT is provided, this scheme value specifies that the service accepts the Zowe

JWT. No additional processing is done by the API Gateway.

When a client certificate is provided, the certificate is transformed into a Zowe JWT, and the

southbound service performs the authentication.

httpBasicPassTicket

This value specifies that a service accepts PassTickets in the Authorization header of the HTTP

requests using the basic authentication scheme. It is necessary to provide a service APPLID in the

authentication.applid parameter to prevent passticket generation errors.

When a JWT is provided, the service validates the Zowe JWT to use for passticket generation.

When a client certificate is provided, the service validates the certificate by mapping it to a

mainframe user to use for passticket generation.

For more information, see Enabling PassTicket creation for API Services that Accept PassTickets

zosmf

This value specifies that a service accepts z/OSMF LTPA (Lightweight Third-Party Authentication).

This scheme should only be used only for a z/OSMF service used by the API Gateway

Authentication Service and other z/OSMF services that use the same LTPA key.

When a JWT is provided, the token extracts the LTPA and forwards it to the service.

When a client certificate is provided, the certificate translates into a z/OSMF token, and also

extracts the LTPA for the service to use.

For more information about z/OSMF Single Sign-on, see Establishing a single sign-on environment

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-passtickets
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zosmfcore.multisysplex.help.doc/izuG00hpManageSecurityCredentials.html

safIdt

This value specifies that the service accepts SAF IDT, and expects that the token produced by the

SAF IDT provider implementation is in the X-SAF-Token header. It is necessary to provide a

service APPLID in the authentication.applid parameter.

For more information, see Implement a SAF IDT provider.

x509

This value specifies that a service accepts client certificates forwarded in the HTTP header. The

Gateway service extracts information from a valid client certificate. For validation, the certificate

needs to be trusted by API Mediation Layer, and needs to contain a Client Authentication

(1.3.6.1.5.5.7.3.2) entry in Extended Key Usage. To use this scheme, it is also necessary to specify

which headers to include. Specify these parameters in headers .

authentication.headers

When the x509 scheme is specified, use the headers parameter to select which values to send to a

service. Use one of the following values:

X-Certificate-Public

The public part of client certificate base64 encoded

X-Certificate-DistinguishedName

The distinguished name from client certificate

X-Certificate-CommonName

The common name from the client certificate

authentication.applid

This parameter specifies a service APPLID. This parameter is valid only for the

httpBasicPassTicket authentication scheme.

Authentication providers

API ML contains the following providers to handle authentication for the API Gateway:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/implement-new-saf-provider

z/OSMF Authentication Provider

SAF Authentication Provider

Dummy Authentication Provider

z/OSMF Authentication Provider

The z/OSMF Authentication Provider allows the API Gateway to authenticate with the z/OSMF

service. The user needs z/OSMF access in order to authenticate.

Use the following properties of the API Gateway to enable the z/OSMF Authentication Provider :

SAF Authentication Provider

The SAF Authentication Provider allows the API Gateway to authenticate directly with the z/OS SAF

provider that is installed on the system. The user needs a SAF account to authenticate.

Use the following property of the API Gateway to enable the SAF Authentication Provider :

Note: To provide your own implementation of the SAF IDT provider, see the Implement new SAF provider

guidelines.

Dummy Authentication Provider

The Dummy Authentication Provider implements simple authentication for development purposes

using dummy credentials (username: user , password user). The Dummy Authentication

Provider makes it possible for the API Gateway to run without authenticating with the z/OSMF service.

Use the following property of API Gateway to enable the Dummy Authentication Provider :

Authorization

Authorization is a method used to determine access rights of an entity.

In the API ML, authorization is performed by the z/OS security manager (ACF2, IBM RACF, Top Secret). An

authentication token is used as proof of valid authentication. The authorization checks, however, are always

performed by the z/OS security manager.

JWT Token

https://docs.zowe.org/v2.2.x/extend/extend-apiml/implement-new-saf-provider
https://www.broadcom.com/products/mainframe/identity-access/acf2
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zsecurity/zsecc_042.htm
https://www.broadcom.com/products/mainframe/identity-access/top-secret

The JWT secret that signs the JWT Token is an asymmetric private key that is generated during Zowe

keystore configuration. The JWT token is signed with the RS256 signature algorithm.

You can find the JWT secret, alias localhost , in the PKCS12 keystore that is stored in

${KEYSTORE_DIRECTORY}/localhost/localhost.keystore.p12 . The public key necessary to

validate the JWT signature is read from the keystore.

You can also use the /gateway/api/v1/auth/keys/public/all endpoint to obtain all public keys that

can be used to verify JWT tokens signature in standard JWK format.

z/OSMF JSON Web Tokens Support

Your z/OSMF instance can be enabled to support JWT tokens as described at Enabling JSON Web Token

support. In this case, the Zowe API ML uses this JWT token and does not generate its own Zowe JWT token.

All authentication APIs, such as /gateway/api/v1/login and /gateway/api/v1/check function in

the same way as without z/OSMF JWT. Gateway service endpoint

/gateway/api/v1/auth/keys/public/all serves the z/OSMF JWK that can be used for JWT

signature validation.

API ML truststore and keystore

A keystore is a repository of security certificates consisting of either authorization certificates or public key

certificates with corresponding private keys (PK), used in TLS encryption. A keystore can be stored in Java

specific format (JKS) or use the standard format (PKCS12). The Zowe API ML uses PKCS12 to enable the

keystores to be used by other technologies in Zowe (Node.js).

API ML SAF Keyring

As an alternative to using a keystore and truststore, API ML can read certificates from a SAF keyring. The

user running the API ML must have rights to access the keyring. From the java perspective, the keyring

behaves as the JCERACFKS keystore. The path to the keyring is specified as

safkeyring:////user_id/key_ring_id . The content of SAF keyring is equivalent to the combined

contents of the keystore and the truststore.

Note: When using JCERACFKS as the keystore type, ensure that you define the class to handle the RACF

keyring using the -D options to specify the java.protocol.handler.pkgs property :

The elements in the following list, which apply to the API ML SAF Keyring, have these corresponding

characteristics:

https://openid.net/specs/
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.4.0/com.ibm.zos.v2r4.izua300/izuconfig_EnableJSONWebTokens.htm

The API ML local certificate authority (CA)

The API ML local CA contains a local CA certificate and a private key that needs to be securely stored.

The API ML local certificate authority is used to sign certificates of services.

The API ML local CA certificate is trusted by API services and clients.

The API ML keystore or API ML SAF Keyring

Server certificate of the Gateway (with PK). This can be signed by the local CA or an external CA.

Server certificate of the Discovery Service (with PK). This can be signed by the local CA.

Server certificate of the Catalog (with PK). This can be signed by the local CA.

The API ML keystore is used by API ML services.

The API ML truststore or API ML SAF Keyring

Local CA public certificate

External CA public certificate (optional)

Can contain self-signed certificates of API Services that are not signed by the local or external CA

Used by API ML services

Zowe core services

Services can use the same keystore and truststore or the same keyring as APIML for simpler installation

and management.

When using a keystore and truststore, services have to have rights to access and read them on the

filesystem.

When using a keyring, the user of the service must have authorization to read the keyring from the

security system.

Alternatively, services can have individual stores for higher security.

API service keystore or SAF keyring (for each service)

The API service keystore contains a server and client certificate signed by the local CA.

API service truststore or SAF keyring (for each service)

(Optional) The API service truststore contains a local CA and external CA certificates.

Client certificates

A client certificate is a certificate that is used for validation of the HTTPS client. The client certificate of

a Discovery Service client can be the same certificate as the server certificate of the services which the

Discovery Service client uses.

Discovery Service authentication

There are several authentication mechanisms, depending on the desired endpoint, as described by the

following matrix:

Endpoint
Authentication

method
Note

UI (eureka

homepage)

basic auth(MF),

token
see note about mainframe authentication

application/**
basic auth(MF),

token
see note about mainframe authentication

application/health,

application/info
none

eureka/** client certificate

Allows for the other services to register without mainframe

credentials or token. API ML's certificate can be used. It is

stored in the

keystore/localhost/localhost.keystore.p12

keystore or in the SAF keyring. It is exported to .pem format for

convenience. Any other certificate which is valid and trusted by

Discovery service can be used.

discovery/**

certificate,

basic auth(MF),

token

see note about mainframe authentication

Note: Some endpoints are protected by mainframe authentication. The authentication function is provided

by the API Gateway. This functionality is not available until the Gateway registers itself to the Discovery

Service.

Since the Discovery Service uses HTTPS, your client also requires verification of the validity of its certificate.

Verification is performed by validating the client certificate against certificates stored in the truststore or SAF

keyring.

Some utilities including HTTPie require the certificate to be in PEM format. The exported certificate in .pem

format is located here: keystore/localhost/localhost.pem .

The following example shows the HTTPie command to access the Discovery Service endpoint for listing

registered services and provides the client certificate:

Setting ciphers for API ML services

You can override ciphers that are used by the HTTPS servers in API ML services by configuring properties of

the Gateway, Discovery Service, and API Catalog.

Note: You do not need to rebuild JAR files when you override the default values in shell scripts.

The application.yml file contains the default value for each service, and can be found here. The default

configuration is packed in .jar files. On z/OS, you can override the default configuration in

<RUNTIME_DIR>/components/<APIML_COMPONENT>/bin/start.sh . Add the launch parameter of the

shell script to set a cipher:

On localhost, you can override the default configuration in config/local/gateway-service.yml (including other

YAML files for development purposes).

The following list shows the default ciphers. API ML services use the following cipher order:

Note: Ensure that the version of Java you use is compatible with the default cipherset.

Only IANA ciphers names are supported. For more information, see Cipher Suites or List of Ciphers.

ZAAS Client

The ZAAS client is a plain Java library that provides authentication through a simple unified interface without

the need for detailed knowledge of the REST API calls presented in this section. The Client function has only

a few dependencies including Apache HTTP Client, Lombok, and their associated dependencies. The client

contains methods to perform the following actions:

To obtain a JWT token

https://github.com/zowe/api-layer/blob/master/gateway-service/src/main/resources/application.yml
https://github.com/zowe/api-layer/blob/master/config/local/gateway-service.yml
https://wiki.mozilla.org/Security/Server_Side_TLS#Cipher_suites
https://testssl.net/openssl-iana.mapping.html

To validate and get details from a JWT token

To invalidate the JWT token

To obtain a PassTicket

Pre-requisites

Java SDK version 1.8.

An active instance of the API ML Gateway Service.

A property file which defines the keystore or truststore certificates.

API Documentation

The plain java library provides the ZaasClient interface with following public methods:

This Java code enables your application to add the following functions:

Obtain a JWT token (login)

Validate and get details from the token (query)

Invalidate a JWT token (logout)

Obtain a PassTicket (passTicket)

Obtain a JWT token (login)

To integrate login, call one of the following methods for login in the ZaasClient interface:

If the user provides credentials in the request body, call the following method from your API:

If the user provides credentials as Basic Auth, use the following method:

These methods return the JWT token as a String. This token can then be used to authenticate the user in

subsequent APIs.

Note: Both methods automatically use the truststore file to add a security layer, which requires configuration

in the ConfigProperties class.

Validate and get details from the token (query)

Use the query method to get the details embedded in the token. These details include creation time of

the token, expiration time of the token, and the user who the token is issued to.

Call the query method from your API in the following format:

In return, you receive the ZaasToken Object in JSON format.

This method automatically uses the truststore file to add a security layer, which you configured in the

ConfigProperties class.

The query method is overloaded, so you can provide the HttpServletRequest object that contains

the token in the apimlAuthenticationToken cookie or in an Authorization header. You then receive the

ZaasToken Object in JSON format.

Invalidate a JWT token (logout)

The logout method is used to invalidate the JWT token. The token must be provided in the Cookie header

and must follow the format accepted by the API ML.

Call the logout method from your API in the following format:

If the token is successfully invalidated, you receive a 204 HTTP status code in return.

Obtain a PassTicket (passTicket)

The passTicket method has an added layer of protection. To use this method, call the method of the

interface, and provide a valid APPLID of the application and JWT token as input.

The APPLID is the name of the application (up to 8 characters) that is used by security products to

differentiate certain security operations (like PassTickets) between applications.

This method has an added layer of security, whereby you do not have to provide an input to the method

since you already initialized the ConfigProperties class. As such, this method automatically fetches the

truststore and keystore files as an input.

In return, this method provides a valid pass ticket as a String to the authorized user.

Tip: For additional information about PassTickets in API ML see Enabling PassTicket creation for API Services

that Accept PassTickets.

Getting Started (Step by Step Instructions)

To use this library, use the procedure described in this section.

https://docs.zowe.org/stable/extend/extend-apiml/api-mediation-passtickets.html

Follow these steps:

�. Add zaas-client as a dependency in your project.

You will need to specify the version of the zaas-client you want. zaas-client versioning

following the semantic versioning format of major.minor.patch . For example, 1.22.0 .

Gradle:

i. Create a gradle.properties file in the root of your project if one does not already exist.

ii. In the gradle.properties file, set the URL of the specific Artifactory containing the

SpringEnabler artifact.

iii. Add the following Gradle code block to the repositories section of your build.gradle file:

iv. Add the following Gradle dependency:

Maven:

i. Add the following XML tags within the newly created pom.xml file:

Tip: If you want to use snapshot version, replace libs-release with libs-snapshot in the repository

url and change snapshots->enabled to true.

ii. Then add the following Maven dependency:

�. In your application, create your Java class which will be used to create an instance of ZaasClient ,

which enables you to use its method to login, query, and to issue a PassTicket.

�. To use zaas-client , provide a property file for configuration.

Tip: Check org.zowe.apiml.zaasclient.config.ConfigProperites to see which properties

are required in the property file.

Configuration Properties:

Note: If httpOnly property is set to true, the ZAAS Client will access the API ML via HTTP protocol

without TLS. This meant for z/OS configuration with AT-TLS that will ensure that TLS and the required

client certificates are used.

�. Create an instance of ZaasClient in your class and provide the configProperties object.

Example:

You can now use any method from ZaasClient in your class.

Example:

For login, use the following code snippet:

The following codeblock is an example of a SampleZaasClientImplementation .

Example:

Certificate management in Zowe API Mediation Layer

Running on localhost

How to start API ML on localhost with full HTTPS

The https://github.com/zowe/api-layer repository already contains pre-generated certificates that can be

used to start API ML with HTTPS on your computer. The certificates are not trusted by your browser so you

can either ignore the security warning or generate your own certificates and add them to the truststore of

your browser or system.

The certificates are described in more detail in the TLS Certificates for localhost.

Note: When running on localhost, only the combination of using a keystore and truststore is supported.

Certificate management script

Zowe API Mediation Layer provides a script that can be used on Windows, Mac, Linux, and z/OS to generate

a certificate and keystore for the local CA, API Mediation Layer, and services.

This script is stored in zowe/zowe-install-packaging repository bin/apiml_cm.sh. It is a UNIX shell

script that can be executed by Bash or z/OS Shell. For Windows, install Bash by going to the following link:

cmder.

Generate certificates for localhost

https://github.com/zowe/api-layer
https://github.com/zowe/api-layer/blob/master/keystore/README.md
https://github.com/zowe/zowe-install-packaging/blob/master/bin/apiml_cm.sh
http://cmder.net/

Follow these steps:

�. Clone the zowe-install-packaging repository to your local machine.

�. Place the bin/apiml_cm.sh script intoto scripts directory in your API Mediation Layer repository

folder

�. Use the following script in the root of the api-layer repository to generate certificates for localhost:

scripts/apiml_cm.sh --action setup

This script creates the certificates and keystore for the API Mediation Layer in your current workspace.

Generate a certificate for a new service on localhost

To generate a certificate for a new service on localhost, see Generating certificate for a new service on

localhost.

Add a service with an existing certificate to API ML on localhost

For more information about adding a service with an existing certificate to API ML on localhost, see Trust

certificates of other services.

Service registration to Discovery Service on localhost

To register a new service to the Discovery Service using HTTPS, provide a valid client certificate that is

trusted by the Discovery Service.

Zowe runtime on z/OS

Certificates for the API ML local CA and API ML service are managed by installing the Zowe runtime on z/OS.

Follow the instructions in Installing the Zowe runtime on z/OS.

There are two ways to set up certificates on a z/OS machine:

Certificates in SAF keyring

Certificates in UNIX files (keystore and truststore)

The Configuring PKCS12 certificates and Configuring JCERACFS certificates in a key ring contain

instructions about how to set up certificates during installation. Follow the procedure in the applicable

section described in this article during installation.

https://github.com/zowe/api-layer/blob/master/keystore/README.md#generating-certificate-for-a-new-service-on-localhost
https://github.com/zowe/api-layer/blob/master/keystore/README.md#trust-certificates-of-other-services
https://docs.zowe.org/v2.2.x/user-guide/install-zos
https://docs.zowe.org/v2.2.x/extend/user-guide/configure-certificates-keystore
https://docs.zowe.org/v2.2.x/extend/user-guide/configure-certificates-keyring

Import the local CA certificate to your browser

Trust in the API ML server is a necessary precondition for secure communication between Browser or API

Client application. Ensure this trust through the installation of a Certificate Authority (CA) public certificate.

By default, API ML creates a local CA. Import the CA public certificate to the truststore for REST API clients

and to your browser. You can also import the certificate to your root certificate store.

Notes:

If a SAF keyring is being used and set up with ZWEKRING JCL, the procedure to obtain the certificate

does not apply. It is recommended that you work with your security system administrator to obtain the

certificate. Start the procedure at step 2.

The public certificate in the PEM format is stored at

<KEYSTORE_DIRECTORY>/local_ca/localca.cer where <KEYSTORE_DIRECTORY> is defined

in a customized <RUNTIME_DIR>/bin/zowe-setup-certificates.env file during the installation

step that generates Zowe certificates. The certificate is stored in UTF-8 encoding so you need to

transfer it as a binary file. Since this is the certificate to be trusted by your browser, it is recommended

to use a secure connection for transfer.

Follow these steps:

�. Download the local CA certificate to your computer. Use one of the following methods to download the

local CA certificate to your computer:

Use Zowe CLI (Recommended) Issue the following command:

zowe zos-files download uss-file --binary

$KEYSTORE_DIRECTORY/local_ca/localca.cer

Use sftp Issue the following command:

To verify that the file has been transferred correctly, open the file. The following heading and closing

should appear:

�. Import the certificate to your root certificate store and trust it.

For Windows, run the following command:

certutil -enterprise -f -v -AddStore "Root" localca.cer

https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail
https://github.com/zowe/zowe-cli#zowe-cli--

Note: Ensure that you open the terminal as administrator. This will install the certificate to the

Trusted Root Certification Authorities.

For macOS, run the following command:

$ sudo security add-trusted-cert -d -r trustRoot -k

/Library/Keychains/System.keychain localca.cer

For Firefox, manually import your root certificate via the Firefox settings, or force Firefox to use the

Windows truststore.

Note: Firefox uses its own certificate truststore.

Create a new Javascript file firefox-windows-truststore.js at C:\Program Files

(x86)\Mozilla Firefox\defaults\pref with the following content:

Generate a keystore and truststore for a new service on z/OS

Note: This procedure applies to UNIX file keystore and truststore only. For the SAF keyring option, it is

recommended that you perform the actions manually using your security system commands.

You can generate a keystore and truststore for a new service by calling the apiml_cm.sh script in the

directory with API Mediation Layer:

Call the apiml_cm.sh script in the directory with the API Mediation Layer as in the following example.

Example:

where:

service-alias

is a unique string to identify the key entry. All keystore entries (key and trusted certificate entries) are

accessed via unique aliases. Since the keystore has only one certificate, you can omit this parameter

and use the default value localhost .

service-keystore

Specifies repository of security certificates plus corresponding private keys. The <keystore_path>

is the path excluding the extension to the keystore that is generated. It can be an absolute path or a

path relative to the current working directory. The key store is generated in PKCS12 format with the

.p12 extension. Ensure that the path is in an existing directory where your service expects the

keystore.

Example: /opt/myservice/keystore/service.keystore .

service-truststore

Contains certificates from other parties that you expect to communicate with, or from Certificate

Authorities that you trust to identify other parties. The <truststore_path> is the path excluding the

extension to the trust store that is generated. It can be an absolute path or a path relative to the current

working directory. The truststore is generated in PKCS12 format.

service-ext

Specifies the X.509 extension that should be the Subject Alternate Name (SAN). The SAN contains host

names that are used to access the service. You need to specify the same hostname that is used by the

service during API Mediation Layer registration.

Example: "SAN=dns:localhost.localdomain,dns:localhost,ip:127.0.0.1"

Note: For more information about SAN, see SAN or SubjectAlternativeName at Java Keytool - Common

Options.

service-dname

Specifies the X.509 Distinguished Name and is used to identify entities, such as those which are named

by the subject and issuer (signer) fields of X.509 certificates.

Example: "CN=Zowe Service, OU=API Mediation Layer, O=Zowe Sample, L=Prague,

S=Prague, C=CZ"

service-validity

Specifies the number of days until the certificate expires.

service-password

Specifies the keystore password. The purpose of the password is the integrity check. The access

protection for the keystore and keystore need to be achieved by making them accessible only by the

ZOVESVR user ID and the system administrator.

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/keytoolDocs/commonoptions.html

The local-ca-filename is the path to the keystore that is used to sign your new certificate with the

local CA private key. It should point to the $KEYSTORE_DIRECTORY/local_ca/localca where

$KEYSTORE_DIRECTORY is defined in a customized $ZOWE_ROOT_DIR/bin/zowe-setup-

certificates.env file during the installation step that generates Zowe certificates.

Add a service with an existing certificate to API ML on z/OS

Note: This procedure applies only to UNIX file keystore/truststore. For the SAF keyring option, we

recommend to perform the actions manually using your security system commands.

The API Mediation Layer requires validation of the certificate of each service that it accessed by the API

Mediation Layer. The API Mediation Layer requires validation of the full certificate chain. Use one of the

following methods:

Import the public certificate of the root CA that has signed the certificate of the service to the APIML

truststore.

Ensure that your service has its own certificate. If it was signed by intermediate CA, ensure that all

intermediate CA certificates are contained in the service's keystore.

Note: If the service does not provide an intermediate CA certificates to the API ML, then validation fails.

This can be circumvented by importing the intermediate CA certificates to the API ML truststore.

The following path is an example of importing a public certificate to the API ML truststore by calling in the

directory with API Mediation Layer.

Example:

Procedure if the service is not trusted

If your service is not trusted, you may receive a response with the HTTP status code 502 Bad Gateway and a

JSON response in the standardized format for error messages. The following request is an example of when

this errror response may occur.

Example:

http --verify=$KEYSTORE_DIRECTORY/local_ca/localca.cer GET https://<gatewayHost>:

<port>/<untrustedService>/api/v1/greeting

In this example, you receive a similar response:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/502

The message has the key apiml.common.tlsError , and the message number AML0105 , and content

that explains details about the message.

If you receive this message, import the certificate of your service or the CA that signed it to the truststore of

the API Mediation Layer as described previously.

Version: v2.2.x LTS

API Mediation Layer routing

As an application developer, you can route your service through the Gateway using the API Mediation Layer

to consume a specific resource.

There are two ways to route your service to the API Mediation Layer:

Basic Routing (using Service ID and version)

Basic Routing (using only the service ID)

Terminology

Service

A service provides one or more APIs, and is identified by a service ID. Note that sometimes the term

"service name" is used to mean service ID.

The default service ID is provided by the service developer in the service configuration file.

A system administrator can replace the service ID with a deployment environment specific name using

additional configuration that is external to the service deployment unit. Most often, this is configured in

a JAR or WAR file.

Services are deployed using one or more service instances, which share the same service ID and

implementation.

URI (Uniform Resource Identifier)

A string of characters used to identify a resource. Each URI must point to a single corresponding

resource that does not require any additional information, such as HTTP headers.

APIML Basic Routing (using Service ID and version)

This method of basic routing is based on the service ID that identifies the service. The specific instance is

selected by the API Gateway. All instances require an identical response. Eureka and Zuul expect this type of

routing.

The URI identifies the resource, but does not identify the instance of the service as unique when multiple

instances of the same service are provided. For example, when a service is running in high-availability (HA)

mode.

Services of the same product that provide different resources, such as SYSVIEW on one system and

SYSVIEW in a different sysplex, cannot have the same service ID (the same URI cannot have two different

meanings).

In addition to the basic Zuul routing, the Zowe API Gateway supports versioning in which you can specify a

major version. The Gateway routes a request only to an instance that provides the specified major version of

the API.

The /api/ prefix is used for REST APIs. The prefix /ui/ applies to web UIs and the prefix /ws/

applies to WebSockets.

You can implement additional routing using a Zuul pre-filter. For more information about how to implement a

Zuul filter, see Router and Filter: Zuul

The URL format expected by the API Gateway is:

https://{gatewayHost}:{port}/{serviceId}/api/v{majorVersion}/{resource}

Example:

The following address shows the original URL of a resource exposed by a service:

The following address shows the API Gateway URL of the resource:

The following diagram illustrates how basic routing works:

Implementation Details

Service instances provide information about routing to the API Gateway via Eureka metadata.

Example:

In this example, the service has a service ID of helloworldservice that exposes the following

endpoints:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/websocket
https://cloud.spring.io/spring-cloud-netflix/multi/multi__router_and_filter_zuul.html

UI - https://gateway/helloworldservice/ui/v1 routed to

https://hwServiceHost:port/helloworld/

API major version 1 - https://gateway/helloworldservice/api/v1 routed to

https://hwServiceHost:port/helloworld/v1

API major version 2 - https://gateway/helloworldservice/api/v2 routed to

https://hwServiceHost:port/helloworld/v2

where:

The gatewayUrl is matched against the prefix of the URL path used at the Gateway

https://gateway/urlPath , where urlPath is serviceId/prefix/resourcePath .

The service ID is used to find the service host and port.

The serviceUrl is used to prefix the resourcePath at the service host.

Note: The service ID is not included in the routing metadata, but the service ID is in the basic Eureka

metadata.

Basic Routing (using only the service ID)

This method of routing is similar to the previous method, but does not use the version part of the URL. This

approach is useful for services that handle versioning themselves with different granularity.

One example that only uses a service ID is z/OSMF.

Example:

z/OSMF URL through the Gateway: https://gateway:10010/zosmf/api/restjobs/jobs/...

where:

zosmf is the service ID.

/restjobs/1.0/... is the rest of the endpoint segment.

Note that no version is specified in this URL.

Version: v2.2.x LTS

Enabling PassTicket creation for API Services
that Accept PassTickets

As system programmer, you can configure Zowe to use PassTickets for API services that are compatible to

accept them to authenticate your service with the API Mediation Layer.

Overview

API clients can use either a Zowe JWT token or client certificate to access an API service even if the API

service itself does not support the JWT token or client certificate. The Zowe JWT token is available through

the API Gateway authentication endpoint.

When an API client provides a valid Zowe JWT token or client certificate to the API ML, the API Gateway then

generates a valid PassTicket for any API service that supports PassTickets. The API Gateway then uses the

PassTicket to access that API service. The API Gateway provides the user ID and password in the

Authorization header of the HTTP requests using the Basic authentication scheme.

Outline for enabling PassTicket support

Security configuration that allows the Zowe API Gateway to generate PassTickets for an API service

ACF2

Top Secret

RACF

API services that support PassTickets

API Services that register dynamically with API ML that provide authentication information

API Services that register dynamically with API ML but do not provide metadata

API services that are defined using a static YAML definition

Adding YAML configuration to API services that register dynamically with API ML

Outline for enabling PassTicket support

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#authentication-for-api-ml-services
https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication#Basic_authentication_scheme

The following steps outline the procedure for enabling PassTicket Support:

�. Follow the API service documentation that explains how to activate support for PassTickets.

The PassTickets for the API service must have the replay protection switched off. The PassTickets

are exchanged between Zowe API Gateway and the API Service in a secure mainframe

environment.

�. Record the value of the APPLID of the API service.

�. Enable the Zowe started task user ID to generate PassTickets for the API service.

�. Enable PassTicket support in the API Gateway for your API service.

Note: PassTickets must be enabled for every user who requires access to the API service.

Security configuration that allows the Zowe API Gateway to
generate PassTickets for an API service

Consult with your security administrator to issue security commands to allow the Zowe started task user ID

to generate PassTickets for the API service.

Use the following variables to generate PassTickets for the API service to enable the Zowe started task user

ID:

<applid> is the APPLID value used by the API service for PassTicket support (e.g. OMVSAPPL)

<zowesrv> is Zowe started task user ID used during the Zowe installation

Replace the variables in the following examples with actual values.

ACF2

Grant the Zowe started task user ID permission to generate PassTickets for users of that API service. The

following code is an example of security commands that need to be issued.

Example:

Top Secret

Grant the Zowe started task user ID permission to generate PassTickets for users of that API service.

Example:

RACF

To enable PassTicket creation for API service users, define the profile IRRPTAUTH.<applid>.* in the

PTKTDATA class and set the universal access authority to NONE .

Grant the Zowe started task user ID permission to generate PassTickets for users of that API service.

Example:

API services that support PassTickets

The following types of API services support PassTickets:

API Services that register dynamically with API ML that provide authentication information

API Services that register dynamically with API ML but do not provide metadata

API services that are defined using a static YAML definition

API Services that register dynamically with API ML that provide authentication
information

API services that support Zowe API Mediation Layer and use dynamic registration to the Discovery Service

already provide metadata that enables PassTicket support.

As a system programmer, you are not required to do anything in this case. All required information is

provided by the API service automatically.

API Services that register dynamically with API ML but do not provide metadata

Some services can use PassTickets but the API ML does not recognize that the service can accept

PassTickets. For such services, you can provide additional service metadata externally in the same file that

contains the static YAML definiton. The static YAML definitions are described in REST APIs without code

changes required.

Add the following section to the YAML file with a static definition:

where:

<serviceId>

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-static-definition

is the service ID of the service to which you want to add metadata.

API services that are defined using a static YAML definition

Add the following metadata to the same level as the serviceId :

Example:

Note: The fields in this example are explained later in this article.

Adding YAML configuration to API services that register
dynamically with API ML

As a developer of an API service that registers dynamically with the API ML, you need to provide additional

metadata to tell the API Gateway to use PassTickets. Additional metadata tells the API Gateway how to

generate them. The following code shows an example of the YAML configuration that contains this

metadata.

Example:

where:

httpBasicPassTicket

is the value that indicates that the HTTP Basic authentication scheme is used with PassTickets.

<applid>

is the APPLID value that is used by the API service for PassTicket support (e.g. OMVSAPPL).

Version: v2.2.x LTS

Custom Metadata

(Optional) Additional metadata can be added to the instance information that is registered in the Discovery

Service in the customMetadata section. This information is propagated from the Discovery Service to the

onboarded services (clients). In general, additional metadata do not change the behavior of the client. Some

specific metadata can configure the functionality of the API Mediation Layer. Such metadata are generally

prefixed with the apiml. qualifier. We recommend you define your own qualifier, and group all metadata

you wish to publish under this qualifier. If you use the Spring enabler, ensure that you include the prefix

apiml.service before the parameter name.

customMetadata.apiml.enableUrlEncodedCharacters

When this parameter is set to true , the Gateway allows encoded characters to be part of URL

requests redirected through the Gateway. The default setting of false is the recommended setting.

Change this setting to true only if you expect certain encoded characters in your application's

requests.

Important! When the expected encoded character is an encoded slash or backslash (%2F , %5C),

make sure the Gateway is also configured to allow encoded slashes. For more information, see Installing

the Zowe runtime on z/OS.

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.enableUrlEncodedCharacters

customMetadata.apiml.connectTimeout

The value in milliseconds that specifies a period in which API ML should establish a single, non-

managed connection with this service. If omitted, the default value specified in the API ML Gateway

service configuration is used.

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.connectTimeout

customMetadata.apiml.readTimeout

https://docs.zowe.org/v2.2.x/user-guide/install-zos

The value in milliseconds that specifies the time of inactivity between two packets in response from this

service to API ML. If omitted, the default value specified in the API MLGateway service configuration is

used.

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.readTimeout

customMetadata.apiml.connectionManagerTimeout

HttpClient employs a special entity to manage access to HTTP connections called by the HTTP

connection manager. The purpose of an HTTP connection manager is to serve as a factory for new

HTTP connections, to manage the life cycle of persistent connections, and to synchronize access to

persistent connections. Internally, it works with managed connections which serve as proxies for real

connections. connectionManagerTimeout specifies a period in which managed connections with

API ML should be established. The value is in milliseconds. If omitted, the default value specified in the

API ML Gateway service configuration is used.

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.connectionManagerTimeout

customMetadata.apiml.okToRetryOnAllOperations

Specifies whether all operations can be retried for this service. The default value is false . The

false value allows retries for only GET requests if a response code of 503 is returned. Setting this

value to true enables retry requests for all methods, which return a 503 response code. Enabling

retry can impact server resources resulting from buffering of the request body.

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.okToRetryOnAllOperations

customMetadata.apiml.corsEnabled

When this parameter is set to true , CORS handling by the Gateway is enabled on the service level for

all service routes. For more information, refer to enabling CORS with Custom Metadata on the Gateway:

Advanced Gateway features configuration. Additional information can be found in this article about

Cross-Origin Resource Sharing (CORS).

https://docs.zowe.org/v2.2.x/user-guide/api-mediation/api-gateway-configuration
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.corsEnabled

customMetadata.apiml.gatewayAuthEndpoint

Specifies the Gateway authentication endpoint used by the ZAAS Client configuration. The default value

is /api/v1/gateway/auth . For more information about ZAAS Client, see ZAAS Client.

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.gatewayAuthEndpoint

customMetadata.apiml.gatewayPort

Specifies the Gateway port used by the ZAAS Client configuration. The default value is 10010 . For

more information about ZAAS Client, see ZAAS Client.

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.gatewayPort

customMetadata.apiml.corsAllowedOrigins

Optionally, service can specify which origins will be accepted by Gateway during the CORS handling.

When this parameter is not set, the accepted origins are * by default. You can provide a coma

separated list of values to explicitly limit the accepted origins.

Note: If you use the Spring enabler, use the following parameter name:

apiml.service.customMetadata.apiml.corsAllowedOrigins

For more information, refer to enabling CORS with Custom Metadata on the Gateway: Advanced

Gateway features configuration.

customMetadata.apiml.lb.type

This parameter is part of the load balancing configuration for the Deterministic Routing capability.

Through this parameter, the service can specify which load balancing schema the service requires. If

this parameter is not specified, the service is routed using the basic round robin schema. This

parameter can be set to the following values:

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#zaas-client
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-security#zaas-client
https://docs.zowe.org/v2.2.x/user-guide/api-mediation/api-gateway-configuration

headerRequest

This value applies the Header Request load balancing schema. Clients can call the API Gateway

and provide a special header with the value of the requested instanceId. The Gateway understands

this as a request from the client for routing to a specific instance. Clients have several possibilities

for understanding the topology of service instances, such as via the /eureka/apps endpoint on

the Discovery service, or the /gateway/services endpoint on the Gateway. In either case, the

information is provided. The client can then request a specific instance by using the special header

described below.

The header name is X-InstanceId , and the sample value is discoverable-

client:discoverableclient:10012 . This is identical to instanceId property in the

registration of the Discovery service.

In combination with enabling Routed instance header, the client can achieve sticky session

functionality. (The term, 'sticky session' refers to the feature of many load balancing solutions to

route the requests for a particular session to the same physical machine that serviced the first

request for that session). The benefit of this approach is that there is no session on the Gateway,

and the client ultimately decides whether or not to go to a specific instance. This method uses the

following sequence:

a. The client calls API Gateway and gets routed to a service.

b. The client reads the X-InstanceId header value from the response to understand the

service was routed to.

c. For all subsequent requests, the client provides the X-InstanceId header with previously

read value to get routed to the same instance of the service.

authentication

This value applies the Authentication load balancing schema. This is a sticky session functionality

based on the ID of the user. The user ID is understood from the Zowe SSO token on the client's

request. Requests without the token are routed in a round robin fashion. The user is first routed in a

round robin fashion, and then the routed instance Id is cached. The instance information is used for

subsequent requests to route the client to the cached target service instance. This session's

default expiration time is 8 hours. After the session expires, the process initiates again.

In default configuration, this cache is stored on each Gateway instance. You can choose to

distribute this cache between the Gateway's instances. To do so, follow the steps described in

Distributed load balancer cache.

https://docs.zowe.org/v2.2.x/user-guide/api-mediation/api-gateway-configuration#routed-instance-header
https://docs.zowe.org/v2.2.x/user-guide/api-mediation/api-gateway-configuration#distributed-load-balancer-cache

customMetadata.apiml.lb.cacheRecordExpirationTimeInHours

When the property customMetadata.apiml.lb.type is set to authentication , the user can

also define the expiration time for the selected instance information that is cached. This property aims

to prevent any discrepancy which might occur if the required target server is no longer available. The

default value is 8 hours.

customMetadata.apiml.response.compress

When this parameter is set to true , API ML compresses content for all responses from this services

using GZIP. API ML also adds the Content-Encoding header with value gzip to responses.

customMetadata.apiml.response.compressRoutes

When the customMetadata.apiml.response.compress parameter is set to true , this

parameter allows services to further limit the compressed routes. The parameter accepts ant style

routes deliminated by , . The expectation is to provide the absolute paths.

If relative paths are provided, the starting / is added. If the beginning of the pattern does not need to

be specifically defined, use **/{pathYouAreInterestedIn}

Examples:

/service/**

Compresses all paths starting with /service/

/service/api/v1/compress,/service/api/v1/custom-compress

Compresses the specific two routes

/**/compress/**

Compresses all paths that contain compress as a specific path

customMetadata.apiml.response.headers

(Optional) A service can specify headers that are added to the response by the Gateway. When this

parameter is not set or is empty, no headers are added. Header names and header values are separated

by : . Multiple headers can be added, delimited by , . If a header with the same name already exists

in the response, the Gateway overwrites the value of the header.

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/util/AntPathMatcher.html

Examples:

Strict-Transport-Security:max-age=1234; includeSubDomains

Sets a header with name Strict-Transport-Security and value max-age=1234;

includeSubDomains .

Strict-Transport-Security:max-age=1234; includeSubDomains, X-Frame-

Options:SAMEORIGIN

Sets two headers:

1) Header with name Strict-Transport-Security and value max-age=1234;

includeSubDomains . 2) Header with name X-Frame-Options and value `SAMEORIGIN.

customMetadata.apiml.headersToIgnore

(Optional) A service can specify headers that are removed from the request to the southbound service

by the Gateway. When this parameter is not set or is empty, no headers are removed. Multiple headers

can be removed, delimited by , .

Version: v2.2.x LTS

API Versioning

Introduction

API Catalog is the catalog of published API services and their associated documentation that have been

discovered or might get available if provisioned from the service catalog.

Application program interface (API) is a set of functions and procedures that allow the creation of

applications which access the features or data of other applications, service, or systems.

Our API Catalog contains APIs of services provided by implementations of mainframe products. Service can

be implemented by one or more service instances (that provide exactly the same service for high-availability

or scalability).

Versioning

APIs are versioned. Users of the API specify the major version (v1 , v2). Backward incompatible changes

can be introduced only with changing major version. The service can provide multiple versions of the API (it

should provide v{n} and previous v{n-1} versions).

REST

In our case, we are speaking about REST APIs, which is a way how to access and manipulate textual

representations of Web resources using uniform and a predefined set of stateless operations. Usually via

HTTP(S) protocol and using JSON format. Resources are identified by their Uniform Resource Identifier

(URIs). The services are accessed via APIML gateway. Example of a URI:

https://host:10010/endevormfno/api/v1/ENWSQA01/packages/PACKAGETST

(https://{gatewayHost}:{port}/{serviceName}/api/v{majorVersion}/{resource}) See

Components of URL for more information about the URL components of REST APIs.

Data Model

The following data model describes the model behind data about APIs and API services in the API Catalog.

The most of the data are provided during service registration. In case of the dynamic registration they are

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-components-of-URL

provided by the service. Some of them are determined by the service developer (API-related), system

administrator (service-related), and some of them can be altered by user (catalog tiles - in future).

(this a UML class diagram)

Catalog Tile - API Catalog UI groups API services into tiles. An API service can be in multiple tiles. The

purpose of titles is to organize API services on the dashboard of the API Catalog. Default catalog tiles are

constructed from the definitions provided by the services. In future, it will be possible for the user to modify

the tiles.

API - Api object represents a collection of specific versions of the same API which share the same apiId.

API Version represents a specific version of the API. This version can be documented by an external

documentation or by a Swagger document. This information is set by the developer of the API.

Swagger represents a Swagger specification instance for a specific API version. See

https://swagger.io/docs/specification/ for more details.

API Association provides information how a specific API version is provides by a specific service. Different

services can use different basePath. The full path to access endpoints is:

scheme://host:port/basePath/endpointPath . This information is set by the service developer.

Service represents a collection of all service instances. The description and title are taken from the service

with highest version, in case if this is not clear then the latest registered wins. API clients are using a service

and the API gateway chooses what service instance will be accessed. The same API version can be

implemented by multiple services. Such services are not interchangeable because they contain or access

different data.

Service instance is a real implementation of a service. It contains the information about where service is

running. The information are provided by the system programmer. The default title and description is

provided by service developer. Instances are interchangeable and they are used to achieve high availability.

Route - Routes provide a way how service URLs are mapped to the gateway. Gateway translates an URL

based on the start of the base path on the gateway and translates it to a base path that is used in the URL to

access the service. The purpose is to make possible to access services via the gateway with a consistent

URL format no matter what is the format at the service.

Version type follows semantic versioning (http://semver.org/) and is used on multiple places.

https://en.wikipedia.org/wiki/Class_diagram
https://swagger.io/docs/specification/
http://semver.org/

Service and instance

Service and instance are overloaded words that have a different meaning in different contexts. This

document uses similar meaning as in (Netflix) Eureka discovery service. Service (or application) is a logical

entity that is comprised of functionality to access and manipulate specific resources. Instances are real

processes (servers) that provide that functionality to clients. Eureka is used in distributed software world

where a service is implemented by many instances. But z/OSMF software services registry defines software

service instance and software service templates in the context of the provisioning where "instances" are

provisioned from "templates". z/OSMF service instance does not need to correspond exactly to Eureka

service. z/OSMF service instance does need to provide REST API. z/OSMF service instance can be anything

that can be provisioned (e.g. multiple services that provide REST API, one API service, additional instance for

a service, just a container for other services, a database server, a database, a table...).

API Versioning

Service instances provide one or more different API versions (we take only one assumption: one service

instance will not provide two versions with the same major version, no other assumptions which versions will

be provided and how - e.g. an instance can provide only one version and another version will be provided by

different instance, other services can have instances that provide multiple versions).

The API user specifies only the major version in the URI. The API catalog needs to differentiate between

different full versions internally and able to return a specific full version or return documentation for the

highest version of the specified major version that is supported by all running services.

Guidelines:

The version of the API, not dependent on the product release

Two last versions are supported

Major version - specified by the user of the API in the URI - increased only when backward incompatible

change is introduced (it is rare because the REST APIs should be designed to allow extensibility)

Minor version - not specified in the URI but the user should know what is it, important to display the

correct level of documentation. Increased when the API is extended with a new feature (if you use a new

resource available in v1.2, the service has to provide at least v1.2, the request fails on v1.1). If there are

multiple instances of the services that have different minor versions, the service together will say that

has the lowest minor version (e.g instance A provide v1.3 and v2.2, instance B was not yet upgraded

and provides v1.2 and v2.1, then the service provides v1.2 and v2.1)

Patch version - not specified in the URI, no difference in the API, used only when the API documentation

is patched or a bug was fixed, there is no change in the API

Version: v2.2.x LTS

Implement a new SAF IDT provider

As a Zowe API ML user, you can use the API Gateway to apply your own SAF Identity Token (IDT) provider by

implementing an existing interface.

How to create a SAF IDT provider

How to integrate your extension with API ML

How to use an existing SAF IDT provider

How to use the SAF IDT provider

To configure SAF IDT on z/OS, see Configure signed SAF Identity tokens (IDT).

How to create a SAF IDT provider

To create your own implementation of the SAF IDT provider, follow these steps:

�. Implement the existing org.zowe.apiml.gateway.security.service.saf.SafIdtProvider

interface.

The SafIdtProvider interface contains the generate and verify methods. The generate

method can be overridden by your SAF IDT implementation to generate the SAF token on behalf of the

specified user. The verify method can be overridden to verify that the provided SAF token is valid.

�. Register a bean in order to use the implemented SAF IDT provider.

Example:

You created a SAF IDT provider.

How to integrate your extension with API ML

To use your SAF IDT provider as an extension of API ML, see Create an extension for API ML.

How to use the SAF IDT provider

https://docs.zowe.org/v2.2.x/user-guide/configure-zos-system#configure-signed-saf-identity-tokens-idt
https://docs.zowe.org/v2.2.x/extend/extend-apiml/create-apiml-extension

To use the newly created SAF IDT provider, it is necessary to set the parameter

apiml.authentication.scheme to safIdt in your service configuration. Your application then

properly recognizes the SAF IDT scheme and fills the X-SAF-Token header with the token produced by

your SAF IDT provider.

How to use an existing SAF IDT provider

You can generate and verify an existing SAF token by using an implementation of the SAF IDT provider that

utilizes a ZSS solution.

SafRestAuthenticationService is an example of the SAF IDT provider implementation which uses REST as a

method of communication.

To use SafRestAuthenticationService ensure that apiml.security.saf.provider is set to

rest . (This is the default value) Set the following environment parameters in zowe.yaml :

ZWE_configs_apiml_security_authorization_endpoint_url=https://${ZWE_haInstanc

e_hostname}:${GATEWAY_PORT}/zss/api/v1/saf/authenticate

ZWE_configs_apiml_security_authorization_endpoint_url=https://${ZWE_haInstanc

e_hostname}:${GATEWAY_PORT}/zss/api/v1/saf/verify

These ZSS endpoints are used by the SafRestAuthenticationService to generate and validate the

SAF token.

The following diagram illustrates how communication using the SAF IDT provider works:

https://github.com/zowe/api-layer/blob/master/gateway-service/src/main/java/org/zowe/apiml/gateway/security/service/saf/SafRestAuthenticationService.java

Version: v2.2.x LTS

Using the Caching Service

As an API developer, you can use the Caching Service as a storage solution to enable resource sharing

between service instances, thereby ensuring High Availability of services. The Caching Service makes it

possible to store, retrieve, and delete data associated with keys. The Caching Service is designed to make

resource sharing possible for services that cannot be made stateless in two ways:

Using VSAM to store key/value pairs for production

Using InMemory

Note: In the current implementation of the Caching service, VSAM is required for the storage of key/value

pairs for production, as VSAM is a native z/OS solution for storing key/value pairs.

The Caching service is available only for internal Zowe applications, and is not exposed to the internet. The

Caching service supports a hot-reload scenario in which a client service requests all available service data.

Architecture

Storage methods

VSAM

Redis

Infinispan

InMemory

How to start the service

Methods to use the Caching service API

Configuration properties

Authentication

Architecture

A precondition to provide for High Availability of all components within Zowe is the requirement for these

components to be either stateless, or for the resources of the service to be offloaded to a location

accessible by all instances of the service. This condition also applies to recently started instances. Some

services, however, are not, and cannot be stateless. The Caching Service is designed for these types of

services.

REST APIs make it possible to create, delete, and update key-value pairs in the cache. Other APIs read a

specific key-value pair or all key-value pairs in the cache.

Information from cached APIs is stored as a JSON in the following format:

Storage methods

The Caching Service supports the following storage solutions, which provide the option to add custom

implementation.

VSAM

VSAM can be used to organize records into four types of data sets: key-sequenced, entry-sequenced,

linear, or relative record. Use VSAM as the storage solution for production. VSAM is used primarily for

applications and is not used for source programs, JCL, or executable modules. ISPF cannot be used to

display or edit VSAM files.

For more information about the VSAM storage access method, see Using VSAM as a storage solution

through the Caching service.

Redis

Redis is a common storage solution that runs outside of the z/OS platform. It can store data structures in

key-value pairs, has high-availability support, and is highly performant.

For more information about the Redis storage access method, see Using Redis as a storage solution through

the Caching service.

Infinispan

Infinispan is a storage solution that can also run on the z/OS platform. It can store data structures in key-

value pairs, has high-availability support, and is highly performant.

For more information about the Infinispan storage access method, see Using Infinispan as a storage solution

through the Caching service.

InMemory

https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-vsam
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-redis
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-infinispan

TODO (add in memory procedure) The InMemory storage method is a method suitable for testing and

integration verification. Be sure not to use InMemory storage in production. The key/value pairs are stored

only in the memory of a single instance of the service. As such, the key/value pairs do not persist.

How to start the service

By default, the Caching service starts along with the other Zowe components. To prevent the Caching

service from starting, set components.caching-service.enabled to false in zowe.yaml .

Methods to use the Caching service API

To apply a method to the Caching service, use the following API path:

/cachingservice/api/v1/cache/${path-params-as-needed}

Use the following methods with the Caching Service API:

POST /cache

Creates a new key in the Cache

GET /cache

Returns all key/value pairs for specific service

PUT /cache/{key}

Updates the existing value for the given key

GET /cache/{key}

Returns the existing value for the given key

DELETE /cache/{key}

Deletes a key/value pair

Configuration properties

The Caching Service uses the standard application.yml structure for configuration. The service is built

on top of the Spring enabler. As such, it dynamically registers to the API Mediation Layer. The service

appears in the API Catalog under the tile, "Zowe Applications".

caching.storage.size

This property limits the size of the Caching Service. In the VSAM and InMemory implementations, this

property represents the number of records stored before the eviction strategy is initiated. The default

value is 100 .

Note: Different implementations may implement this property differently.

caching.storage.evictionStrategy

This parameter specifies service behavior when the limit of records is reached. The default value is

Reject .

where:

reject

rejects the new item with the HTTP status code 507 when the service reaches the configured

maximum number

removeOldest

removes the oldest item in the cache when the service reaches the configured maximum number

Notes:

For more information about how to configure the Caching Service in the application.yml , see: Add

API Onboarding Configuration.

When using VSAM, ensure that you set the additional configuration parameters. For more information

about setting these parameters, see Using VSAM as a storage solution through the Caching service.

Authentication

Direct calls

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-spring-boot-enabler
https://docs.zowe.org/v2.2.x/extend/extend-apiml/api-mediation-vsam

Caching service requires TLS mutual authentication. This verifies authenticity of client. Calls without valid

client certificate generate 403 response code: Forbidden. This requirement is disabled when

VERIFY_CERTIFICATES=false in zowe-certificates.env configuration file.

Call must have a header X-Certificate-DistinguishedName containing information about

certificate's distinguished name. This header is added by API Gateway. It needs to be added manually for

direct call. Calls without this header produce 401 response code: Unauthorized.

Routed calls through API Gateway

Caching service registers with the following authentication scheme to Discovery service:

which makes Gateway to attempt mutual authentication with Client and if succesfull, propagate the Client's

certificate information to X-Certificate- headers. With this scheme, Gateway will use it's server/client

certificate for the routed call to caching service.

Version: v2.2.x LTS

Using VSAM as a storage solution through
the Caching service

As an API developer, you can configure VSAM as a storage solution through the Caching service. The

procedure in this article describes how to configure your storage solution for VSAM. Configuring VSAM

ensures that you do not lose data if you need to restart. Configuring VSAM also makes it possible to leverage

multiple caching services concurrently, whereby clients can retreive data through VSAM.

Understanding VSAM

VSAM configuration

VSAM performance

Understanding VSAM

Virtual Storage Access Method (VSAM) is both a data set type, and a method for accessing

various user data types. Using VSAM as an access method makes it possible to maintain disk records in a

unique format that is not understandable by other access methods. VSAM is used primarily for applications,

and is not used for source programs, JCL, or executable modules. ISPF cannot be used to display or edit

VSAM files. VSAM can be used to organize records into four types of data sets: key-sequenced, entry-

sequenced, linear, or relative record. The API Caching service supports VSAM as a storage method to cache

APIs, and uses the Key Sequence Data Set (KSDS) dataset. Each record has one or more key fields,

and a record can be retrieved (or inserted) by the key value, thereby providing random access to data.

Records are of variable length. IMS™ uses KDSDs.

For more information about VSAM, see the IBM documentation.

VSAM configuration

Configure VSAM as a storage solution through the Caching service by modifying the following configuration

parameters in zowe.components.caching-service in zowe.yaml .

storage.vsam.name

The ZFile filename. The ZFile is a wrapper around a z/OS file based on the supplied name and options.

This method calls the fopen() and fldata() C-library routines. The ZFile filename should follow the

https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zconcepts/zconcepts_169.htm

specific naming convention //'DATASET.NAME' .

storage.vsam.keyLength

The VsamKey length. The default value is 128 bytes.

storage.vsam.recordLength

The record length. The default value is 4096 bytes.

storage.vsam.encoding

The character encoding. The default value is IBM-1047.

VSAM performance

Accessing VSAM via java results in a performance limitation. The VSAM solution has been tested in a few

scenarios.

The following sequence describes the test process:

�. Load 1000 records into the cache concurrently (5 threads).

�. Update all records for 120 seconds with increasing the thread count, up to <x> amount of threads.

�. Read all records for 120 seconds with increasing the thread count, up to <x> amount of threads.

�. Read and update all records for 120 seconds with increasing the thread count, up to <x> amount of

threads.

�. Delete all loaded records from the cache concurrently (5 threads).

Tests were run with 3 scenarios:

Low load: 5 threads

Medium load: 15 threads

High load: 50 threads

Test subjects:

Single Caching Service with VSAM storage

Two Caching Services with shared VSAM storage

Results:

The most important operation is READ .

Two Caching Services achieve better READ performance than a single Caching Service.

Based on data from the testing results, the READ performance appears to be acceptable, ranging from

300 ms to 1000 ms.

With two Caching Services and a high load, READ performance significantly increased.

Response times of other operations are also acceptable, yet error rates increase with higher

concurrency.

Two Caching Services produce higher load on shared resource (VSAM) and have higher error rate.

VSAM implemetation appears to be sufficient for user-based workloads. For light automation workloads

VSAM implementation appears to be acceptable as well. For heavy workloads this implementatin may

not be sufficient.

VSAM does not scale well beyond 1000 RPM on a node.

Version: v2.2.x LTS

Using Redis as a storage solution through the
Caching service

As an API developer, you can configure Redis as a storage solution through the Caching service. This article

describes how to configure your storage solution for Redis. You can configure Redis for high availability as

well as to replicate data to provide data durability and availability.

Understanding Redis

Redis configuration

Understanding Redis

Redis is an off-Z storage solution that stores data structures in key-value pairs. The API Caching service

uses hash sets, where each service storing data via the Caching service has its own hash, and each data

entry is a key-value entry within that service's Redis hash set.

For more information on Redis, see the official Redis documentation.

Redis replica instances

Redis can be used with one standalone instance. For data durability, however, a master/replica configuration

is recommended. Redis replicas automatically connect, and re-connect when necessary, to the master Redis

instance and attempt to be an exact copy of the master.

For more information on Redis replication and how to configure a replica instance, see the official Redis

Replication documentation.

Redis Sentinel

Redis Sentinel is a configuration that provides high availability for Redis master/replica instances. Sentinel

instances are used to monitor the master instance and use a quorum to automatically determine if a failover

procedure needs to occur from a master instance to one of its replicas.

For more information on Redis Sentinel and how to configure Sentinel instances with master/replica

instances, see the official Redis Sentinel documentation.

https://redis.io/documentation
https://redis.io/topics/replication
https://redis.io/topics/replication

Redis SSL/TLS

Redis supports SSL/TLS starting in version 6. For information on enabled SSL/TLS with Redis, see the official

Redis TLS Support documentation.

Redis and Lettuce

The Lettuce library is used to connect to Redis. Lettuce uses Master or Sentinel node registration

information to automatically discover other instances. The IP address used to register between nodes is

therefore what Lettuce uses to connect to downstream replica instances. This means the IP address of

replica instances, or the IP address of both master and replica instances in the case of Sentinel topology,

must be accessible to the Caching service. For example, in a master/replica topology running in separate

Docker containers, the replica container's IP address needs to be accessible to the Caching service, rather

than only exposing a port.

Redis configuration

Configure Redis as a storage solution through the Caching service by setting the following environment

variables. Environment variables can be set by adding them to the zowe.components.caching-

service section of the zowe.yaml configuration file.

storage.redis.masterNodeUri

The URI used to connect to the Redis master instance in the form username:password@host:port .

The host section of the URI is mandatory

The port section is optional and if not included defaults to 6379 .

The username section is optional and if not included defaults to the Redis default username

default .

The password section is optional, but must be included if a username is included. If the password is

not set a username cannot be set.

storage.redis.timeout

The timeout duration in seconds for the Caching service when first connecting to Redis. Defaults to 60

seconds.

storage.redis.sentinel.masterInstance

https://redis.io/topics/replication
https://lettuce.io/

The Redis master instance ID used by the Redis Sentinel instances. Required if Redis Sentinel is being

used.

storage.redix.sentinel.nodes

The URI used to connect to a Redis Sentinel instance in the form username:password@host:port .

The host section of the URI is mandatory

The port section is optional and if not included defaults to 6379 .

The password section is optional and defaults to no password.

To supply multiple Redis Sentinel URIs, concatenate the URIs with a comma , .

storage.redix.ssl.enabled

A flag indicating if Redis is being used with SSL/TLS support. Defaults to true .

storage.redis.ssl.keystore

The keystore file used to store the private key. Defaults to the Caching Service's keystore.

storage.redis.ssl.keystorePassword

The password used to unlock the keystore. Defaults to the Caching Service's keystore password.

storage.redis.ssl.truststore

The truststore file used to keep other parties public keys and certificates. Defaults to the Caching

Service's truststore.

storage.redix.ssl.truststorePassword

The password used to unlock the truststore. Defaults to the Caching Service's truststore password.

Version: v2.2.x LTS

Overview

You can create application plug-ins to extend the capabilities of the Zowe™ Application Framework. An

application plug-in is an installable set of files that present resources in a web-based user interface, as a set

of RESTful services, or in a web-based user interface and as a set of RESTful services.

Read the following topics to get started with extending the Zowe Application Framework.

How Zowe Application Framework works

Read the following topics to learn how Zowe Application Framework works:

Creating application plug-ins

Plug-ins definition and structure

Dataservices

Zowe Desktop and window management

Configuration Dataservice

URI Broker

Application-to-application communication

Error reporting UI

Logging utility

Tutorials

The following tutorials are available in Github.

Stand up a local version of the Example Zowe Application Server

GITHUB REPO:

zlux-app-server

User Browser Workshop App

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-plugindefandstruct
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-dataservices
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-uribroker
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-apptoappcommunication
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-errorreportingui
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-logutility
https://github.com/zowe/zlux-app-server/tree/staging/README.md

GITHUB REPO:

User Browser Workshop App

Internationalization in Angular Templates in Zowe Application Server

GITHUB SAMPLE REPO:

sample-angular-app (Internationalization)

App to app communication

GITHUB SAMPLE REPO :

sample-angular-app (App to app communication)

Using the Widgets Library

GITHUB SAMPLE REPO:

sample-angular-app (Widgets)

Configuring user preferences (configuration dataservice)

GITHUB SAMPLE REPO:

sample-angular-app (configuration dataservice)

Samples

Zowe allows extensions to be written in any UI framework through the use of an Iframe, or Angular and React

natively. In this section, code samples of various use-cases will be provided with install instructions.

TROUBLESHOOTING SUGGESTIONS:

If you are running into issues, try these suggestions:

https://github.com/zowe/workshop-user-browser-app/blob/master/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-3-app2app-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-4-widgets-complete/README.md
https://github.com/zowe/sample-angular-app/blob/lab/step-5-config-complete/README.md

Restart the Zowe Server/ VM.

Double check that the name in the plugins folder matches your identifier in

pluginsDefinition.json located in the Zowe root.

After logging into the Zowe desktop, use the Chrome or Firefox developer tools and navigate to

the "network" tab to see what errors you are getting.

Check each file with cat <filename> to be sure it wasn't corrupted while uploading. If files

were corrupted, try uploading using a different method like SCP or SFTP.

Sample Iframe App

GITHUB SAMPLE REPO:

sample-iframe-app

Sample Angular App

GITHUB SAMPLE REPO:

sample-angular-app

Sample React App

GITHUB SAMPLE REPO:

sample-react-app

User Browser Workshop Starter App

GITHUB SAMPLE REPO:

workshop-starter-app

This sample is included as the first part of a tutorial detailing communication between separate Zowe apps.

It should be installed on your system before starting the User Browser Workshop App Tutorial

https://github.com/zowe/sample-iframe-app
https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/sample-react-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/workshop-starter-app
https://github.com/zowe/workshop-user-browser-app/blob/master/README.md

The App's scenario is that it has been opened to submit a task report to a set of users who can handle the

task. In this case, it is a bug report. We want to find engineers who can fix this bug, but this App does not

contain a directory listing for engineers in the company, so we need to communicate with some App that

does provide this information. In this tutorial, you must build an App which is called by this App in order to list

engineers, is able to be filtered by the office that they work from, and is able to submit a list of engineers

which would be able to handle the task.

After installing this app on your system, follow directions in the User Browser Workshop App Tutorial to

enable app-to-app communication.

https://github.com/zowe/workshop-user-browser-app/blob/master/README.md

Version: v2.2.x LTS

Plug-ins definition and structure

The Zowe™ Application Server (zlux-app-server) enables extensiblity with application Plugins.

Application Plugins are a subcategory of the unit of extensibility in the server called a plugin.

The files that define a Plugin are located in the pluginsDir directory.

pluginDefinition.json

This file describes an application Plugin to the Zowe Application Server. (A Plugin is the unit of extensibility

for the Zowe Application Server. An application Plugin is a Plugin of the type "Application", the most common

and visible type of Plugin.) A definition file informs the server whether the application Plugin has server-side

dataservices, client-side web content, or both. The attributes of this file are defined within the

pluginDefinition json-schema document

Application Plugin filesystem structure

An application Plugin can be loaded from a filesystem that is accessible to the Zowe Application Server, or it

can be loaded dynamically at runtime. When accessed from a filesystem, there are important considerations

for the developer and the user as to where to place the files for proper build, packaging, and operation.

Root files and directories

The root of an application Plugin directory contains the pluginDefinition.json file, and the following other files

and directories.

Dev and source content

Aside from demonstration or open source application Plugins, the following directories should not be visible

on a deployed server because the directories are used to build content and are not read by the server.

nodeServer

When an application Plugin has router-type dataservices, they are interpreted by the Zowe Application

Server by attaching them as ExpressJS routers. It is recommended that you write application Plugins using

Typescript, because it facilitates well-structured code. Use of Typescript results in build steps because the

https://github.com/zowe/zlux/blob/v2.x/staging/schemas/plugindefinition-schema.json
http://www.typescriptlang.org/

pre-transpilation Typescript content is not to be consumed by NodeJS. Therefore, keep server-side source

code in the nodeServer directory. At runtime, the server loads router dataservices from the lib directory.

webClient

When an application Plugin has the webContent attribute in its definition, the server serves static content for

a client. To optimize loading of the application Plugin to the user, use Typescript to write the application

Plugin and then package it using Webpack. Use of Typescript and Webpack result in build steps because

the pre-transpilation Typescript and the pre-webpack content are not to be consumed by the browser.

Therefore, separate the source code from the served content by placing source code in the webClient

directory.

Runtime content

At runtime, the following set of directories are used by the server and client.

lib

The lib directory is where router-type dataservices are loaded by use in the Zowe Application Server. If

the JS files that are loaded from the lib directory require NodeJS modules, which are not provided by the

server base (the modules zlux-server-framework requires are added to NODE_PATH at runtime),

then you must include these modules in lib/node_modules for local directory lookup or ensure that they

are found on the NODE_PATH environment variable. nodeServer/node_modules is not automatically

accessed at runtime because it is a dev and build directory.

web

The web directory is where the server serves static content for an application Plugin that includes the

webContent attribute in its definition. Typically, this directory contains the output of a webpack build.

Anything you place in this directory can be accessed by a client, so only include content that is intended to

be consumed by clients.

Packaging applications as compressed files

Application Plugin files can be served to browsers as compressed files in brotli (.br) or gzip (.gz) format. The

file must be below the application's /web directory, and the browser must support the compression

method. If there are multiple compressed files in the /web directory, the Zowe Application Server and

browser perform runtime negotiation to decide which file to use.

https://webpack.js.org/

Default user configuration

Configuration Dataservice default settings for users can be packaged within a Plugin.

This is done by putting content within the /config/storageDefaults folder, and more on that subject

can be found here

App-to-App Communication

App-to-App communication behaviors can be statically defined or dynamically created at runtime. Static

definitions help as a form of documentation and to be able to depend upon them, so it is recommended that

these be packaged with a Plugin if you wish other's to be able to use App-to-App communication on your

App.

This page describes the subject in more detail.

In summary, App-to-App Actions and Recognizers can be stored within an App's /config/actions and

/config/recognizers folders, respectively, where the filenames much match the identifiers of Apps.

Documentation

In order for Zowe servers to pick up documentation to present to UIs, they must be in a uniform place.

The /doc folder of any Plugin can contain at its root any READMEs or documents that an administrator or

developer may care about when working with a Plugin for the first time.

The /doc/swagger folder on the other hand, will be used to store .yaml extension Swagger 2.0 files that

document the APIs of a Plugin's dataservices if they exist.

Other folders may exist, such as /doc/ui to document help behavior that may be shown in a UI, but is not

implemented at this time.

Location of Plugin files

The files that define a Plugin are located in the plugins directory.

pluginsDir directory

At startup, the server reads from the plugins directory. The server loads the valid Plugins that are found

by the information that is provided in the JSON files.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-plugindefandstruct/mvd-configdataservice
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice#packaging-defaults
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-apptoappcommunication#saved-on-system

Within the pluginsDir directory are a collection of JSON files. Each file has two attributes, which serve to

locate a Plugin on disk:

location: This is a directory path that is relative to the server's executable (such as zlux-app-

server/bin/start.sh) at which a pluginDefinition.json file is expected to be found.

identifier: The unique string (commonly styled as a Java resource) of a Plugin, which must match what is in

the pluginDefinition.json file.

Application Dataservices

See Dataservices

Application Configuration Data

The App server has a component for managing an App's configuration & user data, organized by scope

such as user, group, and server instance. For more information, see Configuration Dataservice

Documentation.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-dataservices
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice

Version: v2.2.x LTS

Building plugin apps

You can build a plugin app by using the following steps as a model. Alternatively, you can follow the Sample

Angular App tutorial.

Plugins can have any build process desired as long as it doesn't conflict with the packaging structure. The

basic requirement for a plugin app is that static web content must be in a /web directory, and server and

other backend files must be in a /lib directory.

Before you can build a plugin app you must install all prerequisites.

Building web content

�. On the computer where the virtual desktop is installed, use the the following command to specify a

value for the MVD_DESKTOP_DIR environment variable:

Where <path> is the install location of the virtual desktop.

�. Navigate to /<plugin_dir>/webClient . If there is no /webClient directory, proceed to the

Building server content section below.

�. Run the npm install command to install any application dependencies. Check for successful return

code.

�. Run one of the following commands to build the application code:

Run the npm run build command to generate static content in the /web directory. (You can

ignore warnings as long as the build is successful.)

Run the npm run start command to compile in real-time. Until you stop the script, it compiles

code changes as you make them.

Building app server content

�. Navigate to the plugin directory. If there is no /nodeServer directory in the plugin directory, proceed

to the Building Javascript content (*.js files) section below.

https://github.com/zowe/sample-angular-app/blob/lab/step-1-hello-world/README.md
https://github.com/zowe/zlux/wiki/ZLUX-App-filesystem-structure
https://github.com/zowe/zlux-app-server#0-install-prerequisites

�. Run the npm install command to install any application dependencies. Check for successful return

code.

�. Run one of the following commands to build the application code:

Run the npm run build command to generate static content in the /lib directory.

Run the npm run start command to compile in real-time. Until you stop the script, it compiles

code changes as you make them.

Building zss server content

�. Clone the zss repository and its submodule zowe-common-c.

�. Make a build script that compiles your C code with -Wc,dll and -Wl,dll, and other flags as seen in this

zowe example

�. Include a ZSS .x file to link zss server APIs to your plugin, as seen in this zowe example

�. Ensure that the build output ends up in the /lib folder as a .so file that has the z/OS program control

(+p) extended attribute.

Tagging plugin files on z/OS

When Zowe App Framework is installed on z/OS developers should tag their plugin files according to the file

content. Tagging files helps programs on z/OS understand how to interpret those files, most importantly to

know whether a file is encoded using EBCDIC (Extended Binary Coded Decimal Interchange Code). If you

are unsure if a plugin you are using is tagged, it can be checked and set using the chtag command. If you

want to set the tags, it can be done in bulk with the help of these programs:

Autotag: This free, open-source application is not part of Zowe. You can download the binary from here

for example https://anaconda.org/izoda/autotag. Source: https://github.com/RocketSoftware/autotag

The Zowe tagging script: This script tags by file extension. It might not work for all cases, but can be

altered to suit your needs. Source: https://github.com/zowe/zowe-install-

packaging/blob/master/scripts/tag-files.sh

Building Javascript content (*.js files)

https://github.com/zowe/zss
https://github.com/zowe/explorer-ip/blob/master/dataService/build/build.sh
https://github.com/zowe/explorer-ip/blob/master/dataService/build/pluginAPI.x
https://www.ibm.com/support/knowledgecenter/SSLTBW_2.2.0/com.ibm.zos.v2r2.bpxa500/chtag.htm
https://anaconda.org/izoda/autotag
https://github.com/RocketSoftware/autotag
https://github.com/zowe/zowe-install-packaging/blob/master/scripts/tag-files.sh

Unlike Typescript, Javascript is an interpreted language and does not need to be built. In most cases,

reloading the page should build new code changes. For Iframes or other JS-based apps, close and open the

app.

Installing

Follow the steps described in Installing plugins to add your built plugin to the Zowe desktop.

Packaging

For more information on how to package your Zowe app, developers can see Plugins definition and

structure.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-installplugins
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-plugindefandstruct

Version: v2.2.x LTS

Installing Plugins

Plugins can be added or removed from the Zowe App Server, as well as upgraded. There are two ways to do

these actions: By REST API or by filesystem. The instructions below assume you have administrative

permissions either to access the correct REST APIs or to have the necessary permissions to update server

directories & files.

NOTE: Plugins must be pre-built, and follow the directory structure, and have all dependencies met

to be successfully installed. Read the appServer or install-app log files within the Zowe instance's

<logDirectory> directory, (ex ~/.zowe/log/install-app.log) if a plugin does not show in the

Zowe desktop, but has been installed successfully.

By filesystem

The App server uses directories of JSON files, described in the server configuration document. Defaults are

located in the folder zlux-app-server/defaults/plugins , but the server reads the list of plugins

instead from the instance directory, at <workspaceDirectory>/app-server/plugins (for example,

~/.zowe/workspace/app-server/plugins which includes JSON files describing where to find a

plugin. Adding or removing JSONs from this folder will add or remove plugins upon server restart, or you can

use REST APIs and cluster mode to add or remove plugins without restarting).

Adding/Installing

Plugins must be packaged as Components. You can install a plugin by running the component installer, zwe

components install . For more information, try the help command zwe components install --

help .

Removing

Plugins are hidden from the Desktop when a component is disabled. If a component is removed, the plugins

from the component will be removed too.

Upgrading

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-plugindefandstruct
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-server-config#deploy-configuration

Currently, only one version of a plugin can exist per server. So, to upgrade, you either upgrade the plugin

within its pre-existing directory by rebuilding it (with more up to date code), or you alter the locator JSON of

that app to point to the content of the upgraded version.

Modifying without server restart (Exercise to the reader)

The server's reading of the locator JSONs and initializing of plugins only happens during bootstrapping at

startup. However, in cluster mode the bootstrapping happens once per worker process. Therefore, it is

possible to manage plugins without a server restart by killing & respawning all worker processes without

killing the cluster master process. This is what the REST API does, internally. To do this without the REST

API, it may be possible to script knowing the parent process ID, and running a kill command on all child

processes of the App server cluster process.

By REST API

The server REST APIs allow plugin management without restarting the server - you can add, remove, and

upgrade plugins in real-time. However, removal or upgrade must be done carefully as it can disrupt users of

those plugins.

This swagger file documents the REST API for plugin management

The API only works when RBAC is configured, and an RBAC-compatible security plugin is being used. An

example of this is zss-auth, and use of RBAC is described in this documentation and in the wiki.

NOTE: If you do not see your plugin in the Zowe desktop check the appServer and install-app log files within

the Zowe instance's <logDirectory> directory to troubleshoot the problem. If you are building your own

desktop extension then you need to pre-build your plugin with the correct directory structure, and meet all

dependencies.

Plugin management during development

Below are some tasks developers can do to work with plugins. These should not be done in production, as

plugins are managed automatically at the component level.

Installing

When running the app-server without zowe server infrastructure and tooling, it's still possible to install

plugins directly. To add or install a plugin, run the script zlux-app-server/bin/install-app.sh

https://github.com/zowe/zlux-app-server/blob/master/doc/swagger/server-plugins-api.yaml
https://github.com/zowe/zlux-server-framework/tree/v2.x/staging/plugins/sso-auth
https://docs.zowe.org/stable/user-guide/mvd-configuration#enabling-rbac
https://github.com/zowe/zlux/wiki/Auth-Plugin-Configuration
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-buildingplugins
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-plugindefandstruct

providing the location to a plugin folder. For example:

./install-app.sh /home/john/zowe/sample-angular-app

This will generate a JSON file <workspaceDirectory>/app-

server/plugins/org.zowe.zlux.sample.angular.json that contains the plugin's ID and its location

on disk. These JSON files tell the Desktop where to find apps and are the glue between the Zowe instance's

desktop and the plugin code itself held in its directory.

. For example, if we were to install the sample angular-app in the folder /home/john/zowe/sample-

angular-app , then the JSON would be:

Removing

To remove a plugin, locate the server's instance plugin directory <workspaceDirectory>/app-

server/plugins (for example, ~/.zowe/workspace/app-server/plugins) and remove the locator

JSON that is associated with that plugin. Remove the plugin's content by deleting it from the file system if

applicable.

https://github.com/zowe/sample-angular-app

Version: v2.2.x LTS

Embedding plugins

Add these imports to a component where you want to embed another plugin:

Inject Angular2PluginEmbedActions into your component constructor:

In the component template prepare a container where you want to embed the plugin:

In the component class add a reference to the container:

In the component class add a reference to the embedded instance:

Everything is ready to start embedding, you just need to know the pluginId that you want to embed:

How to interact with embedded plugin

If the main component of embedded plugin declares Input and Output properties then you can interact with

it. ApplicationManager provides methods to set Input properties and get Output properties of the embedded

plugin. Suppose, that the embedded plugin declares Input and Output properties like this:

Obtain a reference to ApplicationManager in your component constructor:

Note: We are unable to inject ApplicationManager with @Inject() until an AoT-compiler issue with

namespaces is resolved: angular/angular#15613

Now you can set sampleInput property, obtain sampleOutput property and subscribe to it:

How to destroy embedded plugin

There is no special API to destroy embedded plugin. If you want to destroy the embedded plugin just clear

the container for the embedded plugin and set embeddedInstance to null:

How to style a container for the embedded plugin

It is hard to give a universal recipe for a container style. At least, the container needs position:

"relative" because the embedded plugin may have absolutely positioned elements. Here is sample

https://github.com/angular/angular/issues/15613

styles you can start with if your component utilizes flexbox layout:

Applications that use embedding

Workflow app demonstrates advanced usage.

https://github.com/zowe/zlux-workflow/blob/master/webClient/src/app/workflow-step-wizard/workflow-step-wizard.component.ts

Version: v2.2.x LTS

Dataservices

Dataservices are dynamic backend components of Zowe™ plug-in applications. You can optionally add them

to your applications to make the application do more than receive static content from the proxy server. Each

dataservice defines a URL space that the server can use to run extensible code from the application.

Dataservices are mainly intended to create REST APIs and WebSocket channels.

Defining dataservices

You define dataservices in the application's pluginDefinition.json file. Each application requires a

definition file to specify how the server registers and uses the application's backend. You can see an

example of a pluginDefinition.json file in the top directory of the sample-angular-app.

In the definition file is a top level attribute called dataServices , for example:

To define your dataservice, create a set of keys and values for your dataservice in the dataservices

array.

Schema

The documentation on dataservice types and parameters for each are specified within the

pluginDefinition.json json-schema document

Defining Java dataservices

In addition to other types of dataservice, you can use Java (also called java-war) dataservices in your

applications. Java dataservices are powered by Java Servlets.

To use a Java dataservice you must meet the prerequisites, define the dataservice in your plug-in definition,

and define the Java Application Server library to the Zowe Application Server.

Prerequisites

Install a Java Application Server library. In this release, Tomcat is the only supported library.

https://github.com/zowe/sample-angular-app
https://github.com/zowe/zlux/blob/v2.x/staging/schemas/plugindefinition-schema.json

Make sure your plug-in's compiled Java program is in the application's /lib directory, in either a

.war archive file or a directory extracted from a .war archive file. Extracting your file is

recommended for faster start-up time.

Defining Java dataservices

To define the dataservice in the pluginDefinition.json file, specify the type as java-war , for

example:

To access the service at runtime, the plug-in can use the Zowe dataservice URL standard:

/ZLUX/plugins/[PLUGINID]/services/[SERVICENAME]/[VERSIONNUMBER]

Using the example above, a request to get users might be:

/ZLUX/plugins/[PLUGINID]/services/javaservlet/1.0.0/users

Note: If you extracted your servlet contents from a .war file to a directory, the directory must have the

same name as the file would have had. Using the example above, javaservlet.war must be extracted

to a directory named \javaservlet .

Defining Java Application Server libraries

In the zlux-app-server/zluxserver.json file, use the example below to specify Java Application

Server library parameters:

Specify the following parameters in the languages.java object:

runtimes (object) - The name and location of a Java runtime that can be used by one or more

services. Used to load a Tomcat instance.

name (object) - The name of the runtime.

home (string) - The path to the runtime root. Must include /bin and /lib directories.

ports (array <number>)(Optional) - An array of port numbers that can be used by instances of Java

Application Servers or microservices. Must contain as many ports as distinct servers that will be

spawned, which is defined by other configuration values within languages.java . Either ports or

portRange is required, but portRange has a higher priority.

portRange (array <number>)(Optional) - An array of length 2, which contains a start number and

end number to define a range of ports to be used by instances of application servers or microservices.

You will need as many ports as distinct servers that will be spawned, which is defined by other

configuration values within languages.java . Either ports or portRange is required, but

portRange has a higher priority.

war (object) - Defines how the Zowe Application Server should handle java-war dataservices.

defaultGrouping (string)(Optional) - Defines how services should be grouped into instances of

Java Application Servers. Valid values: appserver or microservice . Default: appserver .

appserver means 1 server instance for all services. microservice means one server

instance per service.

pluginGrouping (array <object>)(Optional) - Defines groups of plug-ins to have their java-

war services put within a single Java Application Server instance.

plugins (Array <string>) - Lists the plugins by identifier which should be put into this

group. Plug-ins with no java-war services are skipped. Being in a group excludes a plugin

from being handled by defaultGrouping .

runtime (string)(Optional) - States the runtime to be used by the Tomcat server instance, as

defined in languages.java.runtimes .

javaAppServer (object) - Java Application Server properties.

type (string) - Type of server. In this release, tomcat is the only valid value.

path (string) - Path of the server root, relative to zlux-app-server/lib . Must include

/bin and /lib directories.

config (string) - Path of the server configuration file, relative to zlux-app-server/lib .

https (object) - HTTPS parameters.

key (string) - Path of a private key, relative to zlux-app-server/lib .

certificate (string) - Path of an HTTPS certificate, relative to zlux-app-server/lib .

Java dataservice logging

The Zowe Application Server creates the Java Application Server instances required for the java-war

dataservices, so it logs the stdout and stderr streams for those processes in its log file. Java Application

Server logging is not managed by Zowe at this time.

Java dataservice limitations

Using Java dataservices with a Zowe Application Server installed on a Windows computer, the source and

Java dataservice code must be located on the same storage volume.

To create multiple instances of Tomcat on non-Windows computers, the Zowe Application Server

establishes symbolic links to the service logic. On Windows computers, symbolic links require administrative

privilege, so the server establishes junctions instead. Junctions only work when the source and destination

reside on the same volume.

Using dataservices with RBAC

If your administrator configures the Zowe Application Framework to use role-based access control (RBAC),

then when you create a dataservice you must consider the length of its paths.

To control access to dataservices, administrators can enable RBAC, then use a z/OS security product such

as RACF to map roles and authorities to a System Authorization Facility (SAF) profile. For information on

RBAC, see Applying role-based access control to dataservices.

SAF profiles have the following format:

<product>.<instance id>.SVC.<pluginid_with_underscores>.<service>.<HTTP method>.

<dataservice path with forward slashes '/' replaced by periods '.'>

For example, to access this dataservice endpoint:

/ZLUX/plugins/org.zowe.foo/services/baz/_current/users/fred

Users must have READ access to the following profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_FOO.BAZ.POST.USERS.FRED

Profiles cannot contain more than 246 characters. If the path section of an endpoint URL makes the profile

name exceed limit, the path is trimmed to only include elements that do not exceed the limit. For example,

imagine that each path section in this endpoint URL contains 64 characters:

/ZLUX/plugins/org.zowe.zossystem.subsystems/services/data/_current/aa..a/bb..b/cc

..c/dd..d

So aa..a is 64 "a" characters, bb..b is 64 "b" characters, and so on. The URL could then map to the

following example profile:

ZLUX.DEFAULT.SVC.ORG_ZOWE_ZOSSYSTEM_SUBSYSTEMS.DATA.GET.AA..A.BB..B

The profile ends at the BB..B section because adding CC..C would put it over 246 characters. So in this

example, all dataservice endpoints with paths that start with AA..A.BB..B are controlled by this one

https://docs.zowe.org/v2.2.x/user-guide/mvd-configuration#applying-role-based-access-control-to-dataservices

profile.

To avoid this issue, we recommend that you maintain relatively short endpoint URL paths.

Dataservice APIs

Dataservice APIs can be categorized as Router-based or ZSS-based, and either WebSocket or not.

Router-based dataservices

Each Router dataservice can safely import Express, express-ws, and bluebird without requiring the modules

to be present, because these modules exist in the proxy server's directory and the NODE_MODULES

environment variable can include this directory.

HTTP/REST Router dataservices

Router-based dataservices must return a (bluebird) Promise that resolves to an ExpressJS router upon

success. For more information, see the ExpressJS guide on use of Router middleware: Using Router

Middleware.

Because of the nature of Router middleware, the dataservice need only specify URLs that stem from a root

'/' path, as the paths specified in the router are later prepended with the unique URL space of the

dataservice.

The Promise for the Router can be within a Factory export function, as mentioned in the

pluginDefinition specification for routerFactory above, or by the module constructor.

An example is available in the Sample Angular App.

WebSocket Router dataservices

ExpressJS routers are fairly flexible, so the contract to create the Router for WebSockets is not significantly

different.

Here, the express-ws package is used, which adds WebSockets through the ws package to ExpressJS. The

two changes between a WebSocket-based router and a normal router are that the method is 'ws', as in

router.ws(<url>,<callback>) , and the callback provides the WebSocket on which you must define

event listeners.

http://expressjs.com/en/guide/using-middleware.html#middleware.router
https://github.com/zowe/sample-angular-app/blob/master/nodeServer/ts/helloWorld.ts

See the ws and express-ws topics on www.npmjs.com for more information about how they work, as the API

for WebSocket router dataservices is primarily provided in these packages.

An example is available in zlux-server-framework/plugins/terminal-

proxy/lib/terminalProxy.js

Router dataservice context

Every router-based dataservice is provided with a Context object upon creation that provides definitions

of its surroundings and the functions that are helpful. The following items are present in the Context

object:

serviceDefinition

The dataservice definition, originally from the pluginDefinition.json file within a plug-in.

serviceConfiguration

An object that contains the contents of configuration files, if present.

logger

An instance of a Zowe Logger, which has its component name as the unique name of the dataservice within

a plug-in.

makeSublogger

A function to create a Zowe Logger with a new name, which is appended to the unique name of the

dataservice.

addBodyParseMiddleware

A function that provides common body parsers for HTTP bodies, such as JSON and plaintext.

plugin

An object that contains more context from the plug-in scope, including:

pluginDef: The contents of the pluginDefinition.json file that contains this dataservice.

server: An object that contains information about the server's configuration such as:

https://www.npmjs.com/

app: Information about the product, which includes the productCode (for example: ZLUX).

user: Configuration information of the server, such as the port on which it is listening.

Router storage API

ZSS based dataservices

ZSS dataservices much like zlux router services can be used to implement REST or websocket APIs. Each

service is associated with a URL which when requested will call a function to handle the request or

websocket message event.

HTTP/REST ZSS dataservices

ZSS REST dataservices are registered into ZSS with a service installer function, where initializerName

is the function name located in the dll libraryName . The methods list what HTTP methods are

expected of this dataservice. Example:

The service installer is given DataService , which includes context such as the above definition plus a

loggingIdentifier . The service is also given HttpServer , a reference to ZSS and its configuration.

To register the dataservice, you must make an HttpService object like

Then you must assign properties to the dataservice, such as

authType: What type of authentication and authorization checks should be done before calling this

service. values such as SERVICE_AUTH_NONE when the service does not need securty or

SERVICE_AUTH_NATIVE_WITH_SESSION_TOKEN when the service should be protected by ZSS's

cookie are valid.

serviceFunction: The function within this dataservice that will be called whenever a request is received.

runInSubtask: (TRUE/FALSE) Whether to run the service function in a subtask or not whenever a

request is received.

doImpersonation: (TRUE/FALSE) When true, the service function will be ran as the authenticated user,

rather than the server user. This is recommended whenever possible to keep permissions management

in line with the users own permissions.

Example of service installer:

When a request is received, the service function is called with the HttpService and HttpResponse

objects. HttpService is used to store and retrieve cached data and access the storage API.

HttpRequest is a pointer within the response object, and utilities exist to help with parsing it.

Example of request handling:

ZSS dataservice context and structs

Headers to important dataservice structs include

HttpResponse

HttpRequest

HttpService

HttpServer

Json handling

DataService context

Utilities

Data structures

ZSS storage API

The DataService struct contains two Storage structs, localStorage and remoteStorage . They

implement the same API for getting, setting, and removing data, but manage the data in different locations.

localStorage stores data within the ZSS server, for high speed access. remoteStorage stores data

in the Caching Service, for high availability state storage.

Usage example: Sample angular app storage test api: https://github.com/zowe/sample-angular-

app/blob/v1.23.0-RC1/zssServer/src/storage.c

Documenting dataservices

It is recommended that you document your RESTful application dataservices in OpenAPI (Swagger)

specification documents. The Zowe Application Server hosts Swagger files for users to view at runtime.

To document a dataservice, take the following steps:

�. Create a .yaml or .json file that describes the dataservice in valid Swagger 2.0 format. Zowe

validates the file at runtime.

https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L117
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/http.h#L124
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L173
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/httpserver.h#L223
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/json.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/dataservice.h#L57
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/utils.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/collections.h
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/dataservice.h#L57
https://github.com/zowe/zowe-common-c/blob/zss-v1.27.0/h/storage.h#L22
https://github.com/zowe/sample-angular-app/blob/v1.23.0-RC1/zssServer/src/storage.c
https://swagger.io/specification/v2/

�. Name the file with the same name as the dataservice. Optionally, you can include the dataservice

version number in the format: <name>_<number> . For example, a Swagger file for a dataservice

named user must be named either users.yaml or users_1.1.0.yaml .

�. Place the Swagger file in the /doc/swagger directory below your application plug-in directory, for

example:

/sample-angular-app/doc/swagger/hello.yaml

At runtime, the Zowe Application Server does the following:

Dynamically substitutes known values in the files, such as the hostname and whether the endpoint is

accessible using HTTP or HTTPS.

Builds documentation for each dataservice and for each application plug-in, in the following locations:

Dataservice documentation:

/ZLUX/plugins/<app_name>/catalogs/swagger/servicename

Application plug-in documentation: /ZLUX/plugins/<app_name>/catalogs/swagger

In application plug-in documentation, displays only stubs for undocumented dataservices, stating that

the dataservice exists but showing no details. Undocumented dataservices include non-REST

dataservices such as WebSocket services.

Version: v2.2.x LTS

Authentication API

This topic describes the web service API for user authentication.

The authentication mechanism of the ZLUX server allows for an administrator to gate access to services by

a given auth handler, while on the user side the authentication structure allows for a user to login to one or

more endpoints at once provided they share the same credentials given.

Handlers

The auth handlers are a type of zlux server plugin (type=nodeAuthentication) which are categorized by

which kind of authentication they can provide. Whether it's to z/OS via type=saf or theoretical

authentication such as Facebook or Amazon cloud, the handler API is abstract to handle different types of

security needs.

Handler installation

Auth handler plugins are installed like any other plugin.

Handler configuration

The server top-level configuration attribute dataserviceAuthentication states properties about

which plugins to use and how to use them.

For example,

The dataserviceAuthentication attribute has the following properties:

defaultAuthentication: Which authentication category to choose by default, in case multiple are

installed.

rbac: Whether or not the server should do authority checks in addition to authentication checks when

requesting a dataservice.

Handler context

These plugins are given an object, context , in the constructor. Context has attributes to help the plugin

know about the server configuration, provide a named logger, and more. The parameters include:

pluginDefinition: The object describing the plugin's definition file

pluginConf: An object that gives the plugin its configuration from the Config Service internal storage

serverConfiguration: The object describing the server's current configuration

context: An object holding contextual objects

logger: A logger with the name of the plugin's ID

Handler capabilities

A handler's constructor should return a capabilities object that states which capabilities the plugin has. If a

capabilities object is not returned, it is assumed that only the authenticate and authorize functions are

implemented, for backward compatibility support. The capabilities object should include:

canGetCategories: (true/false) If the getCategories() function exists, which returns a string array of

categories of auth the plugin can support given the server context. This is useful if the plugin can

support multiple categories conditionally.

canLogout: (true/false) If the logout(request, sessionState) function exists. Used to clear state and

cookies when a session should be ended.

canGetStatus: (true/false) If the getStatus(sessionState) function exists

canRefresh: (true/false) If the refreshStatus(request, sessionState) function exists, which is used to

renew a session that has an expiration limit.

canAuthenticate: (true/false) If the authenticate(request, sessionState):Promise function exists

(Required, assumed)

canAuthorized: (true/false) If the *authorized(request, sessionState, options) function exists (Required,

assumed)

haCompatible: (true/false) Used to be sure that a plugin has no state that would be lost in a high

availibility environment.

canGenerateHaSessionId: (true/false) If generateHaSessionId(request) exists, which is used to set the

value used for an app-server session for a user. When not in a high availability environment, the app-

server generates its own session ID.

canResetPassword: (true/false) If passwordRest(request, sessionState) exists

proxyAuthorizations: (true/false) If the addProxyAuthorizations(req1, req2Options, sessionState)

function exists

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-configdataservice#internal--bootstrapping-use

Examples

sso-auth, which conditionally implements the saf, zss, and apiml security types:

https://github.com/zowe/zlux-server-framework/tree/v2.x/master/plugins/sso-auth

High availability (HA)

Some auth handlers are not capable of working in a high availability environment. In these environments,

there can be multiple zlux servers and there may not be a safe and secure way to share session state data.

This extends to the zlux server cookie as well, which is not sharable between multiple servers by default.

Therefore, high availability has the following two requirements from an auth handler plugin: 1) The plugin

must state that it is HA capable by setting the capability flag haCompatible=true , usually indicating that

the plugin has no state data. 2) A plugin must have capability canGenerateHaSessionId=true so that

the zlux server cookie is sharable between multiple zlux servers.

REST API

Check status

Returns the current authentication status of the user to the caller.

Response example:

Every key in the response object is a registered auth type. The value object is guaranteed to have a Boolean

field named "authenticated" which indicates that at least one plugin in the category was able to authenticate

the user.

Each item also has a field called "plugins", where every property value is a plugin-specific object.

Authenticate

Authenticates the user against authentication back-ends.

Request body example:

The categories parameter is optional. If omitted, all auth plugins are invoked with the username and

password Response example:

https://github.com/zowe/zlux-server-framework/tree/v2.x/master/plugins/sso-auth

First-level keys are authentication categories or types. "success" means that all of the types requested have

been successful. For example typeA successful AND typeB successful AND ...

Second-level keys are auth plugin IDs. "success" on this level means that there's at least one successful

result in that auth type. For example, pluginA successful OR pluginB successful OR ...

User not authenticated or not authorized

The response received by the browser when calling any service, when the user is either not authenticated or

not allowed to access the service.

Not authenticated

The client is supposed to address this by showing the user a login form which will later invoke the login

service for the plugin mentioned and repeat the request.

Not authorized

There's no general way for the client to address this, except than show the user an error message.

Refresh status

If you have an active session, some auth plugins may be able to renew the session. Not all plugins support

this action, so while the call may return successful, if there is an associated expiration time you may notice

that the expiration time has not changed or been reset.

{ "success": true, "categories": { "saf": { "success": true, "plugins": { "org.zowe.zlux.auth.safsso": {

"success": true "username":"foo", "expms": 60000 } } } } }

Logout

When you have an active session, you can terminate it early with a logout. This should remove cookies and

tell the server to clear any cache it had about a session.

Password changes

Some auth plugins will allow you to change your password. Depending on the backing security (such as

SAF), you may need to provide your current password to change it.

Version: v2.2.x LTS

Internationalizing applications

You can internationalize Zowe™ application plug-ins using Angular and React frameworks. Internationalized

applications display in translated languages and include structures for ongoing translation updates.

The steps below use the Zowe Sample Angular Application and Zowe Sample React Application as

examples. Your applications might have slightly different requirements, for example the React Sample

Application requires the react-i18next library, but your application might require a different React library.

For detailed information on Angular or React, see their documentation. For detailed information on specific

internationalization libraries, see their documentation. You can also reference the Sample Angular

Application internationalization tutorial, and watch a video on how to internationalize your Angular

application.

After you internationalize your application, you can view it by following steps in Changing the desktop

language.

Internationalizing Angular applications

Zowe applications that use the Angular framework depend on .xlf formatted files to store static

translated content and .json files to store dynamic translated content. These files must be in the

application's web/assets/i18n folder at runtime. Each translated language will have its own file.

To internationalize an application, you must install Angular-compatible internationalization libraries. Be aware

that libraries can be better suited to either static or dynamic HTML elements. The examples in this task use

the ngx-i18nsupport library for static content and angular-l10n for dynamic content.

To internationalize Zowe Angular applications, take the following steps:

�. To install internationalization libraries, use the npm command, for example:

Note --save-dev commits the library to the application's required libraries list for future use.

�. To support the CLI tools and to control output, create a webClient/tsconfig.i18n.json

typescript file and add the following content:

For example, see this file in the Sample Angular Application.

https://github.com/zowe/sample-angular-app/
https://github.com/zowe/sample-react-app
https://github.com/zowe/sample-angular-app/blob/lab/step-2-i18n-complete/README.md
https://www.youtube.com/watch?v=kkCC2u1NQy4&feature=youtu.be
https://docs.zowe.org/v2.2.x/user-guide/mvd-using#changing-the-desktop-language
https://github.com/zowe/sample-angular-app/blob/master/webClient/tsconfig.i18n.json

�. In the static elements in your HTML files, tag translatable content with the i18n attribute within an

Angular template, for example:

The attribute should include a message ID, for example the @@welcome above.

�. To configure static translation builds, take the following steps:

a. In the webClient/package.json script, add the following line:

b. In the in webClient directory, create a xliffmerge.json file, add the following content, and

specify the codes for each language you will translate in the languages parameter:

When you run the i18n script, it reads this file and generates a messages.[lang].xlf file in the

src/assets/i18n directory for each language specified in the languages parameter. Each file

contains the untranslated text from the i18n-tagged HTML elements.

�. Run the following command to run the i18n script and extract i18n tagged HTML elements to .xlf

files:

Note If you change static translated content, you must run the npm run build command to build

the application, and then re-run the npm run i18n command to extract the tagged content again.

�. In each .xlf file, replace target element strings with translated versions of the source element

strings. For example:

�. Run the following command to rebuild the application:

When you switch the Zowe Desktop to one of the application's translated languages, the application

displays the translated strings.

�. For dynamic translated content, follow these steps:

a. Import and utilize angular-l10n objects within an Angular component, for example:

b. In the related Angular template, you can implement myDynamicMessage as an ordinary

substitutable string, for example:

�. Create logic to copy the translation files to the web/assets directory during the webpack process,

for example in the sample application, the following JavaScript in the copy-webpack-plugin file

copies the files:

https://docs.zowe.org/v2.2.x/user-guide/mvd-using#changing-the-desktop-language

Note: Do not edit files in the web/assets/i18n directory. They are overwritten by each build.

Internationalizing React applications

To internationalize Zowe applications using the React framework, take the following steps:

Note: These examples use the recommended react-i18next library, which does not differentiate between

dynamic and static content, and unlike the Angular steps above does not require a separate build process.

�. To install the React library, run the following command:

npm install --save-dev react-i18next

�. In the directory that contains your index.js file, create an i18n.js file and add the translated

content, for example:

�. Import the i18n file from the previous step into index.js file so that you can use it elsewhere, for

example:

�. To internationalize a component, include the useTranslation hook and reference it to substitute

translation keys with their translated values. For example:

Internationalizing application desktop titles

To display the translated application name and description in the Desktop, take the following steps:

�. For each language, create a pluginDefinition.i18n.<lang_code>.json file. For example, for

German create a pluginDefinition.i18n.de.json file.

�. Place the .json files in the web/assets/i18n directory.

�. Translate the pluginShortNameKey and descriptionKey values in the application's

pluginDefinition.json file. For example, for the file below you would translate the values

"sampleangular" and "sampleangulardescription" :

�. Add the translated values to the translation file. For example, the German translation file example,

pluginDefinition.i18n.de.json , would look like this:

�. Create logic to copy the translation files to the web/assets directory during the webpack process.

For example, in the Sample Angular Application the following JavaScript in the

webClient/webpack.config.js file copies files to the web/assets directory:

https://github.com/zowe/sample-angular-app/blob/v2.x/master/webClient/webpack.config.js

Version: v2.2.x LTS

Zowe Desktop and window management

The Zowe™ Desktop is a web component of Zowe, which is an implementation of

MVDWindowManagement , the interface that is used to create a window manager.

The code for this software is in the zlux-app-manager repository.

The interface for building an alternative window manager is in the zlux-platform repository.

Window Management acts upon Windows, which are visualizations of an instance of an application plug-in.

Application plug-ins are plug-ins of the type "application", and therefore the Zowe Desktop operates around

a collection of plug-ins.

Note: Other objects and frameworks that can be utilized by application plug-ins, but not related to window

management, such as application-to-application communication, Logging, URI lookup, and Auth are not

described here.

Loading and presenting application plug-ins

Upon loading the Zowe Desktop, a GET call is made to /plugins?type=application . The GET call

returns a JSON list of all application plug-ins that are on the server, which can be accessed by the user.

Application plug-ins can be composed of dataservices, web content, or both. Application plug-ins that have

web content are presented in the Zowe Desktop UI.

The Zowe Desktop has a taskbar at the bottom of the page, where it displays each application plug-in as an

icon with a description. The icon that is used, and the description that is presented are based on the

application plug-in's PluginDefinition 's webContent attributes.

Plug-in management

Application plug-ins can gain insight into the environment in which they were spawned through the Plugin

Manager. Use the Plugin Manager to determine whether a plug-in is present before you act upon the

existence of that plug-in. When the Zowe Desktop is running, you can access the Plugin Manager through

ZoweZLUX.PluginManager

The following are the functions you can use on the Plugin Manager:

getPlugin(pluginID: string)

Accepts a string of a unique plug-in ID, and returns the Plugin Definition Object

(DesktopPluginDefinition) that is associated with it, if found.

Application management

Application plug-ins within a Window Manager are created and acted upon in part by an Application

Manager. The Application Manager can facilitate communication between application plug-ins, but formal

application-to-application communication should be performed by calls to the Dispatcher. The Application

Manager is not normally directly accessible by application plug-ins, instead used by the Window Manager.

The following are functions of an Application Manager:

Function Description

spawnApplication(plugin:

DesktopPluginDefinition,

launchMetadata: any):

Promise<MVDHosting.InstanceId>;

Opens an application instance into the Window

Manager, with or without context on what

actions it should perform after creation.

killApplication(plugin:ZLUX.Plugin,

appId:MVDHosting.InstanceId): void;

Removes an application instance from the

Window Manager.

showApplicationWindow(plugin:

DesktopPluginDefinitionImpl): void;

Makes an open application instance visible

within the Window Manager.

isApplicationRunning(plugin:

DesktopPluginDefinitionImpl): boolean;

Determines if any instances of the application

are open in the Window Manager.

Windows and Viewports

When a user clicks an application plug-in's icon on the taskbar, an instance of the application plug-in is

started and presented within a Viewport, which is encapsulated in a Window within the Zowe Desktop. Every

instance of an application plug-in's web content within Zowe is given context and can listen on events about

the Viewport and Window it exists within, regardless of whether the Window Manager implementation

utilizes these constructs visually. It is possible to create a Window Manager that only displays one

application plug-in at a time, or to have a drawer-and-panel UI rather than a true windowed UI.

When the Window is created, the application plug-in's web content is encapsulated dependent upon its

framework type. The following are valid framework types:

"angular2": The web content is written in Angular, and packaged with Webpack. Application plug-in

framework objects are given through @injectables and imports.

"iframe": The web content can be written using any framework, but is included through an iframe tag.

Application plug-ins within an iframe can access framework objects through parent.RocketMVD and

callbacks.

"react": The web content is written in React, Typescript, and packaged with Webpack. App framework

objects are provided via the ReactMVDResources object

In the case of the Zowe Desktop, this framework-specific wrapping is handled by the Plugin Manager.

Viewport Manager

Viewports encapsulate an instance of an application plug-in's web content, but otherwise do not add to the

UI (they do not present Chrome as a Window does). Each instance of an application plug-in is associated

with a viewport, and operations to act upon a particular application plug-in instance should be done by

specifying a viewport for an application plug-in, to differentiate which instance is the target of an action.

Actions performed against viewports should be performed through the Viewport Manager.

The following are functions of the Viewport Manager:

Function Description

createViewport(providers:

ResolvedReflectiveProvider[]):

MVDHosting.ViewportId;

Creates a viewport into which an

application plug-in's webcontent can be

embedded.

registerViewport(viewportId:

MVDHosting.ViewportId, instanceId:

MVDHosting.InstanceId): void;

Registers a previously created viewport

to an application plug-in instance.

https://github.com/zowe/zlux-app-manager/blob/v2.x/master/virtual-desktop/src/pluginlib/react-inject-resources.ts

Function Description

destroyViewport(viewportId:

MVDHosting.ViewportId): void;

Removes a viewport from the Window

Manager.

`getApplicationInstanceId(viewportId:

MVDHosting.ViewportId): MVDHosting.InstanceId
null;`

Injection Manager

When you create Angular application plug-ins, they can use injectables to be informed of when an action

occurs. iframe application plug-ins indirectly benefit from some of these hooks due to the wrapper acting

upon them, but Angular application plug-ins have direct access.

The following topics describe injectables that application plug-ins can use.

Plug-in definition

Provides the plug-in definition that is associated with this application plug-in. This injectable can be used to

gain context about the application plug-in. It can also be used by the application plug-in with other

application plug-in framework objects to perform a contextual action.

Logger

Provides a logger that is named after the application plug-in's plugin definition ID.

Launch Metadata

If present, this variable requests the application plug-in instance to initialize with some context, rather than

the default view.

Viewport Events

Presents hooks that can be subscribed to for event listening. Events include:

resized: Subject<{width: number, height: number}>

Fires when the viewport's size has changed.

Window Events

Presents hooks that can be subscribed to for event listening. The events include:

Event Description

maximized: Subject<void> Fires when the Window is maximized.

minimized: Subject<void> Fires when the Window is minimized.

restored: Subject<void>
Fires when the Window is restored from a

minimized state.

moved: Subject<{top: number, left:

number}>
Fires when the Window is moved.

resized: Subject<{width: number, height:

number}>
Fires when the Window is resized.

titleChanged: Subject<string> Fires when the Window's title changes.

Window Actions

An application plug-in can request actions to be performed on the Window through the following:

Item Description

close(): void
Closes the Window of the application plug-in

instance.

maximize(): void
Maximizes the Window of the application plug-

in instance.

Item Description

minimize(): void
Minimizes the Window of the application plug-in

instance.

restore(): void
Restores the Window of the application plug-in

instance from a minimized state.

setTitle(title: string):void Sets the title of the Window.

setPosition(pos: {top: number, left:

number, width: number, height: number}):

void

Sets the position of the Window on the page

and the size of the window.

spawnContextMenu(xPos: number, yPos:

number, items: ContextMenuItem[]): void

Opens a context menu on the application plug-

in instance, which uses the Context Menu

framework.

registerCloseHandler(handler: () =>

Promise<void>): void

Registers a handler, which is called when the

Window and application plug-in instance are

closed.

Framework API examples

The following are examples of how you would access the Window Actions API to begin an App in maximized

mode upon start-up.

Angular

�. Import Angular2InjectionTokens from 'pluginlib/inject-resources'

�. Within the constructor of your App, in the arguments, do @Optional()

@Inject(Angular2InjectionTokens.WINDOW_ACTIONS) private windowActions:

Angular2PluginWindowActions

�. Then inside the constructor, check that window actions exist and then execute the action if

(this.windowActions) { this.windowActions.maximize(); }

�. Depending on your App layout, certain UI elements may not have loaded so to wait for them to load, one

may want to use something like Angular's NgOnInit directive.

React

�. Similar to how we do things in Angular, except the Window Actions (& other Zowe resources) are

located in the resources object. So if we were using a React.Component, we could have a

constructor with constructor(props){ super(props); ... }

�. Then accessing Window Actions would be as simple as this.props.resources.windowActions

IFrames

�. Iframes are similar to Angular & React, but require a different import step. Instead to use Window

Actions (& other Zowe resources), we have to import the Iframe adapter. The Iframe adapter is located

in zlux-app-manager/bootstrap/web/iframe-adapter.js so something like a relative path in

my JS code will suffice,

<script type="text/javascript" src="../../../org.zowe.zlux.bootstrap/web/iframe-

adapter.js"></script>

�. Then to use Window Actions would be as simple as await windowActions.minimize();

NOTE: The Iframe adapter is not yet feature-complete. If you are attempting to use an event supported by

Angular or React, but not yet supported in Iframes, try to use the window.parent.ZoweZLUX object

instead.

Version: v2.2.x LTS

Configuration Dataservice

The Configuration Dataservice is an essential component of the Zowe™ Application Framework, which acts

as a JSON resource storage service, and is accessible externally by REST API and internally to the server by

dataservices.

The Configuration Dataservice allows for saving preferences of applications, management of defaults and

privileges within a Zowe ecosystem, and bootstrapping configuration of the server's dataservices.

The fundamental element of extensibility of the Zowe Application Framework is a plug-in. The Configuration

Dataservice works with data for plug-ins. Every resource that is stored in the Configuration Service is stored

for a particular plug-in, and valid resources to be accessed are determined by the definition of each plug-in

in how it uses the Configuration Dataservice.

The behavior of the Configuration Dataservice is dependent upon the Resource structure for a plug-in. Each

plug-in lists the valid resources, and the administrators can set permissions for the users who can view or

modify these resources.

�. Resource Scope

�. REST API

i. REST Query Parameters

ii. REST HTTP Methods

a. GET

b. PUT

c. DELETE

iii. Administrative Access & Group

�. App API

�. Internal and Bootstrapping

�. Packaging Defaults

�. Plugin Definition

�. Aggregation Policies

�. Examples

Resource Scope

Data is stored within the Configuration Dataservice according to the selected Scope. The intent of Scope

within the Dataservice is to facilitate company-wide administration and privilege management of Zowe data.

When a user requests a resource, the resource that is retrieved is an override or an aggregation of the

broader scopes that encompass the Scope from which they are viewing the data.

When a user stores a resource, the resource is stored within a Scope but only if the user has access

privilege to update within that Scope.

Scope is one of the following:

Plugin

Configuration defaults that come with a plugin. Cannot be modified.

Product

Configuration defaults that come with the product. Cannot be modified.

Site

Data that can be used between multiple instances of the Zowe Application Server.

Instance

Data within an individual Zowe Application Server.

Group

Data that is shared between multiple users in a group.(Pending)

User

Data for an individual user.(Pending)

Note: While Authorization tuning can allow for settings such as GET from Instance to work without login,

User and Group scope queries will be rejected if not logged in due to the requirement to pull resources from

a specific user. Because of this, User and Group scopes will not be functional until the Security Framework is

merged into the mainline.

Where Plugin is the broadest scope and User is the narrowest scope.

When you specify Scope User, the service manages configuration for your particular username, using the

authentication of the session. This way, the User scope is always mapped to your current username.

Consider a case where a user wants to access preferences for their text editor. One way they could do this is

to use the REST API to retrieve the settings resource from the Instance scope.

The Instance scope might contain editor defaults set by the administrator. But, if there are no defaults in

Instance, then the data in Group and User would be checked.

Therefore, the data the user receives would be no broader than what is stored in the Instance scope, but

might have only been the settings they saved within their own User scope (if the broader scopes do not have

data for the resource).

Later, the user might want to save changes, and they try to save them in the Instance scope. Most likely, this

action will be rejected because of the preferences set by the administrator to disallow changes to the

Instance scope by ordinary users.

REST API

When you reach the Configuration Service through a REST API, HTTP methods are used to perform the

desired operation.

The HTTP URL scheme for the configuration dataservice is:

<Server>/plugins/com.rs.configjs/services/data/<plugin

ID>/<Scope>/<resource>/<optional subresources>?<query>

Where the resources are one or more levels deep, using as many layers of subresources as needed.

Think of a resource as a collection of elements, or a directory. To access a single element, you must use the

query parameter "name="

REST query parameters

Name (string)

Get or put a single element rather than a collection.

Recursive (boolean)

When performing a DELETE, specifies whether to delete subresources too.

Listing (boolean)

When performing a GET against a resource with content subresources, listing=true will provide the

names of the subresources rather than both the names and contents.

REST HTTP methods

Below is an explanation of each type of REST call.

Each API call includes an example request and response against a hypothetical application called the "code

editor".

GET

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=

<element>

This returns JSON with the attribute "content" being a JSON resource that is the entire configuration

that was requested. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user

/sessions/default?name=tabs

The parts of the URL are:

Plugin: org.openmainframe.zowe.codeeditor

Scope: user

Resource: sessions

Subresource: default

Element = tabs

The response body is a JSON config:

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

This returns JSON with the attribute content being a JSON object that has each attribute being another

JSON object, which is a single configuration element.

GET /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

(When subresources exist.)

This returns a listing of subresources that can, in turn, be queried.

PUT

PUT /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=

<element>

Stores a single element (must be a JSON object {...}) within the requested scope, ignoring aggregation

policies, depending on the user privilege. For example:

/plugins/com.rs.configjs/services/data/org.openmainframe.zowe.codeeditor/user/ses

sions/default?name=tabs

Body:

Response:

DELETE

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?

recursive=true

Deletes all files in all leaf resources below the resource specified.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>?name=

<element>

Deletes a single file in a leaf resource.

DELETE /plugins/com.rs.configjs/services/data/<plugin>/<scope>/<resource>

Deletes all files in a leaf resource.

Does not delete the directory on disk.

Administrative access and group

By means not discussed here, but instead handled by the server's authentication and authorization code, a

user might be privileged to access or modify items that they do not own.

In the simplest case, it might mean that the user is able to do a PUT, POST, or DELETE to a level above User,

such as Instance.

The more interesting case is in accessing another user's contents. In this case, the shape of the URL is

different. Compare the following two commands:

GET /plugins/com.rs.configjs/services/data/<plugin>/user/<resource>

Gets the content for the current user.

GET /plugins/com.rs.configjs/services/data/<plugin>/users/<username>/<resource>

Gets the content for a specific user if authorized.

This is the same structure that is used for the Group scope. When requesting content from the Group scope,

the user is checked to see if they are authorized to make the request for the specific group. For example:

GET /plugins/com.rs.configjs/services/data/<plugin>/group/<groupname>/<resource>

Gets the content for the given group, if the user is authorized.

Application API

Retrieves and stores configuration information from specific scopes.

Note: This API should only be used for configuration administration user interfaces.

ZLUX.UriBroker.pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope:

string, resourcePath:string, resourceName:string): string;

A shortcut for the preceding method, and the preferred method when you are retrieving configuration

information, is simply to "consume" it. It "asks" for configurations using the User scope, and allows the

configuration service to decide which configuration information to retrieve and how to aggregate it. (See

below on how the configuration service evaluates what to return for this type of request).

ZLUX.UriBroker.pluginConfigUri(pluginDefinition: ZLUX.Plugin,

resourcePath:string, resourceName:string): string;

Internal and bootstrapping

Some dataservices within plug-ins can take configuration that affects their behavior. This configuration is

stored within the Configuration Dataservice structure, but it is not accessible through the REST API.

Within the instance configuration directory of a zLUX installation, each plugin may optionally have an

_internal directory. An example of such a path would be:

~/.zowe/workspace/app-server/ZLUX/pluginStorage/<pluginName>/_internal

Within each _internal directory, the following directories might exist:

services/<servicename> : Configuration resources for the specific service.

plugin : Configuration resources that are visible to all services in the plug-in.

The JSON contents within these directories are provided as Objects to dataservices through the dataservice

context Object.

Packaging Defaults

The best way to provide default settings for a plugin is to include it as part of the plugin's package.

It's easy to distribute to users, requires no configuration steps, and is read-only from the server.

To package, all content must be stored within the /config/storageDefaults directory of your plugin.

Within, non-leaf resources are folders, and leaf resources are files, regardless of JSON or binary.

The _internal folder and content is also permitted.

Plug-in definition

Because the Configuration Dataservices stores data on a per-plug-in basis, each plug-in must define their

resource structure to make use of the Configuration Dataservice. The resource structure definition is

included in the plug-in's pluginDefinition.json file.

For each resource and subresource, you can define an aggregationPolicy to control how the data of a

broader scope alters the resource data that is returned to a user when requesting a resource from a

narrower Scope.

For example:

Aggregation policies

Aggregation policies determine how the Configuration Dataservice aggregates JSON objects from different

Scopes together when a user requests a resource. If the user requests a resource from the User scope, the

data from the User scope might replace or be merged with the data from a broader scope such as Instance,

to make a combined resource object that is returned to the user.

Aggregation policies are defined by a plug-in developer in the plug-in's definition for the Configuration

Service, as the attribute aggregationPolicy within a resource.

The following policies are currently implemented:

NONE: If the Configuration Dataservice is called for Scope User, only user-saved settings are sent,

unless there are no user-saved settings for the query, in which case the dataservice attempts to send

data that is found at a broader scope.

OVERRIDE: The Configuration Dataservice obtains data for the resource that is requested at the

broadest level found, and joins the resource's properties from narrower scopes, overriding broader

attributes with narrower ones, when found.

Examples

zlux-app-manager VT Terminal App

https://github.com/zowe/zlux-app-manager/tree/v2.x/master/bootstrap/src/uri/mvd-uri.ts
https://github.com/zowe/vt-ng2/blob/v2.x/master/webClient/src/app/app.component.ts

Version: v2.2.x LTS

URI Broker

The URI Broker is an object in the application plug-in web framework, which facilitates calls to the Zowe™

Application Server by constructing URIs that use the context from the calling application plug-in.

�. Accessing the URI Broker

i. Natively

ii. In an iframe

�. Functions

i. Accessing an application plug-in's dataservices

a. HTTP dataservice URI

b. Websocket dataservice URI

ii. Accessing the application plug-in's configuration resources

a. Standard configuration access

b. Scoped configuration access

iii. Accessing static content

iv. Accessing the application plug-in's root

v. Server queries

a. Accessing list of plugins

Accessing the URI Broker

The URI Broker is accessible independent of other frameworks involved such as Angular, and is also

accessible through iframe. This is because it is attached to a global when within the Zowe Desktop. For more

information, see Zowe Desktop and window management. Access the URI Broker through one of two

locations:

Natively:

window.ZoweZLUX.uriBroker

In an iframe:

window.parent.ZoweZLUX.uriBroker

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-desktopandwindowmgt

Functions

The URI Broker builds the following categories of URIs depending upon what the application plug-in is

designed to call.

Accessing an application plug-in's dataservices

Dataservices can be based on HTTP (REST) or Websocket. For more information, see Dataservices.

HTTP Dataservice URI

pluginRESTUri(plugin:ZLUX.Plugin, serviceName: string, relativePath:string):

string

Returns: A URI for making an HTTP service request.

Websocket Dataservice URI

pluginWSUri(plugin: ZLUX.Plugin, serviceName:string, relativePath:string):

string

Returns: A URI for making a Websocket connection to the service.

Accessing application plug-in's configuration resources

Defaults and user storage might exist for an application plug-in such that they can be retrieved through the

Configuration Dataservice.

There are different scopes and actions to take with this service, and therefore there are a few URIs that can

be built:

Standard configuration access

pluginConfigUri(pluginDefinition: ZLUX.Plugin, resourcePath:string,

resourceName?:string): string

Returns: A URI for accessing the requested resource under the user's storage.

Scoped configuration access

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-dataservices

pluginConfigForScopeUri(pluginDefinition: ZLUX.Plugin, scope: string,

resourcePath:string, resourceName?:string): string

Returns: A URI for accessing a specific scope for a given resource.

Accessing static content

Content under an application plug-in's web directory is static content accessible by a browser. This can be

accessed through:

pluginResourceUri(pluginDefinition: ZLUX.Plugin, relativePath: string): string

Returns: A URI for getting static content.

For more information about the web directory, see Application plug-in filesystem structure.

Accessing the application plug-in's root

Static content and services are accessed off of the root URI of an application plug-in. If there are other

points that you must access on that application plug-in, you can get the root:

pluginRootUri(pluginDefinition: ZLUX.Plugin): string

Returns: A URI to the root of the application plug-in.

Server queries

A client can find different information about a server's configuration or the configuration as seen by the

current user by accessing specific APIs.

Accessing a list of plug-ins

pluginListUri(pluginType: ZLUX.PluginType): string

Returns: A URI, which when accessed returns the list of existing plug-ins on the server by type, such as

"Application" or "all".

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-uribroker/mvd-plugindefandstruct#application-plug-in-filesystem-structure

Version: v2.2.x LTS

Application-to-application communication

Zowe™ application plug-ins can opt-in to various application framework abilities, such as the ability to have a

Logger, the ability to use a URI builder utility, and more.

The ability for one appliccation plug-in to communicate with another is an ability that is unique to Zowe

environments with multiple application plug-ins. The application framework provides constructs that

facilitate this ability.

The constructs are: the Dispatcher, Actions, Recognizers, Registry, and the features that utilize them such as

the framework's Context menu.

�. Why use application-to-application communication?

�. Actions

�. Recognizers

�. Dispatcher

�. URI Parameters

Why use application-to-application communication?

When working with computers, people often use multiple applications to accomplish a task. For example, a

person might check their email before opening a bank statement in a browser. In many environments, the

relationship between one application and another is not well defined. For example, you may open one

program to learn of a situation, which is then resolved by opening a different program and typing in content.

The application framework attempts to solve this problem by creating structured messages that can be sent

from one application plug-in to another.

An application plug-in has a context of the information that it contains. This context can be used to invoke an

action on another application plug-in that is better suited to handle some of the information discovered in

the first application plug-in. Well-structured messages facilitate the process of determining which

application plug-in is best suited to handle a given situation, while also explaining, in detail, what that

application plug-in should do.

This way, rather than finding out that an attachment with the extension ".dat" was not meant for a text editor,

but rather for an email client, one application plug-in may be able to invoke an action on an application plug-

in that is capable of opening of an email.

Actions

To manage communication from one application plug-in to another, a specific structure is needed. In the

application framework, the unit of application-to-application communication is an Action. The typescript

definition of an Action is as follows:

An Action has a specific structure of data that is passed, to be filled in with the context at runtime, and a

specific target to receive the data.

The Action is dispatched to the target in one of several modes, for example: to target a specific instance of

an application plug-in, an instance, or to create a new instance.

The Action can be less detailed than a message. It can be a request to minimize, maximize, close, launch,

and more. Finally, all of this information is related to a unique ID and localization string such that it can be

managed by the framework.

Action target modes

When you request an Action on an application plug-in, the behavior is dependent on the instance of the

application plug-in you are targeting. You can instruct the framework to target the application plug-in with a

target mode from the ActionTargetMode enum :

Action types

The application framework performs different operations on application plug-ins depending on the type of

an Action. The behavior can be quite different, from simple messaging to requesting that an application

plug-in be minimized. The types are defined by an enum :

Loading actions

Actions can be created dynamically at runtime, or saved and loaded by the system at login.

App2App via URL

Another way the Zowe Application Framework invokes Actions is via URL Query Parameters, with

parameters formatted in JSON. This feature enables users to bookmark a set of application-to-application

communication actions (in the form of a URL) that will be executed when opening the webpage. Developers

creating separate web apps can build a link that will open the Zowe Desktop and do specific actions in Apps,

for example, opening a file in the Editor.

The App2App via URL feature allows you to:

�. Specify one or more actions that will be executed upon login, allowing you to bookmark a series of

actions that you can share with someone else.

�. Specify actions that are declared by plugins (when formatter is equal to a known action ID) or actions

that you have custom-made (when formatter = 'data').

�. Customize the action type, mode, and target plugin (when the formatter is equal to an existing action

ID).

Samples

Query parameter format:

?app2app={pluginId}:{actionType}:{actionMode}:{formatter}:{contextData}&app2app=

{pluginId}:{actionType}:{actionMode}:{formatter}:{contextData}

pluginId - application identifier, e.g. 'org.zowe.zlux.ng2desktop.webbrowser'

actionType - 'launch' | 'message'

actionMode - 'create' | 'system'

formatter - 'data' | actionId

contextData - context data in form of JSON

windowManager - 'MVD' | undefined : (Optional) While in standalone mode, controls whether

to use the Zowe (MVD) window manager or the deprecated simple window manager. Default is MVD.

showLogin - true | false : (Optional) While in standalone mode, controls whether to show

Zowe's login page if credentials are not retrieved from a previous Desktop session, or if to disable it and

load the application anyway (ideal solution for apps with their own login experiences). Default is true.

Note that some of these parameters are shared with single app mode, therefore, you may need to adjust

pluginId and app2app parameters as follows

(desktop mode)

(single app mode)

Dynamically

You can create Actions by calling the following Dispatcher method: makeAction(id: string,

defaultName: string, targetMode: ActionTargetMode, type: ActionType,

targetPluginID: string, primaryArgument: any):Action

Saved on system

Actions can be stored in JSON files that are loaded at login. The JSON structure is as follows:

Recognizers

Actions are meant to be invoked when certain conditions are met. For example, you do not need to open a

messaging window if you have no one to message. Recognizers are objects within the application framework

that use the context that the application plug-in provides to determine if there is a condition for which it

makes sense to execute an Action. Each recognizer has statements about what condition to recognize, and

when that statement is met, which Action can be executed at that time. The invocation of the Action is not

handled by the Recognizer; it simply detects that an Action can be taken.

Recognition clauses

Recognizers associate a clause of recognition with an action, as you can see from the following class:

A clause, in turn, is associated with an operation, and the subclauses upon which the operation acts. The

following operations are supported:

Loading Recognizers at runtime

You can add a Recognizer to the application plug-in environment in one of two ways: by loading from

Recognizers saved on the system, or by adding them dynamically.

Dynamically

You can call the Dispatcher method, addRecognizer(predicate:RecognitionClause,

actionID:string):void

Saved on system

Recognizers can be stored in JSON files that are loaded at login. The JSON structure is as follows:

clause can take on one of two shapes:

Or,

Where this one can again, have subclauses.

Recognizer example

Recognizers can be as simple or complex as you write them to be, but here is an example to illustrate the

mechanism:

In this case, the Recognizer detects whether it is possible to run the org.zowe.explorer.openmember

Action when the TN3270 Terminal application plug-in is on the screen ISRUDSM (an ISPF panel for browsing

PDS members).

Dispatcher

The dispatcher is a core component of the application framework that is accessible through the Global

ZLUX Object at runtime. The Dispatcher interprets Recognizers and Actions that are added to it at runtime.

You can register Actions and Recognizers on it, and later, invoke an Action through it. The dispatcher

handles how the Action's effects should be carried out, acting in combination with the Window Manager and

application plug-ins to provide a channel of communication.

Registry

The Registry is a core component of the application framework, which is accessible through the Global

ZLUX Object at runtime. It contains information about which application plug-ins are present in the

environment, and the abilities of each application plug-in. This is important to application-to-application

communication, because a target might not be a specific application plug-in, but rather an application plug-

in of a specific category, or with a specific featureset, capable of responding to the type of Action requested.

Pulling it all together in an example

The standard way to make use of application-to-application communication is by having Actions and

Recognizers that are saved on the system. Actions and Recognizers are loaded at login, and then later,

through a form of automation or by a user action, Recognizers can be polled to determine if there is an

Action that can be executed. All of this is handled by the Dispatcher, but the description of the behavior lies

in the Action and Recognizer that are used. In the Action and Recognizer descriptions above, there are two

JSON definitions: One is a Recognizer that recognizes when the Terminal application plug-in is in a certain

state, and another is an Action that instructs the MVS Explorer to load a PDS member for editing. When you

put the two together, a practical application is that you can launch the MVS Explorer to edit a PDS member

that you have selected within the Terminal application plug-in.

Version: v2.2.x LTS

Configuring IFrame communication

The Zowe Application Framework provides the following shared resource functions through a ZoweZLUX

object: pluginManager , uriBroker , dispatcher , logger , registry ,

notificationManager , and globalization

Like REACT and Angular apps, IFrame apps can use the ZoweZLUX object to communicate with the

framework and other apps. To enable communication in an IFrame app, you must add the following

javascript to your app, for example in your index.html file:

logger.js is the javascript version of logger.ts and is capable of the same functions, including

access to the Logger and ComponentLogger classes. The Logger class determines the behavior of

all the ComponentLoggers created from it. ComponentLoggers are what the user implements to

perform logging.

Iframe-adapter.js is designed to mimic the ZoweZLUX object that is available to apps within the

virtual-desktop, and serves as the middle-man for communication between IFrame apps and the Zowe

desktop.

You can see an implementation of this functionality in the sample IFrame app.

The version of ZoweZLUX adapted for IFrame apps is not complete and only implements the functions

needed to allow the Sample IFrame App to function. The notificationManager , logger ,

globalization , dispatcher , windowActions , windowEvents , and viewportEvents are fully

implemented. The pluginManager and uriBroker are only partially implemented. The registry is

not implemented.

Unlike REACT and Angular apps, in IFrame apps the ZoweZLUX and initialization objects communicate with

Zowe using the browser's onmessage and postmessage APIs. That means that communication operations

are asynchronous, and you must account for this in your app, for example by using Promise objects and

await or then functions.

https://github.com/zowe/zlux-platform/blob/v2.x/master/interface/src/index.d.ts#L720
https://github.com/zowe/sample-iframe-app
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Version: v2.2.x LTS

Error reporting UI

The zLUX Widgets repository contains shared widget-like components of the Zowe™ Desktop, including

Button, Checkbox, Paginator, various pop-ups, and others. To maintain consistency in desktop styling across

all applications, use, reuse, and customize existing widgets to suit the purpose of the application's function

and look.

Ideally, a program should have little to no logic errors. Once in a while a few occur, but more commonly an

error occurs from misconfigured user settings. A user might request an action or command that requires

certain prerequisites, for example: a proper ZSS-Server configuration. If the program or method fails, the

program should notify the user through the UI about the error and how to fix it. For the purposes of this

discussion, we will use the Workflow application plug-in in the zlux-workflow repository.

ZluxPopupManagerService

The ZluxPopupManagerService is a standard popup widget that can, through its reportError()

method, be used to display errors with attributes that specify the title or error code, severity, text, whether it

should block the user from proceeding, whether it should output to the logger, and other options you want

to add to the error dialog. ZluxPopupManagerService uses both ZluxErrorSeverity and

ErrorReportStruct .

ZluxErrorSeverity

ZluxErrorSeverity classifies the type of report. Under the popup-manager, there are the following

types: error, warning, and information. Each type has its own visual style. To accurately indicate the type of

issue to the user, the error or pop-up should be classified accordingly.

ErrorReportStruct

ErrorReportStruct contains the main interface that brings the specified parameters of

reportError() together.

Implementation

Import ZluxPopupManagerService and ZluxErrorSeverity from widgets. If you are using

additional services with your error prompt, import those too (for example, LoggerService to print to the

logger or GlobalVeilService to create a visible semi-transparent gray veil over the program and pause

background tasks). Here, widgets is imported from node_modules\@zlux\ so you must ensure zLUX

widgets is used in your package-lock.json or package.json and you have run npm install .

import { ZluxPopupManagerService, ZluxErrorSeverity } from '@zlux/widgets';

Declaration

Create a member variable within the constructor of the class you want to use it for. For example, in the

Workflow application plug-in under \zlux-workflow\src\app\app\zosmf-server-

config.component.ts is a ZosmfServerConfigComponent class with the pop-up manager service

variable. To automatically report the error to the console, you must set a logger.

Usage

Now that you have declared your variable within the scope of your program's class, you are ready to use the

method. The following example describes an instance of the reload() method in Workflow that catches

an error when the program attempts to retrieve a configuration from a configService and set it to the

program's this.config . This method fails when the user has a faulty zss-Server configuration and the

error is caught and then sent to the class' popupManager variable from the constructor above.

Here, the errorMessage clearly describes the error with a small degree of ambiguity as to account for all

types of errors that might occur from that method. The specifics of the error are then generated dynamically

and are printed with the err.toString() , which contains the more specific information that is used to

pinpoint the problem. The this.popupManager.report() method triggers the error prompt to display.

The error severity is set with ZluxErrorSeverity.ERROR and the err.status.toString()

describes the status of the error (often classified by a code, for example: 404). The optional parameters in

options specify that this error will block the user from interacting with the application plug-in until the

error is closed or it until goes away on its own. globalVeilService is optional and is used to create a

gray veil on the outside of the program when the error is caused. You must import globalVeilService

separately (see the zlux-workflow repository for more information).

HTML

The final step is to have the recently created error dialog display in the application plug-in. If you do

this.popupManager.report() without adding the component to your template, the error will not be

displayed. Navigate to your component's .html file. On the Workflow application plug-in, this file will be in

\zlux-workflow\src\app\app\zosmf-server-config.component.html and the only item left is

to add the popup manager component alongside your other classes.

<zlux-popup-manager></zlux-popup-manager>

So now when the error is called, the new UI element should resemble the following:

The order in which you place the pop-up manager determines how the error dialog will overlap in your UI. If

you want the error dialog to overlap other UI elements, place it at the end of the .html file. You can also

create custom styling through a CSS template, and add it within the scope of your application plug-in.

Version: v2.2.x LTS

Logging utility

The zlux-shared repository provides a logging utility for use by dataservices and web content for an

application plug-in.

�. Logging Objects

�. Logger IDs

�. Accessing Logger Objects

i. Logger

a. App Server

b. Web

ii. Component Logger

a. App Server

b. Web

�. Logger API

�. Component Logger API

�. Log Levels

�. Logging Verbosity

i. Configuring Logging Verbosity

a. Server Startup Logging Configuration

�. Using log message IDs

Logging objects

The logging utility is based on the following objects:

Component Loggers: Objects that log messages for an individual component of the environment, such

as a REST API for an application plug-in or to log user access.

Destinations: Objects that are called when a component logger requests a message to be logged.

Destinations determine how something is logged, for example, to a file or to a console, and what

formatting is applied.

Logger: Central logging object, which can spawn component loggers and attach destinations.

Logger IDs

Because Zowe™ application plug-ins have unique identifiers, both dataservices and an application plug-in's

web content are provided with a component logger that knows this unique ID such that messages that are

logged can be prefixed with the ID. With the association of logging to IDs, you can control verbosity of logs

by setting log verbosity by ID.

Accessing logger objects

Logger

The core logger object is attached as a global for low-level access.

App Server

NodeJS uses global as its global object, so the logger is attached to:

global.COM_RS_COMMON_LOGGER

Web

(Angular App Instance Injectible). See Logger in Zowe Desktop and window management.

(others) Browsers use window as the global object, so the logger is attached to:

window.COM_RS_COMMON_LOGGER

Component logger

Component loggers are created from the core logger object, but when working with an application plug-in,

allow the application plug-in framework to create these loggers for you. An application plug-in's component

logger is presented to dataservices or web content as follows.

App Server

See Router Dataservice Context in the topic Dataservices.

Logger API

The following constants and functions are available on the central logging object.

https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-desktopandwindowmgt
https://docs.zowe.org/v2.2.x/extend/extend-desktop/mvd-dataservices

Attribute Type Description Arguments

makeComponentLogger function

Returns an existing

logger of this name, or

creates a new

component logger if

no logger of the

specified name exists

- Automatically done

by the application

framework for

dataservices and web

content

componentIDString

setLogLevelForComponentName function

Sets the verbosity of

an existing component

logger

componentIDString ,

logLevel

Component Logger API

The following constants and functions are available to each component logger.

Attribute Type Description Arguments

CRITICAL const Is a const for logLevel

SEVERE const Is a const for logLevel

WARN const Is a const for logLevel

WARNING const Is a const for logLevel

INFO const Is a const for logLevel

DEBUG const Is a const for logLevel

Attribute Type Description Arguments

FINE const Is a const for logLevel

FINER const Is a const for logLevel

TRACE const Is a const for logLevel

FINEST const Is a const for logLevel

log function
Used to write a log, specifying the log

level

logLevel ,

messageString

critical function Used to write a CRITICAL log. messageString

severe function Used to write a SEVERE log. messageString

warn function Used to write a WARNING log. messageString

info function Used to write an INFO log. messageString

debug function Used to write a FINE log. messageString

trace function Used to write a TRACE log. messageString

makeSublogger function
Creates a new component logger with

an ID appended by the string given
componentNameSuffix

Log Levels

An enum, LogLevel , exists for specifying the verbosity level of a logger. The mapping is:

Level Number

CRITICAL 0

Level Number

WARNING 1

INFO 2

DEBUG 3

FINER 4

TRACE 5

Note: The default log level for a logger is INFO.

Logging verbosity

Using the component logger API, loggers can dictate at which level of verbosity a log message should be

visible. You can configure the server or client to show more or less verbose messages by using the core

logger's API objects.

Example: You want to set the verbosity of the org.zowe.foo application plug-in's dataservice, bar to show

debugging information.

logger.setLogLevelForComponentName('org.zowe.foo.bar',LogLevel.DEBUG)

Configuring logging verbosity

The application plug-in framework provides ways to specify what component loggers you would like to set

default verbosity for, such that you can easily turn logging on or off.

Server startup logging configuration

The server configuration file allows for specification of default log levels, as a top-level attribute

logLevel , which takes key-value pairs where the key is a regex pattern for component IDs, and the value

is an integer for the log levels.

For example:

https://github.com/zowe/zlux/wiki/Configuration-for-zLUX-App-Server-&-ZSS

For more information about the server configuration file, see Zowe Application Framework (zLUX)

configuration.

Using log message IDs

To make technical support for your application easier, create IDs for common log messages and use

substitution to generate them. When you use IDs, people fielding support calls can identify and solve

problems more quickly. IDs are particularly helpful if your application is translated, because it avoids users

having to explain problems using language that the tech support person might not understand.

To use log message IDs, take the following steps:

�. Depending on how your application is structured, create message files in the following locations:

Web log messages: {plugin}/web/assets/i18n/log/messages_{language}.json

App server log messages: {plugin}/lib/assets/i18n/log/messages_{language}.json

�. In the files, create ID-message pairs using the following format:

Where "id#" is the message ID and "value#" is the text. For example:

�. Reference the IDs in your code, for example:

Which compiles to:

Or in another supported language, such as Russian:

Message ID logging examples

Server core: https://github.com/zowe/zlux-server-

framework/blob/v2.x/master/plugins/config/lib/assets/i18n/log/messages_en.json

https://docs.zowe.org/v2.2.x/extend/user-guide/mvd-configuration#configuration-file
https://github.com/zowe/zlux-server-framework/blob/v2.x/master/plugins/config/lib/assets/i18n/log/messages_en.json

Version: v2.2.x LTS

Using Conda to make and manage packages
of Application Framework Plugins

As Zowe is composed of components which can be extended by Plugins, a standardized and simple way to

find, install, upgrade, and list Plugins in your Zowe environment is important to make it easy to get the most

out of Zowe.

Package management as a concept generally provides a way to find packages such as plugins, check and

possible co-install dependencies the package has, and ultimately install the desired package. Post-install,

management tasks such as upgrading and uninstalling are common.

Conda is one such package manager, and if you are familiar with apt, yum, or npm, you will find that using

Conda is very similar. But, there are some important abilities that make Conda stand out:

Very cross platform: Conda is available, and acts very similar on z/OS, Windows, Linux, macOS, and

various Unix. Packages can state which platforms they support, so it easy to know what packages you

can install.

Tagging: On z/OS, Conda packages can contain tagging information, to avoid issues around the

difference between EBCDIC & ASCII.

Software neutrality: Language-specific package managers are becoming popular, but Conda does not

assume the purpose of the package, so you can install almost anything.

Environments: If desired, every user can have a different set of packages, because Conda can install &

manage packages in personal folders instead of system ones. A user can even have multiple such

environments, and switch between them rapidly to work with different sets of related software without

conflict.

Initial Conda setup

If you have not installed Conda yet, it can be downloaded as an all-in-one package that has no extra

dependencies, known as "miniconda". For Linux, Unix, macOS, and Windows, this can be downloaded at

https://docs.conda.io/en/latest/miniconda.html For z/OS, Conda can be downloaded from Rocket Software at

https://www.rocketsoftware.com/zos-open-source

Conda will prompt during the install for certain setup options, and ultimately you'll want to put some Conda

initialization content into your startup script so that whenever you open your terminal, Conda will be ready

https://docs.conda.io/en/latest/miniconda.html
https://www.rocketsoftware.com/zos-open-source

for your use.

Once you have Conda downloaded and installed, you'll want to create your first Conda "environment" this

can be done by providing a path or a nickname

conda create --prefix PATH conda create --name ENVIRONMENT

Either will work, but path helps you better separate your content from content others use by placing it in a

folder that you can have stricter permissions on.

If you need to know more about certain commands, you can use the help command for any.

conda create --help

Or, check the official documentation: https://docs.conda.io/en/latest/index.html

Once you have an environment, you should activate it so that the actions you do are on that environment, as

opposed to the base one.

conda activate PATH_OR_NAME

Conda will detect whether the parameter is a path or a nickname, so this command works for both.

Finally, you can view the Conda environment and other information by checking "info"

conda info

Managing Conda channels

When downloading a package, such as a Zowe Plugin, the place that you download from is configurable.

These are called "Channels", but are very similar to "Repositories" seen in other package managers. With

Conda, you can install from:

A network channel (Internet or company internal)

A local channel (Collection of plugins on your computer)

Just an individual package, without a channel

You can have multiple of each, and if a package is present in more than one location, you can specify which

one to use.

https://docs.conda.io/en/latest/index.html

Searching for packages

Conda has a search utility that searches for all Channels,

conda search anything_you_want

but it's important to note that because any type of software can be installed through Conda, you probably

want to search through a detailed view to help identify which ones are meant for Zowe, or use Channels that

are distinctly for Zowe so that you can get packages that are strictly for Zowe.

conda search --info anything_you_want

Using Conda with Zowe

Zowe is not yet available in the form of Conda packages yet, so it must be installed separately. If you have

Zowe installed on the same system as Conda, some Zowe Plugins installed through Conda will automatically

register into Zowe. In order to do this, the Plugins must be able to find Zowe. You should set environment

variables before trying to install the Plugins:

Setting environment variables temporarily:

z/OS, Linux, Unix:

Windows cmd.exe:

INSTANCE_DIR and ROOT_DIR are also supported, but the ZOWE_ prefix helps distinguish its purpose.

Setting environment variables persistently

z/OS, Linux, Unix: You can put the export statements into the .profile file in your home directory to

have them apply on login.

Windows: There is a UI to set variables, but it varies depending on Windows version. Try typing 'environment

variable' into the Windows search bar to get to the relevant menu.

Installing a Zowe plugin

A Conda package could contain one or more Zowe Plugins, and a Conda package could contain non-Zowe

code alongside Zowe Plugins. This is left up to the program vendor and regardless the install process is the

same:

conda install package_name

If the Zowe environment variables are set, such a package may automatically register Plugins into the Zowe

instance of your choice.

Zowe plugin configuration

Aside from possible automation during install and uninstall, Conda does not manage Zowe, its configuration,

or configuration of the Plugins. However, Conda does manage the package files, and therefore you can do

additional Zowe tasks on the Plugins by going into the Conda environment. Zowe Plugins are intended to be

found in a standardized location in the Conda environment,

/opt/zowe/plugins

This folder contains Plugins, which in turn contain sub-folders that are the Zowe components that they

utilize. If a plugin uses multiple Zowe components, its contents could be found within multiple component

folders.

/opt/zowe/plugins/my_plugin/app-server /opt/zowe/plugins/my_plugin/cli

Zowe package structure

Zowe Plugins packaged into Conda follow the structure outlined here: https://github.com/zowe/zowe-install-

packaging/issues/1569 This structure allows for plugin to have content meant for one or more Zowe

components. The Conda packages extend this by allowing for more than one Plugin, or a mix of Zowe

Plugins and other software to be within a single package.

Building Conda packages for Zowe

This document is intended to be provided with example scripts by the Zowe community, which shows you

how you can build a simple Zowe plugin into a Conda package. You can find the example scripts on the

Zowe zlux-build github repository. This is not intended to be a one-size-fits-all set of scripts. If you have

more advanced needs, you can use these scripts as a basis for writing your own scripts.

To make a Conda package, you need conda-build, which you can install into a Conda environment:

conda install conda-build

https://github.com/zowe/zowe-install-packaging/issues/1569
https://github.com/zowe/zlux-build/tree/master/conda

Once you have it, you can build a package via

conda build path/to/build/scripts

However, first you must set up the build information.

Defining package properties

Conda needs a metadata file, meta.yaml to state information about the package, such as dependencies,

what OS it supports, its name and version. This information can be programmatically found, and Zowe

provides examples of how to do this by reading Zowe's own metadata files into this one.

Creating build step

It's recommended not to build your code from scratch to put into Conda. Rather, build your code however

you want, and then just copy the contents into a Conda package. This keeps the Conda scripting small and

simple.

In the same folder as meta.yaml , Conda requires build.sh for building on Unix, Linux, or z/OS and

build.bat for Windows. Except for z/OS, this script does not determine where your package can be

used, it's just about where you are building it. z/OS is the exception because when you build on z/OS, unix

file tagging information is preserved. So, it's highly recommended that you tag your files so that users do not

have to deal with encoding issues. For code that works equally well on all platforms, a simple way to build for

all is:

�. Build your code on Linux

�. Transfer the output to z/OS

�. Run a Conda build on the output on Linux

�. Run a Conda build on the output on z/OS

�. Deliver the Linux package as 'noarch' content, and the z/OS package as 'zos-z' content.

Lifecycle scripts

When a Conda package is installed or uninstalled, a script from the package can be run. For Zowe, the

scripts post-link.sh and pre-unlink.sh can be important, and you must put them into the same

folder as meta.yaml for building.

Install automation

post-link.sh runs at install, after Conda has put the package content onto the system. At this time,

registration into Zowe is recommended if the Plugin does not require any information from the user for

configuration. If the Plugin is okay to be automatically installed, we recommend putting a script into the

package folder named autoinstall.sh Zowe's provided Conda examples will utilize

autoinstall.sh to do any install steps your package needs, and provides Zowe information to make

install simple. However, it's possible to do what you want in your own post-link.sh script instead.

Uninstall automation

pre-unlink.sh is the opposite of post-link.sh . It allows you to do anything you need to before the

package is removed from the system. This is a good time to remove any package information from Zowe, but

you should be careful because users may uninstall and later re-install, so you should not remove

configuration information without consent.

Adding configuration to Conda packages

As a package manager, Conda is not responsible for configuration. Your packages can include defaults to

utilize, but if configuration is needed you should alert the user to perform a post-install task. post-

link.sh could be used to print such an alert.

Version: v2.2.x LTS

Extending Zowe Explorer

You can extend the possibilities of Zowe Explorer by creating you own extensions. For more information on

how to create your own Zowe Explorer extension, see Extensions for Zowe Explorer.

https://github.com/zowe/vscode-extension-for-zowe/blob/master/docs/README-Extending.md

Version: v2.2.x LTS

Developing for Zowe SDKs

The Zowe SDKs are open source. You can contribute to add features, enhancements, and bug fixes to the

source code.

The functionality is currently limited to the interfaces provided by IBM z/OSMF. As a plug-in developer, you

can enhance the SDK by creating a packages that exposes programmatic APIs for your service.

For detailed contribution guidelines, see the following documents:

Node.js SDK guidelines

Coming soon! Python SDK guidelines

https://github.com/zowe/zowe-cli/blob/master/docs/SDKGuidelines.md

Version: v2.2.x LTS

Zowe Conformance Program

Introduction

Administered by the Open Mainframe Project, the Zowe™ Conformance Program aims to give users the

confidence that when they use a product, app, or distribution that leverages Zowe, they can expect a high

level of common functionality, interoperability, and user experience.

Conformance provides Independent Software Vendors (ISVs), System Integrators (SIs), and end users

greater confidence that their software will behave as expected. Just like Zowe, the Zowe Conformance

Program will continue to evolve and is being developed by committers and contributors in the Zowe

community.

As vendors, you are invited to submit conformance testing results for review and approval by the Open

Mainframe Project. If your company provides software based on Zowe, you are encouraged to get certified

today.

How to participate

To participate in the Zowe Conformance Program, follow the process on the Zowe Conformance Program

website. You can also find a list of products that have earned Zowe Conformant status.

To learn the criteria of achieving Zowe conformance for an offering, see Zowe Conformance Criteria.

How to suggest updates to the Zowe conformance
program

The Zowe conformance criteria is available as a table in a Markdown file in the Open Mainframe Project's

GitHub repo. If you find a mistake with the Zowe conformance documents, or you are a Zowe squad lead and

want to make an amendment to the criteria, you can update that Markdown file. The same information is also

held in another document Zowe Conformance Test Evaluation Guide that has history going back to Zowe

2019 conformance and allows easy change history comparison.

https://www.openmainframeproject.org/projects/zowe/conformance
https://github.com/openmainframeproject/foundation/tree/master/zowe_conformance
https://github.com/openmainframeproject/foundation/blob/master/zowe_conformance/test_evaluation_guide_table.md
https://github.com/openmainframeproject/foundation/blob/master/zowe_conformance/test_evaluation_guide.md

To submit a proposal to update the conformance criteria, fork the OMP's foundation repository at

https://github.com/openmainframeproject/foundation and make a pull request. Flag the Pull Request to the

attention of GitHub user ID @mertic , and also reach out to the Zowe onboarding squad in the #zowe-

onboarding Slack channel. If you are not already signed up to Zowe Slack community, you can sign up at

https://slack.openmainframeproject.org first.

https://github.com/openmainframeproject/foundation
https://openmainframeproject.slack.com/archives/CC60ALD61
https://slack.openmainframeproject.org/

Version: v2.2.x LTS

Troubleshooting

To isolate and resolve Zowe™ problems, you can use the troubleshooting and support information.

Known problems and solutions

Some common problems with Zowe are documented, along with their solutions or workarounds. If you have

a problem with Zowe installation and components, review the problem-solution topics to determine whether

a solution is available to the problem that you are experiencing.

You can also find error messages and codes, must-gathers, and information about how to get community

support in these topics.

Troubleshooting API Mediation Layer

Troubleshooting Zowe Application Framework

Troubleshooting Zowe CLI

Troubleshooting Zowe Launcher

Verifying a Zowe release's integrity

Following a successful install of a Zowe release, the Zowe runtime directory should contain the code needed

to launch and run Zowe. If the contents of the Zowe runtime directory have been modified then this may

result in unpredictable behavior. To assist with this Zowe provides the ability to validate the integrity of a

Zowe runtime directory, see Verify Zowe runtime directory

Understanding the Zowe release

Knowing which version of Zowe you are running might help you isolate the problem. Also, the Zowe

community who helps you will need to know this information. For more information, see Understanding the

Zowe release.

https://docs.zowe.org/v2.2.x/troubleshoot/troubleshoot-apiml
https://docs.zowe.org/v2.2.x/troubleshoot/app-framework/app-troubleshoot
https://docs.zowe.org/v2.2.x/troubleshoot/cli/troubleshoot-cli
https://docs.zowe.org/v2.2.x/troubleshoot/launcher/launcher-troubleshoot
https://docs.zowe.org/v2.2.x/troubleshoot/verify-fingerprint
https://docs.zowe.org/v2.2.x/troubleshoot/troubleshoot-zowe-release

Version: v2.2.x LTS

Understanding the Zowe release

Zowe releases

Zowe uses semantic versioning for its releases, also known as SemVer. Each release has a unique ID made

up of three numbers that are separated by periods.

Each time a new release is created, the release ID is incremented. Each number represents the content

change since the previous release. For example,

2.5.0 represents the fifth minor release since the first major release.

2.5.1 represents the first patch to the 2.5.0 release.

2.6.0 is the first minor release to be created after 2.5.1 .

Patch

A patch is usually reserved for a bug fix to a minor release.

Minor release

A minor release indicates that new functionality is added but the code is compatible with an earlier version.

The Zowe community works on two-week sprints and creates a minor release at the end of these, typically

once per month although the frequency might vary.

Major release

A major release is required if changes are made to the public API and the code is no longer compatible with

an earlier version.

When Zowe is version one, it is associated with the Zowe v1 conformance program. Offerings that extend

Zowe and achieve the Zowe v1 conformance badge will remain compatible with Zowe throughout its version

1 lifetime. A major release increment because of incompatibility is sometimes referred to as a "breaking"

change.

https://docs.zowe.org/v2.2.x/extend/zowe-conformance-program

The first SMP/E build for Zowe v2 has a Functional Module ID (FMID) of AZWE002, which was created with

content from the 2.0.0 release. Each major release will be its own SMP/E FMID where the last digit is

updated, for example AZWE00V where V represents the major version.

Subsequent minor and patch releases to V2 are delivered as SMP/E PTF SYSMODs. Because of the size of

the content, two co-requisite PTFs are created for each Zowe release.

While Major releases are required for a "breaking" change, they also can be used to indicate to the

community a significant content update over and above what would be included in a minor release.

Check the Zowe release number

To see the release number of Zowe, look at the manifest.json file. This is included in the top-level

directory of where a Zowe convenience build is expanded to, the top-level directory of a Zowe runtime

<RUNTIME_DIR> .

To see the version of a Zowe release, use the zwe version command.

will return a single line with the Zowe release number. For example,

You can pass debug or trace mode argument to this command to show more information. For example,

You can see in trace mode, it also tells you where is the Zowe runtime directory where zwe command

you are running.

https://docs.zowe.org/v2.2.x/user-guide/install-zowe-zos-convenience-build

Version: v2.2.x LTS

Verify Zowe runtime directory

Zowe ships a zwe support verify-fingerprints command to help you verify authenticity of your

runtime directory. This command collects and calculates hashes for all files located in Zowe runtime

directory and compare the hashes shipped with Zowe. With this utility, you are able to tell what files are

modified, added, or deleted from original Zowe build.

Here is an example for successful verification:

If this verification fails, the script will exit with code 181 and display error messages like Number of

different files: 1 . You can optionally pass --debug or -v parameter to instruct this command to

verbosely display which files are different.

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints

Version: v2.2.x LTS

Troubleshooting Kubernetes environments

The following topics contain information that can help you troubleshoot problems when you encounter

unexpected behavior installing and using Zowe™ containers in a Kubernetes environment.

ISSUE: Deployment and ReplicaSet failed to create pod

Problem:

If you are using OpenShift and see these error messages in ReplicaSet Events:

That means the Zowe ServiceAccount zowe-sa doesn't have any SecurityContextConstraint attached.

Solution:

You can run this command to grant a certain level of permission, for example, privileged , to zowe-sa

ServiceAccount:

ISSUE: Failed to create services

Problem:

If you are using OpenShift and apply services, you may see this error:

Solution:

To fix this issue, you can simply find and comment out this line in the Service definition files:

With OpenShift, you can define a PassThrough Route to let Zowe handle TLS connections.

Version: v2.2.x LTS

Troubleshooting API ML

As an API Mediation Layer user, you may encounter problems with how the API ML functions. This article

presents known API ML issues and their solutions.

Enable API ML Debug Mode

Use debug mode to activate the following functions:

Display additional debug messages for API ML

Enable changing log level for individual code components

Important: We highly recommend that you enable debug mode only when you want to troubleshoot issues.

Disable debug mode when you are not troubleshooting. Running in debug mode while operating API ML can

adversely affect its performance and create large log files that consume a large volume of disk space.

Follow these steps:

�. Open the file zowe.yaml .

�. For each component, find the components.*.debug parameter and set the value to true :

By default debug mode is disabled, so the components.*.debug is set to false .

�. Restart Zowe™.

You enabled debug mode for the API ML core services (API Catalog, API Gateway and Discovery

Service).

�. (Optional) Reproduce a bug that causes issues and review debug messages. If you are unable to

resolve the issue, create an issue here.

Change the Log Level of Individual Code Components

You can change the log level of a particular code component of the API ML internal service at run time.

Follow these steps:

https://github.com/zowe/api-layer/issues/

�. Enable API ML Debug Mode as described in Enable API ML Debug Mode. This activates the

application/loggers endpoints in each API ML internal service (Gateway, Discovery Service, and

Catalog).

�. List the available loggers of a service by issuing the GET request for the given service URL:

scheme

Specifies the API ML service scheme (http or https)

hostname

Specifies the API ML service hostname

port

MFS_DS_PORT for the Discovery Service (by default, set to gateway port + 1), and MFS_AC_PORT

for the Catalog (by default, set to gateway port + 2).

Note: For the Catalog you can list the available loggers by issuing a GET request for the given service

URL in the following format:

Tip: One way to issue REST calls is to use the http command in the free HTTPie tool: https://httpie.org/.

Example:

�. Alternatively, you extract the configuration of a specific logger using the extended GET request:

{name}

Specifies the logger name

�. Change the log level of the given component of the API ML internal service. Use the POST request for

the given service URL:

The POST request requires a new log level parameter value that is provided in the request body:

level

Specifies the new log level: OFF, ERROR, WARN, INFO, DEBUG, TRACE

Example:

https://httpie.org/

Known Issues

API ML stops accepting connections after z/OS TCP/IP stack is recycled

Symptom:

When z/OS TCP/IP stack is restarted, it is possible that the internal services of API Mediation Layer (Gateway,

Catalog, and Discovery Service) stop accepting all incoming connections, go into a continuous loop, and

write a numerous error messages in the log.

Sample message:

The following message is a typical error message displayed in STDOUT:

Solution:

Restart API Mediation Layer.

Tip: To prevent this issue from occurring, it is strongly recommended not to restart the TCP/IP stack while

API ML is running.

SEC0002 error when logging in to API Catalog

SEC0002 error typically appears when users fail to log in to API Catalog. The following image shows the API

Catalog login page with the SEC0002 error.

The error is caused by failed z/OSMF authentication. To determine the reason authentication failed, open the

ZWESVSTC joblog and look for a message that contains ZosmfAuthenticationProvider . The

following is an example of the message that contains ZosmfAuthenticationProvider :

Check the rest of the message, and identify the cause of the problem. The following list provides the

possible reasons and solutions for the z/OSMF authentication issue:

Connection refused

Missing z/OSMF host name in subject alternative names

Invalid z/OSMF host name in subject alternative names

Connection refused

In the following message, failure to connect to API Catalog occurs when connection is refused:

The reason for the refused connection message is either invalid z/OSMF configuration or z/OSMF being

unavailable. The preceding message indicates that z/OSMF is not on the 127.0.0.1�1443 interface.

Solution:

Configure z/OSMF

Make sure that z/OSMF is running and is on 127.0.0.1�1443 interface, and try to log in to API Catalog again. If

you get the same error message, change z/OSMF configuration.

Follow these steps:

�. Locate the z/OSMF PARMLIB member IZUPRMxx.

For example, locate IZUPRM00 member in SYS1.PARMLIB.

�. Change the current HOSTNAME configuration to HOSTNAME('*') .

�. Change the current HTTP_SSL_PORT configuration to HTTP_SSL_PORT('1443') .

Important! If you change the port in the z/OSMF configuration file, all your applications lose connection

to z/OSMF.

For more information, see Syntax rules for IZUPRMxx.

If changing the z/OSMF configuration does not fix the issue, reconfigure Zowe.

Follow these steps:

�. Open .zowe_profile in the home directory of the user who installed Zowe.

�. Modify the value of the ZOWE_ZOSMF_PORT variable.

�. Reinstall Zowe.

Missing z/OSMF host name in subject alternative names

In following message, failure to connect to API Catalog is caused by a missing z/OSMF host name in the

subject alternative names:

Solutions:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_IZUPRMxx.htm

Fix the missing z/OSMF host name in subject alternative names using the following methods:

Note: Apply the insecure fix only if you use API Catalog for testing purposes.

Secure fix

Insecure fix

Secure fix

Follow these steps:

�. Obtain a valid certificate for z/OSMF and place it in the z/OSMF keyring. For more information, see

Configure the z/OSMF Keyring and Certificate.

�. Re-create the Zowe keystore by deleting it and re-creating it. For more information, see Configuring

PKCS12 certificates. The Zowe keystore directory is the value of the KEYSTORE_DIRECTORY variable

in the zowe.yaml file that is used to launch Zowe.

Insecure fix

Follow these steps:

�. Re-create the Zowe keystore by deleting it and re-creating it. For more information, see Configuring

PKCS12 certificates. In the zowe-setup-certificates.env file that is used to generate the

keystore, ensure that the property VERIFY_CERTIFICATES and

NONSTRICT_VERIFY_CERTIFICATES are set to false .

Important! Disabling VERIFY_CERTIFICATES or NONSTRICT_VERIFY_CERTIFICATES may expose

your server to security risks. Ensure that you contact your system administrator before you do so and use

these options only for troubleshooting purpose.

Invalid z/OSMF host name in subject alternative names

In the following message, failure to connect to API Catalog is caused by an invalid z/OSMF host name in the

subject alternative names:

Solutions:

Fix the invalid z/OSMF host name in the subject alternative names using the following methods:

Request a new certificate

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.izua300/izuconfig_KeyringAndCertificate.htm
https://docs.zowe.org/v2.2.x/user-guide/configure-certificates-keystore
https://docs.zowe.org/v2.2.x/user-guide/configure-certificates-keystore

Re-create the Zowe keystore

Request a new certificate

Request a new certificate that contains a valid z/OSMF host name in the subject alternative names.

Re-create the Zowe keystore

Re-create the Zowe keystore by deleting it and re-creating it. For more information, see Configuring PKCS12

certificates. The Zowe keystore directory is the value of the KEYSTORE_DIRECTORY variable in the

zowe.yaml file that is used to launch Zowe.

API ML throws I/O error on GET request and cannot connect to other services

Symptom:

The API ML services are running but they are in DOWN state and not working properly. The following

exceptions can be found in the log: java.net.UnknownHostException and

java.net.NoRouteToHostException .

Sample message:

See the following message for full exceptions.

Solution:

The Zowe started task needs to run under the same user ID as z/OSMF (typically IZUSVR). This is stated in

the installation documentation.

The hostname that is displayed in the details of the exception is a valid hostname. You can validate that the

hostname is valid by using ping command on the same mainframe system. For example, ping

USILCA32.lvn.broadcom.net . If it is valid, then the problem can be caused by insufficient privileges of

your started task that is not allowed to do network access.

You can fix it by setting up the security environment as described in the Zowe documentation.

Certificate error when using both an external certificate and Single Sign-On to
deploy Zowe

Symptom:

https://docs.zowe.org/v2.2.x/user-guide/configure-certificates-keystore
https://docs.zowe.org/v2.2.x/troubleshoot/user-guide/configure-zos-system#grant-users-permission-to-access-z-osmf
https://docs.zowe.org/v2.2.x/troubleshoot/user-guide/configure-zos-system#configure-security-environment-switching

You used an external certificate and Single Sign-On to deploy Zowe. When you log in to the Zowe Desktop,

you encounter an error similar to the following:

Solution:

This issue might occur when you use a Zowe version of 1.12.0 or later. To resolve the issue, you can

download your external root certificate and intermediate certificates in PEM format. Then, add the following

parameter in the zowe.yaml file.

environments.ZWED_node_https_certificateAuthorities:

"/path/to/zowe/keystore/local_ca/localca.cer-

ebcdic","/path/to/carootcert.pem","/path/to/caintermediatecert.pem"

Recycle your Zowe server. You should be able to log in to the Zowe Desktop successfully now.

Browser unable to connect due to a CIPHER error

Symptom:

When connecting to the API Mediation Layer, the web browser throws an error saying that the site is unable

to provide a secure connection because of an error with ciphers.

The error shown varies depending on the browser. For example,

For Google Chrome:

For Mozilla Firefox:

Solution:

Remove GCM as a disabled TLS algorithm from the Java runtime being used by Zowe.

To do this, first locate the $JAVA_HOME/lib/security/java.security file. You can find the value of

$JAVA_HOME in one of the following ways.

Method 1: By looking at the java.home value in the zowe.yaml file used to start Zowe.

For example, if the zowe.yaml file contains the following line,

then, the $JAVA_HOME/lib/security/java.security file will be

/usr/lpp/java/J8.0_64/lib/security/java.security .

Method 2: By inspecting the STDOUT JES spool file for the ZWESVSTC started task that launches the

API Mediation Layer.

In the java.security file, there is a parameter value for jdk.tls.disabledAlgorithms , for

example,

Note: This line may have a continuation character \ and be split across two lines due to its length.

Edit the parameter value for jdk.tls.disabledAlgorithms to remove GCM . If as shown above the line

ends <224, GCM , remove the preceding comma so the values remain a well-formed list of comma-

separated algorithms:

Note: The file permissions of java.security might be restricted for privileged users at most z/OS sites.

After you remove GCM , restart the ZWESVSTC started task for the change to take effect.

API Components unable to handshake

Symptom:

The API Mediation Layer address spaces ZWE1AG, ZWE1AC and ZWE1AD start successfully and are visible

in SDSF, however they are unable to communicate with each other.

Externally the status of the API Gateway homepage will show ! icons against the API Catalog, Discovery

Service and Authentication Service (shown on the left side image below) which do not progress to green tick

icons as normally occurs during successful startup (shown on the right side image below).

The Zowe desktop is able to start but logon fails.

The log contains messages to indicate that connections are being reset. For example, the message below

shows that the API Gateway ZWEAG is unable to connect to the API Discovery service, by default 7553.

The Zowe desktop is able to be displayed in a browser but fails to logon.

Solution:

Check that the Zowe certificate has been configured as a client certificate, and not just as a server

certificate. More detail can be found in Configuring PKCS12 certificates and Configuring JCERACFS

certificates in a key ring.

Java z/OS components of Zowe unable to read certificates from keyring

Symptom:

Java z/OS components of Zowe are unable to read certificates from a keyring. This problem may appear as

an error as in teh following example where Java treats the SAF keyring as a file.

Example:

Solution:

Apply the following APAR to address this issue:

APAR IJ31756

https://docs.zowe.org/v2.2.x/troubleshoot/user-guide/configure-certificates-keystore
https://docs.zowe.org/v2.2.x/troubleshoot/user-guide/configure-certificates-keyring
https://www.ibm.com/support/pages/apar/IJ31756

Version: v2.2.x LTS

Error Message Codes

The following error message codes may appear on logs or API responses. Use the following message code

references and the corresponding reasons and actions to help troubleshoot issues.

API mediation utility messages

ZWEAM000I

%s started in %s seconds

Reason:

The service started.

Action:

No action required.

API mediation common messages

ZWEAO102E

Gateway not yet discovered. The Transform service cannot perform the request

Reason:

The Transform service was requested to transform a url, but the Gateway instance was not discovered.

Action:

Do not begin performing requests until the API Mediation Layer fully initializes after startup. Check that your

Discovery service is running and that all services (especially the Gateway) are discovered correctly.

ZWEAO104W

GatewayInstanceInitializer has been stopped due to exception: %s

Reason:

An unexpected exception occurred while retrieving the Gateway service instance from the Discovery

Service.

Action:

Check that both the service and the Gateway can register with Discovery. If the services are not registering,

investigate the reason why. If no cause can be determined, create an issue.

ZWEAO105W

Gateway HTTP Client per-route connection limit (maxConnectionsPerRoute) of %s has been reached for the

'%s' route.

Reason:

Too many concurrent connection requests were made to the same route.

Action:

Further connections will be queued until there is room in the connection pool. You may also increase the per-

route connection limit via the gateway start-up script by setting the Gateway configuration for

maxConnectionsPerRoute.

ZWEAO106W

Gateway HTTP Client total connection limit (maxTotalConnections) of %s has been reached.

Reason:

Too many concurrent connection requests were made.

Action:

Further connections will be queued until there is room in the connection pool. You may also increase the

total connection limit via the gateway start-up script by setting the Gateway configuration for

maxTotalConnections.

ZWEAO401E

Unknown error in HTTPS configuration: '%s'

Reason:

An Unknown error occurred while setting up an HTTP client during service initialization, followed by a system

exit.

Action:

Start the service again in debug mode to get a more descriptive message. This error indicates it is not a

configuration issue.

Common service core messages

ZWEAM100E

Could not read properties from: '%s'

Reason:

The Build Info properties file is empty or null.

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAM101E

I/O Error reading properties from: '%s' Details: '%s'

Reason:

I/O error reading META-INF/build-info.properties or META-INF/git.properties .

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAM102E

Internal error: Invalid message key '%s' is provided. Please create an issue with this message.

Reason:

Message service is requested to create a message with an invalid key.

Action:

Create an issue with this message.

ZWEAM103E

Internal error: Invalid message text format. Please create an issue with this message.

Reason:

Message service is requested to create a message with an invalid text format.

Action:

Create an issue with this message.

ZWEAM104E

The endpoint you are looking for '%s' could not be located

Reason:

The endpoint you are looking for could not be located.

Action:

Verify that the URL of the endpoint you are trying to reach is correct.

ZWEAM400E

Error initializing SSL Context: '%s'

Reason:

An error occurred while initializing the SSL Context.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

Incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM500W

The service is not verifying the TLS/SSL certificates of the services

Reason:

This is a warning that the SSL Context will be created without verifying certificates.

Action:

Stop the service and set the verifySslCertificatesOfServices parameter to true , and then restart the

service. Do not use this option in a production environment.

ZWEAM501W

Service is connecting to Discovery service using the non-secure HTTP protocol.

Reason:

The service is connecting to the Discovery Service using the non-secure HTTP protocol.

Action:

For production use, start the Discovery Service in HTTPS mode and configure the services accordingly.

ZWEAM502E

Error reading secret key: '%s'

Reason:

A key with the specified alias cannot be loaded from the keystore.

Action:

Ensure that the configured key is present, in the correct format, and not corrupt.

ZWEAM503E

Error reading secret key: '%s'

Reason:

Error reading secret key.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM504E

Error reading public key: '%s'

Reason:

Error reading secret key.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM505E

Error initializing SSL/TLS context: '%s'

Reason:

Error initializing SSL/TLS context.

Action:

Refer to the specific message to identify the exact problem. Possible causes include:

An incorrect security algorithm

The keystore is invalid or corrupted

The certificate is invalid or corrupted

ZWEAM506E

Truststore Password configuration parameter is not defined

Reason:

Your truststore password was not set in the configuration.

Action:

Ensure that the parameter server.ssl.trustStorePassword contains the correct password for your truststore.

ZWEAM507E

Truststore configuration parameter is not defined but it is required

Reason:

The truststore usage is mandatory, but the truststore location is not provided.

Action:

If a truststore is required, define the truststore configuration parameter by editing the server.ssl.truststore,

server.ssl.truststorePassword and server.ssl.truststoreType parameters with valid data. If you do not require

a truststore, change the trustStoreRequired boolean parameter to false .

ZWEAM508E

Keystore not found, server.ssl.keyStore configuration parameter is not defined

Reason:

Your keystore path was not set in the configuration.

Action:

Ensure that the correct path to your keystore is contained in the parameter server.ssl.keyStore in the

properties or yaml file of your service.

ZWEAM509E

Keystore password not found, server.ssl.keyStorePassword configuration parameter is not defined

Reason:

Your keystore password was not set in the configuration.

Action:

Ensure that the correct password to your keystore in the parameter server.ssl.keyStorePassword is

contained in the properties or yaml file of your service.

ZWEAM510E

Invalid key alias '%s'

Reason:

The key alias was not found.

Action:

Ensure that the key alias provided for the key exists in the provided keystore.

ZWEAM511E

There was a TLS request error accessing the URL '%s': '%s'

Reason:

The Gateway refuses to communicate with the requested service.

Action:

Possible actions regarding to message content:

Message: The certificate is not trusted by the API Gateway. Action: Verify trust of the certificate is the

issue by disabling certificate verification and retry the request.

Message: Certificate does not match any of the subject alternative names. Action: Verify that the

hostname which the certificate is issued for matches the hostname of the service.

Message: Unable to find the valid certification path to the requested target. Action: Import the root CA

that issued services' certificate to API Gateway truststore.

Message: Verify the requested service supports TLS. Action: Ensure the requested service is running

with TLS enabled.

Message: Review the APIML debug log for more information. Action: Enable APIML debug mode and

retry the request, then review the APIML log for TLS errors.

ZWEAM600W

Invalid parameter in metadata: '%s'

Reason:

An invalid apiInfo parameter was found while parsing the service metadata.

Action:

Remove or fix the referenced metadata parameter.

ZWEAM700E

No response received within the allowed time: %s

Reason:

No response was received within the allowed time.

Action:

Verify that the URL you are trying to reach is correct and all services are running.

ZWEAM701E

The request to the URL '%s' has failed: %s caused by: %s

Reason:

The request failed because of an internal error.

Action:

Refer to specific exception details for troubleshooting. Create an issue with this message.

Security common messages

ZWEAT100E

Token is expired for URL '%s'

Reason:

The validity of the token is expired.

Action:

Obtain a new token by performing an authentication request.

ZWEAT103E

Could not write response: %s

Reason:

A message could not be written to the response.

Action:

Please submit an issue with this message.

ZWEAT403E

The user is not authorized to the target resource: %s

Reason:

The service has accepted the authentication of the user but the user does not have access rights to the

resource.

Action:

Contact your security administrator to give you access.

ZWEAT409E

The platform returned error: %s

Reason:

The platform responded with unknown errno code.

Action:

Please submit an issue with this message.

ZWEAT410E

The platform returned error: %s

Reason:

The specified password is incorrect.

Action:

Provide correct password.

ZWEAT411E

The platform returned error: %s

Reason:

The platform returned error, specified in the error message.

Action:

Contact your security administrator with the message.

ZWEAT412E

The platform returned error: %s

Reason:

The specified password is expired.

Action:

Contact your security administrator to reset your password.

ZWEAT413E

The platform returned error: %s

Reason:

The new password is not valid.

Action:

Provide valid password.

ZWEAT414E

The platform returned error: %s

Reason:

The user name access has been revoked.

Action:

Contact your security administrator to unsuspend your account.

ZWEAT415E

The platform returned error: %s

Reason:

The user name does not exist in the system.

Action:

Provide correct user name.

ZWEAT416E

The platform returned error: %s

Reason:

The specified user name or password is invalid.

Action:

Provide correct user name or password.

ZWEAT601E

z/OSMF service name not found. Set parameter apiml.security.auth.zosmf.serviceId to your service ID.

Reason:

The parameter zosmfserviceId was not configured correctly and could not be validated.

Action:

Ensure that the parameter apiml.security.auth.zosmf.serviceId is correctly entered with a valid z/OSMF

service ID.

ZWEAT602E

The SAF provider endpoint supports only the resource class 'ZOWE', but the current one is '%s'

Reason:

The parameter apiml.security.authorization.provider is set to endpoint .

Action:

Change the SAF provider to another one to use this endpoint.

ZWEAT603E

Endpoint %s is not properly configured

Reason:

The application cannot call the endpoint to check the SAF resource of the user.

Action:

Verify the state of ZSS and IZS, then check if parameters

apiml.security.authorization.endpoint.* are matching.

ZWEAT604E

Passwords do not match

Reason:

Re-entered password does not match for password update.

Action:

Enter the same value as the one entered for new password.

ZWEAT605E

Invalid body provided in request to create personal access token

Reason:

The request body is not valid.

Action:

Use a valid body in the request. Format of a message: {validity: int , scopes: [string]}.

ZWEAT606E

Body in the HTTP request for Personal Access Token does not contain scopes

Reason:

The request body is not valid.

Action:

Provide a list of services for which this token will be valid.

Security client messages

ZWEAS100E

Authentication exception: '%s' for URL '%s'

Reason:

A generic failure occurred while authenticating.

Action:

Refer to the specific message to troubleshoot.

ZWEAS101E

Authentication method '%s' is not supported for URL '%s'

Reason:

The HTTP request method is not supported for the URL.

Action:

Use the correct HTTP request method that is supported for the URL.

ZWEAS103E

API Gateway Service is not available by URL '%s' (API Gateway is required because it provides the

authentication functionality)

Reason:

The security client cannot find a Gateway instance to perform authentication. The API Gateway is required

because it provides the authentication functionality.

Action:

Check that both the service and Gateway are correctly registered in the Discovery service. Allow some time

after the services are discovered for the information to propagate to individual services.

ZWEAS104E

Authentication service is not available by URL '%s'

Reason:

The Authentication service is not available.

Action:

Make sure that the Authentication service is running and is accessible by the URL provided in the message.

ZWEAS105E

Authentication is required for URL '%s'

Reason:

Authentication is required.

Action:

Provide valid authentication.

ZWEAS120E

Invalid username or password for URL '%s'

Reason:

The username or password is invalid.

Action:

Provide a valid username and password.

ZWEAS121E

Authorization header is missing, or the request body is missing or invalid for URL '%s'

Reason:

The authorization header is missing, or the request body is missing or invalid.

Action:

Provide valid authentication.

ZWEAS123E

Invalid token type in response from Authentication service.

Reason:

Could not retrieve the proper authentication token from the Authentication service response.

Action:

Review your APIML authentication provider configuration and ensure your Authentication service is working.

ZWEAS130E

Token is not valid for URL '%s'

Reason:

The token is not valid.

Action:

Provide a valid token.

ZWEAS131E

No authorization token provided for URL '%s'

Reason:

No authorization token is provided.

Action:

Provide a valid authorization token.

ZAAS client messages

ZWEAS100E

Token is expired for URL

Reason:

The application using the token kept it for longer than the expiration time.

Action:

When this error occurs it is necessary to get a new JWT token.

ZWEAS120E

Invalid username or password

Reason:

Provided credentials were not recognized.

Action:

Try with different credentials.

ZWEAS121E

Empty or null username or password values provided

Reason:

One of the credentials was null or empty.

Action:

Try with a full set of credentials.

ZWEAS122E

Empty or null authorization header provided

Reason:

The authorization header was empty or null.

Action:

Try again with a valid authorization header.

ZWEAS170E

An exception occurred while trying to get the token

Reason:

General exception. There are more pieces of information in the message.

Action:

Log the message from the exception and then handle the exception based on the information provided

there.

ZWEAS400E

Unable to generate PassTicket. Verify that the secured signon (PassTicket) function and application ID is

configured properly by referring to Using PassTickets in the guide for your security provider

Reason:

Unable to generate PassTicket.

Action:

Verify that the secured signon (PassTicket) function and application ID is configured properly by referring to

Using PassTickets in the guide for your security provider.

ZWEAS401E

Token is not provided

Reason:

There was no JWT token provided for the generation of the PassTicket.

Action:

Ensure that you are passing JWT token for PassTicker generation.

ZWEAS404E

Gateway service is unavailable

Reason:

Gateway service does not respond.

Action:

Ensure that the Gateway service is up and that the path to the gateway service is properly set.

ZWEAS417E

The application name was not found

Reason:

The application id provided for the generation of the PassTicket was not recognized by the security provider.

Action:

Ensure that the security provider recognized the application id.

ZWEAS130E

Invalid token provided

Reason:

The JWT token is not valid.

Action:

Provide a valid token.

ZWEAS500E

There was no path to the trust store

Reason:

The Zaas Client configuration does not contain the path to the trust store.

Action:

Ensure that the configuration contains the trustStorePath and that it points to valid trust store.

ZWEAS501E

There was no path to the key store

Reason:

The Zaas Client configuration does not contain the path to the key store.

Action:

Ensure that the configuration contains the keyStorePath and that it points to valid key store.

ZWEAS502E

The configuration provided for SSL is invalid

Reason:

The type of the keystore, truststore or the included keys/certs aren't considered valid.

Action:

Ensure that the combination of the configuration is cryptographically valid.

ZWEAS503E

The SSL configuration contained an invalid path

Reason:

There was an invalid path to either trust store or keystore.

Action:

Ensure that both provided paths are resolved to a valid trust store and a valid key store.

Discovery service messages

ZWEAD400E

Cannot notify Gateway on '%s' about new instance '%s'

Reason:

The Discovery Service tried to notify the Gateway about an instance update, but the REST call failed. The

purpose of this call is to update the Gateway caches. The Gateway might be down or a network problem

occurred.

Action:

Ensure that there are no network issues and that the Gateway was not restarted. If the problem reoccurs,

contact Broadcom support.

ZWEAD401E

Cannot notify Gateway on '%s' about cancelled registration

Reason:

The Discovery Service tried to notify the Gateway about service un-registration, but the REST call failed. The

purpose of this call is to update the Gateway caches. The Gateway might be down or a network problem

occurred.

Action:

Ensure that there are no network issues and that the Gateway was not restarted. If the problem reoccurs,

contact Broadcom support.

ZWEAD700W

Static API definition directory '%s' is not a directory or does not exist

Reason:

One of the specified static API definition directories does not exist or is not a directory.

Action:

Review the static API definition directories and their setup. The static definition directories are specified as a

launch parameter to a Discovery service jar. The property key is:

apiml.discovery.staticApiDefinitionsDirectories .

ZWEAD701E

Error loading static API definition file '%s'

Reason:

A problem occurred while reading (IO operation) of a specific static API definition file.

Action:

Ensure that the file data is not corrupted or incorrectly encoded.

ZWEAD702W

Unable to process static API definition data: '%s' - '%s'

Reason:

A problem occurred while parsing a static API definition file.

Action:

Review the mentioned static API definition file for errors. Refer to the specific log message to determine the

exact cause of the problem:

ServiceId is not defined in the file '%s'. The instance will not be created. Make sure to specify the

ServiceId.

The instanceBaseUrls parameter of %s is not defined. The instance will not be created. Make sure

to specify the InstanceBaseUrl property.

The API Catalog UI tile ID %s is invalid. The service %s will not have an API Catalog UI tile. Specify the

correct catalog title ID.

One of the instanceBaseUrl of %s is not defined. The instance will not be created. Make sure to specify

the InstanceBaseUrl property.

The URL %s does not contain a hostname. The instance of %s will not be created. The specified URL is

malformed. Make sure to specify valid URL.

The URL %s does not contain a port number. The instance of %s will not be created.

The specified URL is missing a port number. Make sure to specify a valid URL.

The URL %s is malformed. The instance of %s will not be created: The Specified URL is malformed.

Make sure to specify a valid URL.

The hostname of URL %s is unknown. The instance of %s will not be created: The specified hostname

of the URL is invalid. Make sure to specify a valid hostname.

Invalid protocol. The specified protocol of the URL is invalid. Make sure to specify valid protocol.

Additional service metadata of %s in processing file %s could not be created: %s

ZWEAD703E

A problem occurred during reading the static API definition directory: '%s'

Reason:

There are three possible causes of this error:

The specified static API definition folder is empty.

The definition does not denote a directory.

An I/O error occurred while attempting to read the static API definition directory.

Action:

Review the static API definition directory definition and its contents on the storage. The static definition

directories are specified as a parameter to launch a Discovery Service jar. The property key is:

apiml.discovery.staticApiDefinitionsDirectories

ZWEAD704E

Gateway Service is not available so it cannot be notified about changes in Discovery Service

Reason:

Gateway Service is probably mis-configured or failed to start for another reason.

Action:

Review the log of Gateway Service and its configuration.

Gateway service messages

ZWEAG500E

Client certificate is missing in request

Reason:

No client certificate is present in the HTTPS request.

Action:

Properly configure client to send client certificate.

ZWEAG700E

No instance of the service '%s' found. Routing will not be available.

Reason:

The Gateway could not find an instance of the service from the Discovery Service.

Action:

Check that the service was successfully registered to the Discovery Service and wait for Spring Cloud to

refresh the routes definitions.

ZWEAG701E

Service '%s' does not allow encoded characters in the request path: '%s'.

Reason:

The request that was issued to the Gateway contains an encoded character in the URL path. The service

that the request was addressing does not allow this pattern.

Action:

Contact the system administrator and request enablement of encoded characters in the service.

ZWEAG702E

Gateway does not allow encoded slashes in request: '%s'.

Reason:

The request that was issued to the Gateway contains an encoded slash in the URL path. Gateway

configuration does not allow this encoding in the URL.

Action:

Contact the system administrator and request enablement of encoded slashes in the Gateway.

ZWEAG704E

Configuration error '%s' when trying to read the public and private key for signing JWT: %s

Reason:

A problem occurred while trying to read the certificate-key pair from the keystore.

Action:

Review the mandatory fields used in the configuration such as the keystore location path, the keystore and

key password, and the keystore type.

ZWEAG705E

Failed to load public or private key from key with alias '%s' in the keystore '%s'. Gateway is shutting down.

Reason:

Failed to load a public or private key from the keystore during JWT Token initialization.

Action:

Check that the key alias is specified and correct. Verify that the keys are present in the keystore.

ZWEAG706E

RequestContext is not prepared for load balancing.

Reason:

Custom Ribbon load balancing is not in place before calling Ribbon.

Action:

Contact Broadcom support.

ZWEAG707E

The request to the URL '%s' aborted without retrying on another instance. Caused by: %s

Reason:

The request to the server instance failed and will not be retried on another instance.

Action:

Refer to 'Caused by' details for troubleshooting.

ZWEAG708E

The request to the URL '%s' failed after retrying on all known service instances. Caused by: %s

Reason:

Request to the server instance could not be executed on any known service instance.

Action:

Verify the status of the requested instance.

ZWEAG709E

Service is not available at URL '%s'. Error returned: '%s'

Reason:

The service is not available.

Action:

Make sure that the service is running and is accessible by the URL provided in the message.

ZWEAG710E

Load balancer does not have available server for client: %s

Reason:

The service is not available. It might be removed by the Circuit Breaker or by requesting specific instance

that is not available.

Action:

Try the request later, or remove the request for the specific instance.

ZWEAG711E

The principal '%s' is missing queried authorization.

Reason:

The principal does not have the queried access to the resource name within the resource class.

Action:

No action is needed.

ZWEAG712E

The URI '%s' is an invalid format

Reason:

The URI does not follow the format /{serviceId}/{type}/{version}/{endpoint} or

/{type}/{version}/{serviceId}/{endpoint}.

Action:

Use a properly formatted URI.

ZWEAG713E

Configuration error when trying to establish JWT producer. Events: %s

Reason:

A problem occurred while trying to make sure that there is a valid JWT producer available.

Action:

Based on the specific information in the message, verify that the key configuration is correct, or alternatively,

that z/OSMF is available.

ZWEAG714E

Unknown error occurred while retrieving the used public key

Reason:

An unknown problem occurred when retrieving the used public key. This should never occur.

Action:

Try again later.

ZWEAG715E

The wrong amount of keys retrieved. The amount of retrieved keys is: %s

Reason:

There are too many keys in the JWK set. As such, it is not possible to choose the correct one.

Action:

Verify the configuration of the z/OSMF to make sure that z/OSMF provides only one used key.

ZWEAG716E

The system does not know what key should be used.

Reason:

Typically z/OSMF is either unavailable or offline.

Action:

Verify that z/OSMF is available, accessible by the Gateway service, and online.

ZWEAG717E

The service id provided is invalid: '%s'

Reason:

The provided id is not valid under conformance criteria.

Action:

Verify that conformance criteria, provide valid service id.

ZWEAG100E

Authentication exception: '%s' for URL '%s'

Reason:

A generic failure occurred during authentication.

Action:

Refer to the specific authentication exception details for troubleshooting.

ZWEAG101E

Authentication method '%s' is not supported for URL '%s'

Reason:

The HTTP request method is not supported by the URL.

Action:

Use the correct HTTP request method supported by the URL.

ZWEAG102E

Token is not valid

Reason:

The JWT token is not valid.

Action:

Provide a valid token.

ZWEAG103E

The token has expired

Reason:

The JWT token has expired.

Action:

Obtain a new token by performing an authentication request.

ZWEAG104E

Authentication service is not available at URL '%s'. Error returned: '%s'

Reason:

The authentication service is not available.

Action:

Make sure that the authentication service is running and is accessible by the URL provided in the message.

ZWEAG105E

Authentication is required for URL '%s'

Reason:

Authentication is required.

Action:

Provide valid authentication.

ZWEAG106W

Login endpoint is running in dummy mode. Use credentials '%s'/'%s' to log in. Do not use this option in the

production environment.

Reason:

The authentication is running in dummy mode.

Action:

Ensure that this option is not being used in a production environment.

ZWEAG107W

Incorrect value: apiml.security.auth.provider = '%s'. The authentication provider is not set correctly. The

default 'zosmf' authentication provider is being used.

Reason:

An incorrect value of the apiml.security.auth.provider parameter is set in the configuration.

Action:

Ensure that the value of apiml.security.auth.provider is set either to 'dummy' if you want to use dummy

mode, or to 'zosmf' if you want to use the z/OSMF authentication provider.

ZWEAG108E

z/OSMF instance '%s' not found or incorrectly configured. Gateway is shutting down.

Reason:

The Gateway could not find the z/OSMF instance from the Discovery Service or it could not communicate

with the provided z/OSMF instance.

Action:

Ensure that the z/OSMF instance is configured correctly and that it is successfully registered to the

Discovery Service and that the API Mediation Layer can communicate with the provided z/OSMF instance.

The default timeout is 5 minutes. On a slower system, add the variable

components.gateway.apiml.security.jwtInitializerTimeout:... and the value in minutes into Zowe's

configuration to override this value.

ZWEAG109E

z/OSMF response does not contain field '%s'.

Reason:

The z/OSMF domain cannot be read.

Action:

Review the z/OSMF domain value contained in the response received from the 'zosmf/info' REST endpoint.

ZWEAG110E

Error parsing z/OSMF response. Error returned: '%s

Reason:

An error occurred while parsing the z/OSMF JSON response.

Action:

Check the JSON response received from the 'zosmf/info' REST endpoint.

ZWEAG120E

Invalid username or password for URL '%s'

Reason:

The username and/or password are invalid.

Action:

Provide a valid username and password.

ZWEAG121E

Authorization header is missing, or the request body is missing or invalid for URL '%s'

Reason:

The authorization header is missing, or the request body is missing or invalid.

Action:

Provide valid authentication.

ZWEAS123E

Invalid token type in response from Authentication service

Reason:

Could not retrieve the proper authentication token from the Authentication service response.

Action:

Review your APIML authentication provider configuration and ensure your Authentication service is working.

ZWEAG130E

Token is not valid for URL '%s'

Reason:

The token is not valid.

Action:

Provide a valid token.

ZWEAG131E

No authorization token provided for URL '%s'

Reason:

No authorization token is provided.

Action:

Provide a valid authorization token.

ZWEAG140E

The 'applicationName' parameter name is missing

Reason:

The application name is not provided.

Action:

Provide the 'applicationName' parameter.

ZWEAG141E

The generation of the PassTicket failed. Reason: %s

Reason:

An error occurred in the SAF Auth Service. Review the reason in the error message.

Action:

Supply a valid user and application name, and check that corresponding permissions have been set up.

ZWEAG150E

SAF IDT generation failed. Reason: %s

Reason:

An error occurred during SAF verification. Review the reason in the error message.

Action:

Verify the Identity Token configuration.

ZWEAG151E

SAF IDT is not generated because authentication or authorization failed. Reason: %s

Reason:

The user credentials were rejected during SAF verification. Review the reason in the error message.

Action:

Provide a valid username and password.

ZWEAG160E

No authentication provided in the request

Reason:

The JWT token or client certificate was not provided with the request.

Action:

Configure your client to provide valid authentication.

ZWEAG161E

No user was found

Reason:

It was not possible to map provided token or certificate to the mainframe identity.

Action:

Ask your security administrator to connect your token or client certificate with your mainframe user.

ZWEAG162E

Gateway service failed to obtain token

Reason:

Authentication request to get token failed.

Action:

Contact your administrator.

ZWEAG163E

Error occurred while parsing X509 certificate

Reason:

%s

Action:

Configure your client to provide valid x509 certificate.

ZWEAG164E

Error occurred while validating X509 certificate. %s

Reason:

X509 certificate cannot be validated or the certificate cannot be used for client authentication.

Action:

Configure your client to provide valid x509 certificate.

ZWEAG165E

X509 certificate is missing the client certificate extended usage definition

Reason:

X509 certificate cannot be used for client authentication.

Action:

Configure your client to provide valid x509 certificate.

ZWEAG166E

ZOSMF authentication scheme is not supported for this API ML instance

Reason:

z/OSMF is not used as security provider for API ML.

Action:

Contact your administrator.

ZWEAG167E

No client certificate provided in the request

Reason:

The X509 client certificate was not provided with the request.

Action:

Configure your client to provide valid certificate.

ZWEAG168E

Invalid authentication provided in request

Reason:

The JWT token or client certificate is not valid.

Action:

Configure your client to provide valid authentication.

API Catalog messages

ZWEAC100W

Could not retrieve all service info from discovery -- %s -- %s -- %s

Reason:

The response from The Discovery Service about the registered instances returned an error or empty body.

Action:

Make sure the Discovery Service is up and running. If the http response error code refers to a security issue,

check that both the Discovery Service and Catalog are running with the https scheme and that security is

configured properly.

ZWEAC101E

Could not parse service info from discovery -- %s

Reason:

The response from the Discovery Service about the registered instances could not be parsed to extract

applications.

Action:

Run debug mode and look at the Discovery Service potential issues while creating a response. If the

Discovery Service does not indicate any error, create an issue.

ZWEAC102E

Could not retrieve containers. Status: %s

Reason:

One or more containers could not be retrieved.

Action:

Check the status of the message for more information and the health of the Discovery Service.

ZWEAC103E

API Documentation not retrieved, %s

Reason:

API documentation was not found.

Action:

Make sure the service documentation is configured correctly.

ZWEAC104E

Could not retrieve container statuses, %s

Reason:

The status of one or more containers could not be retrieved.

Action:

Check the status of the message for more information and the health of the Discovery Service.

ZWEAC700E

Failed to update cache with discovered services: '%s'

Reason:

Cache could not be updated.

Action:

Check the status of the Discovery Service.

ZWEAC701W

API Catalog Instance not retrieved from Discovery service

Reason:

An error occurred while fetching containers information.

Action:

The jar file is not packaged correctly. Please submit an issue.

ZWEAC702E

An unexpected exception occurred when trying to retrieve an API Catalog instance from the Discovery

Service: %s

Reason:

An unexpected error occurred during API Catalog initialization. The API Catalog was trying to locate an

instance of itself in the Discovery Service.

Action:

Review the specific message for more information. Verify if the Discovery Service and service registration

work as expected.

ZWEAC703E

Failed to initialize API Catalog with discovered services

Reason:

The API Catalog could not initialize running services after several retries.

Action:

Ensure services are started and discovered properly.

ZWEAC704E

ApiDoc retrieval problem for '%s' service. %s

Reason:

ApiDoc for service could not be retrieved.

Action:

Verify that the service provides a valid ApiDoc.

ZWEAC705W

The home page url for service %s was not transformed. %s

Reason:

The home page url for service was not transformed. The original url will be used.

Action:

Refer to the specific printed message. Possible causes include:

The Gateway was not found. The Transform service cannot perform the request. Wait for the Gateway

to be discovered.

The URI is not valid. Ensure the service is providing a valid URL.

Not able to select a route for the URL of the specific service. The original URL is used. If necessary,

check the routing metadata of the service.

The path of the service URL is not valid. Ensure the service is providing the correct path.

ZWEAC706E

Service not located, %s

Reason:

The service could not be found.

Action:

Check if the service is up and registered. If it is not registered, review the onboarding guide to ensure that all

steps were completed.

ZWEAC707E

Static API refresh failed, caused by exception: %s

Reason:

The Static API refresh could not be performed because of exception.

Action:

Check the specific exception for troubleshooting.

ZWEAC708E

The API base path for service %s was not retrieved. %s

Reason:

The API base path for service was not retrieved. An empty path will be used.

Action:

Refer to the specific printed message. Possible causes include:

The URI is not valid. Ensure the service is providing a valid URL.

Not able to select a route for the URL of the specific service. The original URL is used. If necessary,

check the routing metadata of the service.

The path of the service URL is not valid. Ensure the service is providing the correct path.

ZWEAC709E

Static definition generation failed, caused by exception: %s

Reason:

The Static definition generation could not be performed because of exception.

Action:

Check the specific exception for troubleshooting.

Version: v2.2.x LTS

Raising a Zowe Application Framework issue
on GitHub

When necessary, you can raise GitHub issues against the Zowe™ zlux core repository here. It is suggested

that you use either the bug or enhancement template.

For issues with particular applications, such as Code Editor or JES Explorer, create the issue in the

application's project.

Raising a bug report

Please provide as much of the information listed on Troubleshooting Zowe Application Framework as

possible. Anyone working on the issue might need to request this and other information if it is not supplied

initially. A description of the error and how it can be reproduced is the most important information.

Raising an enhancement report

Enhancement reports are just as important to the Zowe project as bug reports. Enhancement reports should

be clear and detailed requirements for a potential enhancement.

https://github.com/zowe/zlux/issues
https://github.com/zowe/zlux-editor/issues
https://github.com/zowe/explorer-jes/issues
https://docs.zowe.org/v2.2.x/troubleshoot/app-framework/app-troubleshoot

Version: v2.2.x LTS

ZSS Error Message Codes

The following error message codes may appear on ZSS log. Use the following message code references and

the corresponding reasons and actions to help troubleshoot issues.

ZSS informational messages

ZWES0013I

ZSS Server has started. Version '%s' '%s'

Reason:

ZSS Server has started.

Action:

No action required.

ZWES0014I

ZIS status - '%s' (name='%.16s', cmsRC='%d', description='%s', clientVersion='%d')

Reason:

The message shows status of the connection to Privileged Server: ZIS status - <OK or Failure>

(name= <Privileged Server Name> , cmsRC= <RC> , description= <description , clientVersion=

<version>)

Action:

if Status is OK then no action required. If Status is Failure see check <cmsRC> and description. In the

cases listed below check that the ZWESISTC started task is running. If not, start it with the TSO command

/S ZWESISTC :

cmsRC=12 , description= 'Global area address is NULL'

cmsRC=39 , description= 'Cross-memory server abended'

cmsRC=47 , description= 'ZVT is NULL'

cmsRC=64 , description= 'PC is unavailable'

ZWES0035I

ZSS Server settings: Address='%s', port='%d', protocol='%s'

Reason:

Server is starting using Address= <IP address> , port= <port> , protocol= http or https

Action:

No action required.

ZWES0039I

Installing '%s' service...

Reason:

<Service> is about to install.

Action:

No action required.

ZWES0061I

TLS settings: keyring '%s', label '%s', password '%s', stash '%s'

Reason:

ZSS uses TLS settings: keyring <keyring> or <p12-file> , label <cert-label> , password

"****" or (no password) , stash <stash-file> or (no stash) .

Action:

No action required.

ZWES0063I

Caching Service settings: gateway host '%s', port %d

Reason:

Caching Service settings are gateway host <Gateway-host> , port <Gateway-port> . HA is mode

enabled.

Action:

No action required.

ZWES0064I

Caching Service not configured

Reason:

Caching Service not configured. HA mode is disabled.

Action:

No action required.

ZWES1100I

Product Registration is enabled.

Reason:

Product Registration is enabled.

Action:

No action required.

ZWES1101I

Product Registration is disabled.

Reason:

Product Registration is disabled.

Action:

No action required.

ZWES1102I

Product Registration successful.

Reason:

Product Registration successful.

Action:

No action required.

ZWES1600I

JWT will be configured using JWK URL '%s'

Reason:

JWT will be configured using JSON Web Key(JWK) at URL <url> .

Action:

No action required.

ZWES1601I

Server is ready to accept JWT with (or without) fallback to legacy tokens

Reason:

Server is ready to accept JWT with or without fallback to legacy tokens.

Action:

No action required.

ZSS error messages

ZWES1006E

Error while parsing plugin definition file '%s': '%s'.

Reason:

An error occurred while parsing <plugin-definition-file> : <error-details> .

Action:

If you are a plugin developer check <error-details> and fix the error by editing <plugin-

definition-file> , otherwise, report the error to the plugin vendor.

ZWES1034E

Server startup problem: Address '%s' not valid.

Reason:

IP address nor hostname is not valid.

Action:

Use valid IP address or hostname, e.g. 0.0.0.0 .

ZWES1036E

Server startup problem: Ret='%d', res='0x%x'

Reason:

Server has failed to start.

Action:

If the next message is ZWES1037E then refer ZWES1037E. Otherwise, examine the reason code with

bpxmtext command, e.g. use bpxmtext 744c7247 if you got res='0x744c7247'

ZWES1037E

This is usually because the server port '%d' is occupied. Is ZSS running twice?

Reason:

ZSS port number is already occupped.

Action:

Check if another ZSS instance is already running, or chose another free port number and restart Zowe.

ZWES1065E

Failed to configure https server, check agent https settings

Reason:

Failed to configure https server.

Action:

Check agent https settings.

ZSS warning messages

ZWES1000W

Privileged server name not provided, falling back to default.

Reason:

Privileged server name not defined in configuration file.

Action:

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text

If your privileged server name is ZWESIS_STD then no action required. Otherwise set

components.zss.crossMemoryServerName property in configuration to the correct name.

ZWES1005W

Plugin ID was not found in '%s'

Reason:

pluginId property wasn't found in <path-to-pluginDefinition.json> file. The plugin skipped.

Action:

If you are a plugin developer add pluginId property into <path-to-pluginDefinition.json> file.

Otherwise, contact the plugin vendor.

ZWES1012W

Could not open pluginsDir '%s': Ret='%d', res='0x%x'

Reason:

Could not open <pluginsDir> : Ret= <return-code> , res= <reason-code>

Action:

Check that <pluginsDir> exists and allows reading. Examine the reason code with bpxmtext

command for additional information.

ZWES1060W

Failed to init TLS environment, rc=%d(%s)

Reason:

Failed to initialized TLS environment GSKit return code <rc> (<description>)

Action:

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text

Ensure that ZSS certificate is configured correctly. Check GSKit return code and description for additional

information.

ZWES1103W

Product Registration failed, RC = %d

Reason:

Failed to register ZSS.

Action:

Examine the return code at [https://www.ibm.com/docs/en/zos/2.2.0?topic=requeststatus-return-codes] and

correct the error.

ZWES1201W

Could not %s file '%s': Ret='%d', res='%d'

Reason:

Unixfile REST Service could not <action> file <filename> : Ret= <return-code> , res= <reason-

code>

Action:

Action depends on return/reason code. For additional information examine the reason code with

bpxmtext command.

ZWES1103W

Could not get metadata for file '%s': Ret='%d', res='%d'

Reason:

Unixfile REST Service could not get metadata for file <filename> : Ret= <return-code> , res=

<reason-code>

Action:

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text

Action depends on return/reason code. For additional information examine the reason code with

bpxmtext command.

ZWES1602W

JWK is in unrecognized format

Reason:

JSON Web Key(JWK) is in unrecognized format.

Action:

Report an issue at [https://github.com/zowe/zlux/issues]

ZWES1603W

Failed to construct public key using JWK

Reason:

JSON Web Key(JWK) has invalid public key info.

Action:

Report an issue at [https://github.com/zowe/zlux/issues]

ZWES1604W

JWK: failed to init HTTP context, ensure that APIML and TLS settings are correct

Reason:

Failed to init HTTP context for requesting JSON Web Key(JWK).

Action:

Check the zowe keystore configuration and specification of it within the zowe server config.

ZWES1605W

https://www.ibm.com/docs/en/zos/2.4.0?topic=descriptions-bpxmtext-display-reason-code-text

Server will not accept JWT

Reason:

ZSS Server will not accept JWT.

Action:

No action required.

ZWES1606W

Failed to get JWK - %s, retry in %d seconds

Reason:

Failed to get JWK - <reason> , retry in <n> seconds. ZSS Server was unable to get JSON Web

Key(JWK), it will try to repeat the attempt in <n> seconds.

Action:

No action required.

Version: v2.2.x LTS

Troubleshooting Zowe CLI

Problem

Zowe™ CLI is experiencing a problem. You need to collect information that will help you resolve the issue.

Environment

These instructions apply to Zowe CLI installed on Windows, Mac OS X, and Linux systems as a standalone

installation via a Zowe download or an NPM registry.

Before reaching out for support

�. Is there already a GitHub issue (open or closed) that covers the problem? Check CLI Issues.

�. Review the current list of Known issues in documentation. Also try searching using the Zowe Docs

search bar.

Resolving the problem

Collect the following information to help diagnose the issue:

Zowe CLI version installed.

List of plug-ins installed and their version numbers.

Node.js and NPM versions installed.

List of environment variables in use.

For instructions on how to collect the information, see Gathering information for Zowe CLI.

The following information is also useful to collect:

If you are experiencing HTTP errors, see z/OSMF troubleshooting for information to collect.

Is the CLI part of another Node application, such as VSCode, or is it a general installation?

What operating system and version are you running?

https://github.com/zowe/zowe-cli/issues
https://docs.zowe.org/v2.2.x/troubleshoot/cli/known-cli
https://docs.zowe.org/v2.2.x/troubleshoot/cli/mustgather-cli
https://docs.zowe.org/v2.2.x/troubleshoot/cli/zosmf-cli

What shell/terminal are you using (bash, cmd, powershell, etc...)?

Which queue managers are you trying to administer, and on what systems are they located?

Are the relevant API endpoints online and valid?

Are you running in daemon mode?

Version: v2.2.x LTS

Gathering information to troubleshoot Zowe
CLI

Follow these instructions to gather specific pieces of information to help troubleshoot Zowe™ CLI issues.

Identify the currently installed CLI version

Issue the following command:

The exact Zowe CLI version may vary depending upon if the @latest or @zowe-v1-lts , or @lts-

incremental version is installed.

For the @zowe-v1-lts and the @latest (forward-development) version tags:

For the @lts-incremental version tag:

More information regarding versioning conventions for Zowe CLI and plug-ins is located in Versioning

Guidelines.

Identify the currently installed versions of plug-ins

Issue the following command:

The output describes version and the registry information.

Environment variables

The following settings are configurable via environment variables:

Log levels

Environment variables are available to specify logging level and the CLI home directory.

Important! Setting the log level to TRACE or ALL might result in "sensitive" data being logged. For example,

command line arguments will be logged when TRACE is set.

https://github.com/zowe/zowe-cli/blob/master/docs/MaintainerVersioning.md

For more information about logging and environment variables, see Setting CLI log levels.

CLI daemon mode

By default, the CLI daemon mode binary creates or reuses a file in the user's home directory each time a

Zowe CLI command runs. In some cases, this behavior might be undesirable. For example, the home

directory resides on a network drive and has poor file performance. For information about how to change the

location that the daemon uses, see Setting CLI daemon mode properties.

Home directory

You can set the location on your computer for the Zowe CLI home directory, which contains log files,

profiles, and plug-ins for the product.

The default .zowe folder is created when you issue your first Zowe CLI command. If you change the

location of the folder, you must reinstall plug-ins and recreate or move profiles and log files that you want to

retain. In some cases, you might want to maintain a different set of profiles in multiple folders, then switch

between them using the environment variable.

For information about setting an environment variable for the Zowe CLI home directory, see Setting the CLI

home directory.

The values for these variables can be echoed.

Home directory structure

Location of logs

There are two sets of logs to be aware of:

Imperative CLI Framework log, which generally contains installation and configuration information.

Zowe CLI log, which contains information about interaction between CLI and the server endpoints.

Analyze these logs for any information relevant to your issue.

Profile configuration

https://docs.zowe.org/v2.2.x/user-guide/cli-configuringcli-ev#setting-cli-log-levels
https://docs.zowe.org/v2.2.x/troubleshoot/user-guide/cli-configuringcli-ev#setting-cli-daemon-mode-properties
https://docs.zowe.org/v2.2.x/troubleshoot/user-guide/cli-configuringcli-ev#setting-the-cli-home-directory

The profiles folder stores connection information.

Important! The profile directory might contain "sensitive" information, such as your mainframe password.

You should obfuscate any sensitive references before providing configuration files.

Node.js and npm

Zowe CLI is compatible with the currently supported Node.js LTS versions. For an up-to-date list of

supported LTS versions, see Node.js.org.

To gather the Node.js and npm versions installed on your computer, issue the following commands:

npm configuration

If you are having trouble installing Zowe CLI from an npm registry, gather your npm configuration to help

identify issues with registry settings, global install paths, proxy settings, etc...

npm log files

In case of errors, npm creates log files in the npm_cache_logs location. To get the npm_cache

location for a specific OS, run the following command:

By default, npm keeps only 10 log files, but sometimes more are needed. Increase the log count by issuing

the following command:

This command increases the log count to 50, so that more log files will be stored on the system. Now you

can run tests multiple times and not lose the log files. The logs can be passed to Support for analysis.

As the log files are created only when an npm command fails, but you are interested to see what is executed,

you can increase the log level of npm. Issue the following command:

With this change, you can see all actions taken by npm on the stdout. If the command is successful, it

still does not generate a log file.

The available log levels are: "silent", "error", "warn", "notice", "http", "timing", "info", "verbose", "silly",

and "notice". "Notice" is the default.

Alternatively, you can pass --loglevel verbose on the command line, but this only works with

npm related commands. By setting log level in the config, it also works when you issue some zowe

https://nodejs.org/en/download/releases/

commands that use npm (for example, zowe plugins install @zowe/cics).

Version: v2.2.x LTS

z/OSMF troubleshooting

The core command groups use the z/OSMF REST APIs which can experience any number of problems.

If you encounter HTTP 500 errors with the CLI, consider gathering the following information:

�. The IZU* (IZUSVR and IZUANG) joblogs (z/OSMF server)

�. z/OSMF USS logs (default location: /global/zosmf/data/logs - but may change depending on installation)

If you encounter HTTP 401 errors with the CLI, consider gathering the following information:

�. Any security violations for the TSO user in SYSLOG

Alternative methods

At times, it may be beneficial to test z/OSMF outside of the CLI. You can use the CLI tool curl or a REST

tool such as "Postman" to isolate areas where the problem might be occurring (CLI configuration, server-

side, etc.).

Example curl command to GET /zosmf/info :

Version: v2.2.x LTS

Known Zowe CLI issues

The following topics contain information that can help you troubleshoot problems when you encounter

unexpected behavior installing and using Zowe™ CLI.

Zowe Commands Fail with Secure Credential Errors

Valid on Windows, macOS, and Linux

Symptoms:

After you install Zowe CLI, and the installation appears to complete successfully, Zowe commands that load

the secure credential store return error messages. For example, the following commands return error

messages:

zowe config init

zowe config secure

zowe profiles create

Most Zowe commands that access your mainframe environment

This behavior occurs under the following conditions:

npm version 8.11.0 or 8.12.0 is running on your computer.

The computer on which you installed Zowe CLI cannot access the Internet or it has limited access to the

Internet. Your site does not allow connections to https://github.com/.

You installed Zowe CLI from a local package or from an NPM public online registry

Solution:

�. Define the npm_config_global environment variable. Issue the command that corresponds with

your operating system:

Windows Command Prompt: set npm_config_global=true

Windows PowerShell: $env:npm_config_global="true"

macOS/Linux Bash: export npm_config_global=true

https://github.com/

�. Install or reinstall Zowe CLI using your preferred installation method.

�. After the Zowe CLI installation completes, reset the npm_config_global environment variable. Issue

the command that corresponds with your operating system:

Windows Command Prompt: set npm_config_global=

Windows PowerShell: $env:npm_config_global=""

macOS/Linux Bash: export npm_config_global=

�. Continue configuring Zowe CLI. Or, reissue a Zowe command that returned an error message. You

should no longer get an error message.

EACCESS error when issing npm install command

Valid on Windows, Mac, or Linux

Symptom:

An EACCESS error is returned when you issue the npm install -g command to install a package from

Zowe.org or npm.

Solution:

To resolve the issue, follow the steps described in Resolving EACCESS permissions errors when installing

packages globally in the npm documentation.

Command not found message displays when issuing npm
install commands

Valid on all supported platforms

Symptom:

When you issue NPM commands to install the CLI, the message command not found displays. The message

indicates that Node.js and NPM are not installed on your computer, or that PATH does not contain the

correct path to the NodeJS folder.

Solution:

https://docs.npmjs.com/resolving-eacces-permissions-errors-when-installing-packages-globally

To correct this behavior, verify the following:

Node.js and NPM are installed.

PATH contains the correct path to the NodeJS folder.

More Information: System requirements for Zowe CLI

npm install -g Command Fails Due to an EPERM Error

Valid on Windows

Symptom:

This behavior is due to a problem with Node Package Manager (npm). There is an open issue on the npm

GitHub repository to fix the defect.

Solution:

If you encounter this problem, some users report that repeatedly attempting to install Zowe CLI yields

success. Some users also report success using the following workarounds:

Issue the npm cache clean command.

Uninstall and reinstall Zowe CLI. For more information, see Install Zowe CLI.

Add the --no-optional flag to the end of the npm install command.

Sudo syntax required to complete some installations

Valid on Linux and macOS

Symptom:

The installation fails on Linux or macOS.

Solution:

Depending on how you configured Node.js on Linux or macOS, you might need to add the prefix sudo

before the npm install -g command or the npm uninstall -g command. This step gives Node.js

https://docs.zowe.org/v2.2.x/user-guide/systemrequirements-cli
https://docs.zowe.org/v2.2.x/user-guide/cli-installcli

write access to the installation directory.

npm install -g command fails due to npm ERR! Cannot
read property 'pause' of undefined error

Valid on Windows or Linux

Symptom:

You receive the error message npm ERR! Cannot read property 'pause' of undefined when

you attempt to install the product.

Solution:

This behavior is due to a problem with Node Package Manager (npm). If you encounter this problem, revert

to a previous version of npm that does not contain this defect. To revert to a previous version of npm, issue

the following command:

Node.js commands do not respond as expected

Valid on Windows or Linux

Symptom:

You attempt to issue node.js commands and you do not receive the expected output.

Solution:

There might be a program that is named node on your path. The Node.js installer automatically adds a

program that is named node to your path. When there are pre-existing programs that are named node on

your computer, the program that appears first in the path is used. To correct this behavior, change the order

of the programs in the path so that Node.js appears first.

Installation fails on Oracle Linux 6

Valid on Oracle Linux 6

Symptom:

You receive error messages when you attempt to install the product on an Oracle Linux 6 operating system.

Solution:

Install the product on Oracle Linux 7 or another Linux or Windows OS. Zowe CLI is not compatible with

Oracle Linux 6.

Version: v2.2.x LTS

Raising a CLI issue on GitHub

When necessary, you can raise GitHub issues against the Zowe™ CLI repository here. It is suggested that

you use either the bug or enhancement template.

Raising a bug report

Please provide as much of the information listed on Troubleshooting CLI as is reasonable. Anyone working

on the issue might need to request this and other information if it is not supplied initially. A description of the

error and how it can be reproduced is the most important information.

Raising an enhancement report

Enhancement reports are just as important to the Zowe project as bug reports. Enhancement reports should

be clear and detailed requirements for a potential enhancement.

https://github.com/zowe/zowe-cli/issues
https://docs.zowe.org/v2.2.x/troubleshoot/cli/troubleshoot-cli

Version: v2.2.x LTS

Troubleshooting Zowe Explorer

As a Zowe Explorer user, you may encounter problems with how the VS Code extension functions. This

article presents known Zowe Explorer issues and their solutions.

Before reaching out for support

�. Is there already a GitHub issue (open or closed) that covers the problem? Check Zowe Explorer Issues.

�. Review the current list of Known issues in documentation. Also, try searching using the Zowe Docs

search bar.

�. Collect the following information to help diagnose the issue:

Zowe Explorer and VS Code version installed.

Node.js and NPM versions installed.

Whether you have Zowe CLI and the Secure Credential Store (SCS) Zowe CLI plug-in installed.

Note: Zowe CLI V2 does not require the SCS plug-in to manage security. Security is now managed

by Zowe CLI core functionality.

Your operating system.

Zowe Logs, which usually, can be found in C:\Users\userID\.zowe\zowe\logs .

Use the Slack channel to reach the Zowe Explorer community for assistance.

https://github.com/zowe/vscode-extension-for-zowe/issues
https://docs.zowe.org/v2.2.x/troubleshoot/ze/known-ze
https://app.slack.com/client/T1BAJVCTY/CUVE37Z5F

Version: v2.2.x LTS

Known Zowe Explorer issues

The following topics contain information that can help you troubleshoot problems when you encounter

unexpected behavior, using Zowe Explorer.

Data Set Creation Error

Symptom:

Data set creation fails.

Sample message:

Error running command zowe.createDataset: z/OSMF REST API Error: http(s) request error event called

Error: self signed certificate in certificate chain. This is likely caused by the extension that contributes

zowe.createDataset.

Solution:

Set the value of the Reject-Unauthorized parameter to false . Use the profile edit function to change

profile's parameters.

Opening Binary Files Error

Symptom:

When opening a binary file, an error message appears.

Sample messages:

Solution:

There is no solution or workaround at this time.

Version: v2.2.x LTS

Raising a Zowe Explorer issue on GitHub

You can raise GitHub issues against the Zowe Explorer repository. It is suggested that you use either the bug

or feature request.

Raising a bug report

Please provide as much of the information listed on Troubleshooting Zowe Explorer as is reasonable. Anyone

working on the issue might need to request this and other information if it is not supplied initially. A

description of the error and how it can be reproduced is the most important information.

Submitting a feature request

Feature requests are just as important to the Zowe project as bug reports. Feature requests should contain

clearly formulated ideas that can improve user experience.

https://github.com/zowe/vscode-extension-for-zowe/issues
https://docs.zowe.org/v2.2.x/troubleshoot/ze/troubleshoot-ze

Version: v2.2.x LTS

Troubleshooting Zowe Launcher

The following topics contain information that can help you troubleshoot problems when you encounter

unexpected behavior using Zowe™ Launcher.

Issues and development of the Zowe Launcher is managed in GitHub. When you troubleshoot a problem,

you can check whether a GitHub issue (open or closed) that covers the problem already exists. For a list of

issues, see the launcher repo.

Error Message Codes

Enable Zowe Launcher Debug Mode

Use debug mode to display additional debug messages for Zowe Launcher.

Important: We highly recommend that you enable debug mode only when you want to troubleshoot issues.

Disable debug mode when you are not troubleshooting. Running Zowe Launcher in debug mode can

adversely affect its performance and consume a large amount of spool space.

Follow these steps:

�. Open the PROCLIB member ZWESLSTC

�. Find STDENV DD inline statements

�. Add a new line

By default debug mode is disabled, so the ZLDEBUG is set to OFF . To disable debug mode remove

the line or set ZLDEBUG to OFF .

�. Restart ZWESLSTC Started Task.

https://github.com/zowe/launcher
https://docs.zowe.org/v2.2.x/troubleshoot/launcher/launcher-error-codes

Version: v2.2.x LTS

Error Message Codes

The following error message codes may appear on Zowe Launcher SYSPRINT. Use the following message

code references and the corresponding reasons and actions to help troubleshoot issues.

Zowe Launcher informational messages

ZWEL0001I

component %s started

Reason:

Component <component-name> started.

Action:

No action required.

ZWEL0002I

component %s stopped

Reason:

Component <component-name> stopped.

Action:

No action required.

ZWEL0003I

new component initialized %s, restart_cnt=%d, min_uptime=%d seconds, share_as=%s

Reason:

Component <component-name> initialized.

restart_cnt - Number of attempts to restart the component in case of failure

min_uptime - Minimum uptime that the component can be considered as successfully started

share_as - One of <yes|no|must> which indicates whether child processes of the component

start in the same address space. See documentation for _BPX_SHAREAS for details.

Action:

No action required.

ZWEL0004I

component %s(%d) terminated, status = %d

Reason:

Component <component-name> (<pid>) terminated with status <code> .

Action:

No action required.

ZWEL0005I

next attempt to restart component %s in %d seconds

Reason:

Component failure detected.

Action:

No action required. The component <component-name> will be restarted in <n> seconds.

Zowe Launcher error messages

ZWEL0030E

failed to prepare Zowe instance

https://www.ibm.com/docs/en/zos/2.4.0?topic=shell-setting-bpx-shareas-bpx-spawn-script

Reason:

Failed to prepare the Zowe high availability (HA) instance.

Action:

Check previous messages in the Zowe Launcher SYSPRINT to find the reason and correct it.

ZWEL0038E

failed to restart component %s, max retries reached

Reason:

Maximum retries reached for restarting component <component-name >.

Action:

Check <component-name> configuration and correct the maximum restart count via configuration

attribute restartIntervals if needed, then restart the component by using z/OS MODIFY command F

ZWESLSTC,APPL=STOP(<component-name>)

ZWEL0040E

failed to start component %s

Reason:

Failed to start component <component-name> .

Action:

Check <component-name> configuration and correct if needed, then either 1) start the component

manually by using z/OS MODIFY command F ZWESLSTC,APPL=STOP(<component-name>) or 2) restart

the entire HA instance

ZWEL0047E

failed to parse zowe.yaml - %s

Reason:

Failed to parse Zowe configuration file.

Action:

Validate the format of Zowe configuration file. It should be a valid YAML file following specifications defined

in https://yaml.org/.

https://yaml.org/

Version: v2.2.x LTS

Contribute to Zowe

You are welcome to contribute to Zowe in many forms and help make this project better! We want to make it

as easy as possible for you to become a Zowe contributor. This topic outlines the different ways that you can

get involved and provides some of the resources that are available to help you get started. All feedback is

welcome.

Report bugs and enhancements

Fix issues

Send a Pull Request

Report security issues

Contribution guidelines

Promote Zowe

Helpful resources

Report bugs and enhancements

Report bugs: Download and try one of the latest Zowe builds. Report any bugs you find by creating a

Zowe bug report in GitHub.

Report enhancements: Got an idea for a feature? Or something you're already using could be improved?

Post an enhancement request in GitHub!

If you have an issue that is specific to a sub-project or community team, feel free to submit an issue against

a specific repo.

Fix issues

There are many issues and bugs with the label Good first issue in the Zowe GitHub repositories

to help you get familiar with the contribution process. Check out the following list of GitHub repos to

make your contribution!

Zowe sub-projects repositories

Zowe operations squads repositories

https://github.com/zowe/community/issues/new?assignees=&labels=bug&template=bug_report.md&title=
https://github.com/zowe/community/issues/new?assignees=&labels=enhancement&template=feature_request.md&title=
https://github.com/zowe/
https://github.com/zowe/community/blob/master/README.md#zowe-sub-projects
https://github.com/zowe/community/blob/master/README.md#zowe-operations-squads

When you decide to work on an issue, check the comments on that issue to ensure that it's not taken by

anyone. If nobody is working on it, comment on that issue to let others know that you want to work on it

to avoid duplicate work. The squad can assign that issue to you and provide guidance as well.

You can also reach out to the Zowe squads on Slack to check with the squads if there is any good

starter issue that you can work on.

Send a Pull Request

All code in Zowe aligns with the established licensing and copyright notice guidelines.

Before submitting a Pull Request, review the general Zowe Pull Request Guidelines and make sure that you

provide the information that is required in the Pull Request template in that specific repo.

All Zowe commits need to be signed by using the Developer s̓ Certificate of Origin 1.1 (DCO), which is the

same mechanism that the Linux® Kernel and many other communities use to manage code contributions.

You need to add a Signed-off-by line as a part of the commit message. Here is an example Signed-

off-by line, which indicates that the submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@hisdomain.com>

You can find more information about DCO signoff in the zac repo.

Report security issues

Please direct all security issues to zowe-security@lists.openmainframeproject.org . A member of

the security team will reply to acknowledge receipt of the vulnerability and coordinate remediation with the

affected project.

Contribution guidelines

Check out the contribution guidelines for different components and squads to learn how to participate.

Zowe CLI

Zowe API Mediation Layer

Zowe Application Framework

Zowe Explorer

https://github.com/zowe/community/blob/master/README.md#slack
https://github.com/zowe/zlc/blob/master/process/LicenseAndCopyrightGuidance.md
https://github.com/zowe/community#pull-request-guidelines
https://developercertificate.org/
https://github.com/zowe/zac/blob/master/CONTRIBUTING.md
https://github.com/zowe/zowe-cli/blob/master/CONTRIBUTING.md
https://github.com/zowe/api-layer/blob/master/CONTRIBUTING.md
https://github.com/zowe/zlux
https://github.com/zowe/vscode-extension-for-zowe/blob/master/CONTRIBUTING.md

Zowe Client SDKs

Zowe Docs

Promote Zowe

Contribute a blog about Zowe. Read the Zowe blog guidelines to get started.

Present Zowe on conferences and social channels

Helpful resources

General code guidelines

UI guidelines

Zowe learning resources

https://github.com/zowe/zowe-cli/blob/master/docs/SDKGuidelines.md
https://docs.zowe.org/v2.2.x/contribute/roadmap-contribute/contributing
https://github.com/zowe/community/blob/master/blogging/blog_guidelines.md
https://docs.zowe.org/v2.2.x/contribute/roadmap-contribute/guidelines-code/categories
https://docs.zowe.org/v2.2.x/contribute/roadmap-contribute/guidelines-ui/ui
https://docs.zowe.org/v2.2.x/contribute/getting-started/zowe-resources

Version: v2.2.x LTS

Code categories

The Zowe™ codebase consists of a few key areas, with both unique and shared guidelines that define how

to write new code. A few such areas are:

Server Core

Server Security

Microservices

Zowe Desktop Applications

Zowe Application Framework

Zowe CLI and CLI Plug-ins

Imperative CLI Framework

Programming languages

For each area of the codebase, there are established and favored programming languages. Each repository

in Github identifies the primary language used. Some of the basic skills needed to contribute to the project

include:

CLI - Node.js, TypeScript

Desktop UI - Node.js, JavaScript

APIs - C, Assembler, Java, Spring

API Mediation Layer - Java, Spring

Note: JavaScript is not recommended and should be avoided in favor of Typescript to utilize typing.

Component-specific guidelines and tutorials

This "Code Guidelines" section provides high-level best practices. Each component may have more specific

contribution guidelines. Look for a CONTRIBUTING.md file in the component's GitHub repository for specific

details.

To learn more about how to develop Zowe applications and plug-ins or extending Zowe with APIs, see

Extending.

https://docs.zowe.org/v2.2.x/extend/extend-apiml/onboard-overview

Version: v2.2.x LTS

General code style guidelines

All code written in the languages described in Code categories should adhere to the following guidelines to

facilitate collaboration and understanding.

Note: Uncertainties, unimplemented but known future action-items, and odd/specific constants should all

be accompanied with a short comment to make others aware of the reasoning that went into the code.

Whitespaces

Do not use tabs for whitespace. Use 2 spaces per tab instead.

Naming Conventions

Self-documenting code reduces the need for extended code comments. It is encouraged to use names as

long as necessary to describe what is occurring.

Functions and methods

Methods should be named as verbs (for example, get or set), while Objects/Classes should be nouns.

Objects and functions should be CamelCase. Methods on Objects should be dromedaryCase.

Variables

Constants should be CAPITALIZED_AND_UNDERSCORED for clarity, while variables can remain

dromedaryCase.

Avoid non-descriptive variable names such as single letters (except for iteration in loops such as i or j) and

variable names that have been arbitrarily shortened (Don't strip vowels; long variable names are OK).

https://docs.zowe.org/v2.2.x/contribute/guidelines-code/categories

Version: v2.2.x LTS

Pull requests guidelines

The Zowe™ source code is stored in GitHub repositories under the Zowe GitHub project. You contribute to

the project through Pull Requests in GitHub.

Each pull request is made against a repository that has assigned "maintainers". Pull requests cannot be

merged without the approval of at least one maintainer, who will review Pull Requests to ensure that they

meet the following criteria:

The code in the pull request must adhere to the General Code Style Guidelines.

The code must compile/transpile (where applicable) and pass a smoke-test such that the code is not

known to break the current state of Zowe.

The pull request must describe the purpose and implementation to the extent that the maintainer

understands what is being accomplished. Some pull requests need less details than others.

The pull request must state how to test this change, if applicable, such that the maintainer or a QA team

can check correctness. The explanation may simply be to run included test code.

If a pull request depends upon a pull request from the same/another repository that is pending, this

must be stated such that maintainers know in which order to merge open pull requests.

https://github.com/zowe
https://docs.zowe.org/v2.2.x/contribute/guidelines-code/general

Version: v2.2.x LTS

Documentation Guidelines

Documentation of Zowe™ comes in various forms depending on the subject being detailed. In general,

consider how you can help end users and contributors through external documentation, in-product help,

error messages, etc... and open an issue in zowe/docs-site if you need assistance.

Contributing to external documentation

The external documentation for the Zowe project, Zowe Docs, is completely open-source. See How to

contribute for more information about contributing to the documentation.

Consider: Release Notes, Install/Config/User Guides, Developer Tutorials, etc...

Component Categories

Provide the following documentation depending on the component that you contribute to:

Server Core

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on

Zowe Docs site. Code documentation follows language-specific formats.

Server Security

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on

Zowe Docs site. Code documentation follows language-specific formats.

Microservices

Microservices implement a web API, and therefore must be documented for understanding and testing.

These web APIs must be accompanied with documentation in the Swagger (https://swagger.io/) format.

These documents must be Swagger 2.0, .yaml extension files. Zowe Application Framework plug-ins that

implement microservices should store these files within the /doc/swagger folder.

Zowe Desktop Applications

https://github.com/zowe/docs-site
https://docs.zowe.org/
https://docs.zowe.org/v2.2.x/contribute/contributing
https://swagger.io/

Zowe Desktop applications should include documentation that explains how to use them, such that this

documentation can integrate with a Zowe Desktop documentation reader. This is not strictly API

documentation, but rather user guides that can display within the Desktop GUI. The preferred

documentation format is a .md extension file that exists in the /doc/guide folder of an App.

Web Framework

Principles of operation and end-user guides (configuration, troubleshooting) should be documented on

Zowe Docs site. Code documentation follows language-specific formats.

CLI Plugins

Provide a readme.md file for developers (overview, build, test) as well as end-user documentation for your

plug-in on Zowe Docs site.

For more information, see the CLI documentation contribution guidelines.

Core CLI Imperative CLI Framework

Contributions that affect end users of the CLI should be documented on Zowe Docs site.

Contributions that affect the underlying Imperative CLI Framework should be documented in the GitHub Wiki

for future developers using the framework.

Code documentation follows language-specific formats.

Programming Languages

Each of the common languages in Zowe have code-documentation-generation tools, each with their own in-

code comment style requirements to adhere to in order to generate readable API references. Objects and

functions of interest should be commented in accordance to the language-specific tools to result in output

that serves as the first point of documentation for APIs.

Typescript

When writing TypeScript code, comment objects and functions in compliance with JSDoc. If you are writing

in an area of the codebase that does not yet have a definition file for JSDoc, define a configuration file that

can be used for future documentation of that code.

https://github.com/zowe/zowe-cli/blob/conformance/CONTRIBUTING.md#documentation-guidelines
https://github.com/zowe/imperative/wiki
http://usejsdoc.org/

Java

When writing TypeScript code, comment objects and functions in the Javadoc format.

C

When writing C code, comment functions and structures in compliance with Doxygen.

Version: v2.2.x LTS

Introduction

This style guide is the visual language that represents Zowe™. It is a living document that will be updated

based on the needs of our users and software requirements.

Clear

Our users rely on our software to help them be efficient in their work. The interfaces and experiences that

we design should be clear so that there is never confusion about where to click or how to take the next step.

Users should always feel confident in their actions.

Consistent

Users should be able to look at Zowe software products and know that they are in a family. Each software

product is different, but should use similar patterns, icons, and interactions. If a user switches to a new

product within Zowe, it should feel familiar.

Smart

Our users are intelligent, and they need smart software. Zowe design patterns should always compliment

the user s̓ intelligence and reflect the user s̓ complex work environment. Designs should align with the Zowe

design language by putting the human needs of the user first.

Version: v2.2.x LTS

Colors

Color brings a design to life. Color is versatile; it's used to express emotion and tone, as well as place

emphasis and create associations. Color should always be used in meaningful and intentional ways to create

patterns and visual cues.

Color palette

The Zowe™ color palette is designed and implemented in a theme-able manner. The universal color

variables are determined by common roles and usage; it is not based singularly on a color value (i.e. unique

hex code). The same color value might be assigned to multiple variables in a theme's palette when the

values have distinctly different roles.

A universal variable can also have multiple associated roles when the color is consistently used across those

roles. This allows for uniform color application across themes, while giving each theme the freedom to

express its own individuality at a more detailed level.

Light theme

Dark theme

Color contrast | WCAG AA standards

Type colors

All type color combinations on Zowe must pass WCAG AA standards of 4.5�1 for normal text and 3�1 for

large text. For larger text, if the font weight is light (300) or normal (400) the text should be no smaller

than 24px. If the font weight is Semi-Bold (600) then the large text should be no smaller than 19px.

Body Text (4.5�1)

Large Text (3�1): at least 24px / 19px semi-bold

WCAG guidelines: https://www.w3.org/WAI/standards-guidelines/wcag/

Contrast Checker Tool: https://webaim.org/resources/contrastchecker/

https://www.w3.org/WAI/standards-guidelines/wcag/
https://webaim.org/resources/contrastchecker/

Version: v2.2.x LTS

Typography

Typography is used to create clear hierarchies, useful organizations, and purposeful alignments that guide

users through the product and experience. It is the core structure of any well designed interface.

Typeface

Title typeface: Roboto Condensed

Body typeface: Roboto

Sample:

Font weight

Font weight is an important typographic style that can add emphasis and is used to differentiate content

hierarchy. Font weight and size pairings must be carefully balanced. A bold weight will always have more

emphasis than a lighter weight font of the same size. However, a lighter weight font can rank hierarchically

higher than a bold font if the lighter weight type size is significantly larger than the bold.

Roboto font family provides a wide range of weights. However, only SemiBold, Regular, Light should be used

for product design.

Font-weight: 300 / Light

Should only be used at sizes greater than or equal to 18px / 1.125rem

Font-weight: 400 / Normal

Font-weight: 500 / Semi-bold

Body copy

We recommended that you use two sizes for body copy. The first size is UI specific. To maximize screen real

estate we chose a smaller 14px / 0.875rem body copy size for the standard UI console. However, for areas

that have prolonged reading, such as Documentation, we use a larger body copy size of 16px / 1rem to

enhance readability.

Line scale

1.333 Perfect Fourth-type scale - desktop

1.2 Minor Third type-scale - mobile

Line-height

Line-height, traditionally known as leading, is one of several factors that directly contribute to readability and

pacing of copy. Line-heights are based on the size of the font itself. Ideal line-heights for standard copy have

a ratio of 1�1.5 (typesize : line-height). For example, a type at 16px / 1rem would have a line-height of 1.5rem /

24px (16 x 1.5). The exception to this rule are headings, which need less spacing and therefore have a line-

height ratio of 1�1.25.

Embed font

To embed your selected fonts into a web page, copy the following code into the <head> of your HTML

document:

Import font

Specify in CSS

Use the following CSS rules to specify these families:

Version: v2.2.x LTS

Grid

Grid systems are used for creating page layouts through a series of rows and columns that house your

content. Zowe™ uses a responsive, mobile-first, fluid grid system that appropriately scales up to 12 columns

as the device or view port size increases.

12 column grid

A 12 column grid is recommended. 12 is a well-distributed division that provides a good range of widths to

assign to content. It is dividable by 2, 3, 4 and 6, which allows flexibility. Many frameworks, such as

Bootstrap and Pure, use a 12 column grid by default. Other grid systems like a 5 column grid can reduce

flexibility, balance, and consistency.

Gutters

Columns create gutters (gaps between column content) through padding. For devices with a screen width

greater than 768px, the column padding is 20px. For devices with a screen width less than 768px, the

column padding is 10px.

Screen width ≥ 768px = 20px gutters

Screen width 768px = 10px gutters

Columns

Zowe designs should be limited to 12 columns. If designers feel that they need fewer columns in their grid,

they can specify the number of 12 available columns they wish to span.

This can translate to percentages of the twelve columns. Using this method, a designer can create a folded,

less granular grid. For example, if your component spans three equal columns, that is equal to 25% of twelve

columns.

Column count: 12

Margins

The 12 column grid does not have a maximum width. It has a width of 100%, with built in margins that create

padding between column count and the edges of the viewport.

In devices with a screen width greater than 768px, the margins are 5% on the left, and 5% on the right.

In devices with a screen width less than 768px, the margins are 3% on the left, and 3% on the right.

Example: Screen Width > 768px

Example: Screen Width 320px

Version: v2.2.x LTS

Iconography

Icons are key component for a successful UI design because they are a visual way to help add meaning to

elements.

Font Awesome is a robust icon library that allows for an easy addition to any web project. Scalable vector

icons that can instantly be customized — size, color, drop shadow, and anything that can be done with the

power of CSS.

One Font, Hundreds of Icons – In a single collection, Font Awesome is a pictographic language of

web-related actions.

No JavaScript Required – Fewer compatibility concerns because Font Awesome doesnʼt require

JavaScript.

Infinite Scalability – Scalable vector graphics means every icon looks awesome at any size.

Free, as in Speech – Font Awesome is completely free for commercial use. Check out the license.

CSS Control – Easily style icon color, size, shadow, and anything that s̓ possible with CSS.

Perfect on Retina Displays – Font Awesome icons are vectors, which mean theyʼre gorgeous on high-

resolution displays.

Plays Well with Others – Originally designed for Bootstrap, Font Awesome works great with all

frameworks.

Desktop Friendly – To use on the desktop or for a complete set of vectors, check out the cheatsheet.

Accessibility-minded – Font Awesome loves screen readers and helps make your icons accessible on

the web.

To learn more or download the library go to www.fontawesome.com

https://fontawesome.com/
http://www.fontawesome.com/

Version: v2.2.x LTS

Application icon

General rules

Embrace simplicity. Use a simple, unique shape or element that represents the essence of the application.

Avoid excessive details and redundant shading.

Use the Zowe™ color palette. Avoid using a monochromatic palette for your icons. Use the Zowe color

palette to ensure that the icons have a consistent look.

Use unique shapes and design elements. Avoid using single commonly used design elements, such as

the gear, document, or folder. These elements can reduce recognizability. Do not use photos and

screenshots. Keep icons simple and abstract.

Avoid labels and text. Short, commonly used abbreviations are acceptable, if necessary. Remember that all

icons have center-aligned labels beneath them.

Use brand identity. If your Zowe application has a brand identity element such as a logo, you can use it.

Remember to include the copyright symbol.

Shape, size, and composition

Use a flat design style. Flat design focuses on open space, bright colors, and flat graphics or illustrations.

Our minimalistic design approach puts the emphasis on usability.

A flat icon has clean, crisp edges and a flat dimensional layout.

Use solid fill shapes. Most Zowe App icons have solid fill shapes, which are more readable on dark

backgrounds.

Use the circle shape for the background application icons. Set the outer corners to 100% opacity. Create an

image file that is 87x87 pixels, and save the file in PNG format.

Maintain consistent visual proportions.

Colors and shades

Verify the contrast

Verify that the background color of the icon provides enough contrast against the desktop.

Use the Zowe palette

To ensure that your app icons are clear and consistent, use the Zowe color palette. If you need to use well-

established brand identity elements, you can use the colors that are associated with the brand.

Layer Shadows

Use smooth shadows to represent that some elements are on different layers and should be visually

separated. Avoid using too many layers because they can overcomplicate the icon.

Use the long shadow for consistency.

Although the long shadow effect does not have any semantic meaning, it adds focus to the main icon shape

and identifies the central,most meaningful element.

Use the gradient shadow settings shown in the following image, or use a flat non-gradient shadow with 20%

opacity and #000000 color.

https://docs.zowe.org/v2.2.x/contribute/guidelines-ui/colors#color-palette

Version: v2.2.x LTS

Contributing to Zowe Documentation

You are welcome to contribute to the Zowe™ documentation repository. Anyone can open an issue about

documentation, or contribute a change with a pull request (PR) to the zowe/docs-site GitHub repository.

Before You Get Started

Before contributing a documentation change to the repository, you should be familiar with:

Git and GitHub: To learn about git and GitHub, refer to the Github Guides.

Slack: The Zowe Documentation team communicates using the Slack application. To learn about Slack,

refer to the Slack Help Center. The Zowe team is part of the Open Mainframe Project channel.

Markdown Language: The Zowe documentation is written in Markdown language. To learn about

Markdown, refer to The Markdown Guide.

In addition to being familiar with the Zowe community and how we work together, you will need to sign the

CNCF Contributor License Agreement. The Contributor License Agreement defines the terms under which

you contribute to Zowe documentation. Contributions to Zowe documentation are reviewed before being

committed to the repository. Committing changes to the Zowe repository requires additional access rights.

See https://github.com/zowe/community/blob/master/COMMITTERS.md. Also see Participating in Zowe

Documentation for more details about roles and permissions.

Getting started checklist

If you are ready to get started contributing to the Zowe Documentation repository:

Verify that you are familiar with the concepts in Before You Get Started.

Familiarize yourself with the Zowe documentation repository.

Verify that you can open a pull request and review changes.

Open an issue for Zowe documentation if you find a problem.

Read the documentation style guide.

The Zowe documentation repository

https://github.com/zowe/docs-site/
https://guides.github.com/
https://slack.com/help
https://openmainframeproject.slack.com/
https://www.markdownguide.org/
https://github.com/zowe/community/blob/master/COMMITTERS.md

The Zowe documentation is managed in a GitHub repository.

Review the site's overall organization and structure

Review the help files related to your planned changes or addition

Sending a GitHub Pull Request

You can provide suggested edit to any documentation page by using the Edit this page link on top of each

page. After you make the changes, you submit updates in a pull request for the Zowe documentation team

to review and merge.

Follow these steps:

�. Click Edit this page on the page that you want to update.

�. Make the changes to the file.

�. Scroll to the end of the page and enter a brief description about your change.

�. Optional: Enter an extended description.

�. Select Propose file change.

�. Select Create pull request.

Opening an issue for Zowe documentation

You can request the documentation to be improved or clarified, report an error, or submit suggestions and

ideas by opening an issue in GitHub for the Zowe documentation team to address. The team tracks the

issues and works to address your feedback.

Follow these steps:

�. Click the Open doc issue link at the top of the page.

�. Enter the details of the issue.

�. Click Submit new issue.

Documentation style guide

This section gives writing style guidelines for the Zowe documentation.

https://github.com/zowe/docs-site

Headings and titles

Technical elements

Tone

Word usage

Graphics

Abbreviations

Structure and format

Headings and titles

Use sentence-style capitalization for headings

Capitalize only the initial letter of the first word in the text and other words that require capitalization, such as

proper nouns. Examples of proper nouns include the names of specific people, places, companies,

languages, protocols, and products.

Example: Verifying that your system meets the software requirements.

For tasks and procedures, use gerunds for headings.

Example:

Building an API response

Setting the active build configuration

For conceptual and reference information, use noun phrases for headings.

Example:

Query language

Platform and application integration

Use headline-style capitalization for only these items:

Titles of books, CDs, videos, and stand-alone information units.

Example:

Installation and User's Guide

Quick Start Guides or discrete sets of product documentation

Technical elements

Variables

Style:

Italic when used outside of code examples,

Example: myHost

If wrap using angle brackets <> within code examples, italic font is not supported.

Example:

put <pax-file-name>.pax

Where pax-file-name is a variable that indicates the full name of the PAX file you download. For

example, zoe-0.8.1.pax.

Message text and prompts to the user

Style: Put messages in quotation marks.

Example: "The file does not exist."

Code and code examples

Style: Monospace

Example: java -version

Command names, and names of macros, programs, and utilities that you can type as commands

Style: Monospace

Example: Use the BROWSE command.

Interface controls

Categories: check boxes, containers, fields, folders, icons, items inside list boxes, labels (such as Note:),

links, list boxes, menu choices, menu names, multicolumn lists, property sheets, push buttons, radio

buttons, spin buttons, and Tabs

Style: Bold

Example: From the Language menu, click the language that you want to use. The default selection is

English.

Directory names

Style: Monospace

Example: Move the install.exe file into the newuser directory.

File names, file extensions, and script names

Style: Monospace

Example:

Run the install.exe file.

Extract all the data from the .zip file.

Search or query terms

Style: Monospace

Example: In the Search field, enter Zowe .

Citations that are not links

Categories: Chapter titles and section titles, entries within a blog, references to industry standards, and topic

titles in IBM Knowledge Center

Style: Double quotation marks

Example:

See the "Measuring the true performance of a cloud" entry in the blog.

For installation information, see "Installing the product".

Tone

Use simple present tense rather than future or past tense, as much as possible.

Example:

✔ The API returns a promise.

❌ The API will return a promise.

Use simple past tense if past tense is needed.

Example:

✔ The limit was exceeded.

❌ The limit has been exceeded.

Use active voice as much as possible

Example:

✔ In the Limits window, specify the minimum and maximum values.

❌ The Limits window is used to specify the minimum and maximum values.

Exceptions: Passive voice is acceptable when any of these conditions are true:

The system performs the action.

It is more appropriate to focus on the receiver of the action.

You want to avoid blaming the user for an error, such as in an error message.

The information is clearer in passive voice.

Example:

✔ The file was deleted.

❌ You deleted the file.

Using second person such as "you" instead of first person such as "we" and "our".

In most cases, use second person ("you") to speak directly to the reader.

End sentences with prepositions selectively

Use a preposition at the end of a sentence to avoid an awkward or stilted construction.

Example:

✔ Click the item that you want to search for.

❌ Click the item for which you want to search.

Avoid anthropomorphism

Focus technical information on users and their actions, not on a product and its actions.

Example:

✔ User focus: On the Replicator page, you can synchronize your local database with replica databases.

❌ Product focus: The Replicator page lets you synchronize your local database with replica databases.

Avoid complex sentences that overuse punctuation such as commas and semicolons.

Word usage

Note headings such as Note, Important, and Tip should be formatted using the lower case and bold
format.

Example:

Note:

Important!

Tip:

Use of "following"

For whatever list or steps we are introducing, the word "following" should precede a noun.

Example:

Before a procedure, use "Follow these steps:"

The <component_name> supports the following use cases:

Before you install Zowe, review the following prerequisite installation tasks:

Avoid ending the sentence with "following".

Example:

❌ Complete the following.

✔ Complete the following tasks.

Use a consistent style for referring to version numbers.

When talking about a specific version, capitalize the first letter of Version.

Example:

✔ Java Version 8.1 or Java V8.1

❌ Java version 8.1, Java 8.1, or Java v8.1

When just talking about version, use "version" in lower case.

Example: Use the latest version of Java.

Avoid "may"

Use "can" to indicate ability, or use "might" to indicate possibility.

Example:

Indicating ability:

✔ You can use the command line interface to update your application."

❌ "You may use the command line interface to update your application."

Indicating possibility:

✔ "You might need more advanced features when you are integrating with another application. "

❌ "You may need more advanced features when you are integrating with another application."

Use "issue" when you want to say "run/enter" a command.

Example: At a command prompt, issue the following command:

Abbreviations

Do not use an abbreviation as a noun unless the sentence makes sense when you substitute the
spelled-out form of the term.

Example:

❌ The tutorials are available as PDFs. [portable document formats]

✔ The tutorials are available as PDF files.

Do not use abbreviations as verbs.

Example:

❌ You can FTP the files to the server.

✔ You can use the FTP command to send the files to the server.

Do not use Latin abbreviations.

Use their English equivalents instead. Latin abbreviations are sometimes misunderstood.

Latin English equivalent

e.g. for example

etc.

and so on.

When you list a clear sequence of elements such as "1, 2, 3, and so on" and "Monday, Tuesday,

Wednesday, and so on." Otherwise, rewrite the sentence to replace "etc." with something more

descriptive such as "and other output."

i.e. that is

Spell out the full name and its abbreviation when the word appears for the first time. Use
abbreviations in the texts that follow.

Example: Mainframe Virtual Desktop (MVD)

Structure and format

Add "More information" to link to useful resources or related topics at the end of topics where necessary.

Word usage

The following table alphabetically lists the common used words and their usage guidelines.

Do Don't

application app

Capitalize "Server" when it's part of the product

name

Java java

IBM z/OS Management Facility (z/OSMF)

z/OSMF
zosmf (unless used in syntax)

ID id

PAX pax

personal computer

PC

server

machine

later

higher

Do not use to describe versions of software or fix

packs.

macOS MacOS

Node.js
node.js

Nodejs

Do Don't

plug-in plugin

REXX Rexx

UNIX System Services

z/OS UNIX System Services
USS

zLUX
ZLUX

zLux

Version: v2.2.x LTS

Zowe CLI command reference guide

View detailed documentation on commands, actions, and options in Zowe CLI. You can read an interactive

online version, download a PDF document, or download a ZIP file containing the HTML for the online version.

Currently, this reference documentation only contains the web help for the Zowe CLI core component and

CLI plug-ins maintained by Zowe. As third-party plug-ins are approved under the Zowe V2 LTS

Conformance Program and contribute their web help to Zowe, we will update the documentation

accordingly. To view the web help for V1 conformant plug-ins, click the version drop-menu on the top right

corner of this page and click the link to any previous v1.xx.x version of this page.

Browse online

Download CLI reference in PDF format

Download CLI reference in ZIP format

https://docs.zowe.org/v2.2.x/web_help/index.html
https://docs.zowe.org/v2.2.x/CLIReference_Zowe.pdf
https://docs.zowe.org/v2.2.x/zowe_web_help.zip

Version: v2.2.x LTS

Zowe API reference

Find and learn about the Zowe APIs that you can use.

REST API for the Data sets and z/OS Unix Files Services

REST API for the API Gateway service

REST API for the JES Jobs Service

REST API for ZLUX Plug-in

https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/datasets.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/gateway.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/jobs.json
https://petstore.swagger.io/?url=https://raw.githubusercontent.com/zowe/docs-site/docs-staging/api_definitions/zlux-plugin.json

Version: v2.2.x LTS

zwe certificate keyring-jcl clean

zwe > certificate > keyring-jcl > clean

Description

Remove Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--ds-prefix string yes

--jcllib string yes

--security-dry-run boolean no

--security-product string no

--keyring-owner string yes

--keyring-name string yes

--alias -a string yes

--ca-alias -ca string yes

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean/zwe-certificate-keyring-jcl
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean/zwe-certificate-keyring-jcl-clean

Full name Alias Type Required Help message

--ignore-security-failures boolean no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0176E 176 Failed to clean up Zowe keyring "%s".

Inherited from parent command

Error code
Exit

code
Error message

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate keyring-jcl connect

zwe > certificate > keyring-jcl > connect

Description

Connect existing certificate to Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--ds-prefix string yes

--jcllib string yes

--security-dry-run boolean no

--security-product string no

--keyring-owner string yes

--keyring-name string yes

--trust-cas string no

--connect-user string yes

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-connect/zwe-certificate-keyring-jcl
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-connect/zwe-certificate-keyring-jcl-connect

Full name Alias Type Required Help message

--connect-label string yes

--trust-zosmf boolean no

--zosmf-ca string no

--zosmf-user string no

--ignore-security-failures boolean no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0175E 175 Failed to connect existing certificate to Zowe keyring "%s".

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

Error code
Exit

code
Error message

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

Error code
Exit

code
Error message

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate keyring-jcl generate

zwe > certificate > keyring-jcl > generate

Description

Generate new set of certificate in Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--ds-prefix string yes

--jcllib string yes

--security-dry-run boolean no

--security-product string no

--keyring-owner string yes

--keyring-name string yes

--domains -d string yes

--alias -a string yes

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-generate/zwe-certificate-keyring-jcl
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-generate/zwe-certificate-keyring-jcl-generate

Full name Alias Type Required Help message

--ca-alias -ca string yes

--common-name -cn string no

--org-unit string no

--org string no

--locality string no

--state string no

--country string no

--validity string no

--trust-cas string no

--trust-zosmf boolean no

--zosmf-ca string no

--zosmf-user string no

--ignore-security-failures boolean no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

Full name Alias Type Required Help message

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0174E 174 Failed to generate certificate in Zowe keyring "%s".

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate keyring-jcl import-ds

zwe > certificate > keyring-jcl > import-ds

Description

Import certificate stored in MVS data set into Zowe keyring.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--dataset-prefix,--ds-prefix string yes

--jcllib string yes

--security-dry-run boolean no

--security-product string no

--keyring-owner string yes

--keyring-name string yes

--alias -a string yes

--trust-cas string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-import-ds/zwe-certificate-keyring-jcl
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-import-ds/zwe-certificate-keyring-jcl-import-ds

Full name Alias Type Required Help message

--trust-zosmf boolean no

--zosmf-ca string no

--zosmf-user string no

--import-ds-name string yes

--import-ds-password string yes

--ignore-security-failures boolean no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

Error code Exit code Error message

ZWEL0173E 173 Failed to import certificate to Zowe keyring "%s".

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

Error code
Exit

code
Error message

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

Error code
Exit

code
Error message

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate keyring-jcl

zwe > certificate > keyring-jcl

Sub-commands

clean

connect

generate

import-ds

Description

Manage z/OS Keyring with JCL.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-clean
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-connect
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-generate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl-import-ds

Full name Alias Type Required Help message

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate pkcs12 create ca

zwe > certificate > pkcs12 > create > ca

Description

Create a new PKCS12 format certificate authority.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--alias -a string yes

--password -p string yes

--common-name -cn string no

--org-unit string no

--org string no

--locality string no

--state string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-ca/zwe-certificate-pkcs12-create
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-ca/zwe-certificate-pkcs12-create-ca

Full name Alias Type Required Help message

--country string no

--validity string no

Inherited from parent command

Full name Alias Type Required Help message

--keystore-dir -d string yes

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten during configuration.

ZWEL0158E 158 %s already exists.

ZWEL0168E 168 Failed to create certificate authority %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

Error code
Exit

code
Error message

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

Error code
Exit

code
Error message

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate pkcs12 create cert

zwe > certificate > pkcs12 > create > cert

Description

Create a new PKCS12 format certificate.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--keystore -k string yes

--alias -a string yes

--password -p string yes

--common-name -cn string no

--domains -d string no

--ca-alias string yes

--ca-password string yes

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-cert/zwe-certificate-pkcs12-create
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-cert/zwe-certificate-pkcs12-create-cert

Full name Alias Type Required Help message

--org-unit string no

--org string no

--locality string no

--state string no

--country string no

--validity string no

--key-usage string no

--extended-key-usage string no

Inherited from parent command

Full name Alias Type Required Help message

--keystore-dir -d string yes

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

Full name Alias Type Required Help message

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten during configuration.

ZWEL0158E 158 %s already exists.

ZWEL0169E 169 Failed to create certificate "%s".

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

Error code
Exit

code
Error message

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate pkcs12 create

zwe > certificate > pkcs12 > create

Sub-commands

ca

cert

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore-dir -d string yes

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create/zwe-certificate-pkcs12-create
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-ca
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create-cert

Full name Alias Type Required Help message

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

Error code
Exit

code
Error message

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate pkcs12 export

zwe > certificate > pkcs12 > export

Description

Export PKCS12 keystore as PEM files.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore -f string yes

--password -p string yes

--private-keys string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-export/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-export/zwe-certificate-pkcs12-export

Full name Alias Type Required Help message

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0178E 178 Failed to export PKCS12 keystore %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate pkcs12 import

zwe > certificate > pkcs12 > import

Description

Import certificate and/or certificate authorities into PKCS12 keystore.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore -f string yes

--password -p string yes

--alias -a string no

--source-keystore -sf string no

--source-password -sp string no

--source-alias -sa string no

--trust-cas string no

Inherited from parent command

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-import/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-import/zwe-certificate-pkcs12-import

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0179E 179 Failed to import certificate (authorities) into keystore %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

Error code
Exit

code
Error message

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

Error code
Exit

code
Error message

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate pkcs12 lock

zwe > certificate > pkcs12 > lock

Description

This command will lock the keystore directory to only be accessible by specified user group.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--keystore-dir -d string yes

--user string yes

--group string yes

--group-permission string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-lock/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-lock/zwe-certificate-pkcs12-lock

Full name Alias Type Required Help message

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0177E 177 Failed to lock keystore directory %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate pkcs12 trust-service

zwe > certificate > pkcs12 > trust-service

Description

This command can detect and trust any service by importing the certificate into truststore.

NOTE: the service must be online and accessible.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--service-name -n string yes

--keystore-dir -d string yes

--keystore -k string yes

--password -p string yes

--host string yes

--port string yes

--alias -a string yes

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-trust-service/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-trust-service/zwe-certificate-pkcs12-trust-service

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0300W %s already exists. This %s will be overwritten during configuration.

ZWEL0170E 170 Failed to trust service "%s".

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

Error code
Exit

code
Error message

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit

code
Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate pkcs12

zwe > certificate > pkcs12

Sub-commands

create

export

import

lock

trust-service

Description

Manage PKCS12 format keystore and truststore.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/create/zwe-certificate-pkcs12-create
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-export
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-import
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-lock
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12-trust-service

Full name Alias Type Required Help message

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

Error code
Exit

code
Error message

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate verify-service

zwe > certificate > verify-service

Description

This command can verify if the service certificate is valid by checking the certificate Common Name (CN)

and Subject Alternate Name (SAN).

NOTE: the service must be online and accessible.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--host string yes

--port string yes

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate-verify-service/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate-verify-service/zwe-certificate-verify-service

Full name Alias Type Required Help message

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0171E 171 Failed to verify certificate (CN and SAN) of service "%s".

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe certificate

zwe > certificate

Sub-commands

keyring-jcl

pkcs12

verify-service

Description

Set of commands to help you manage certificates.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/keyring-jcl/zwe-certificate-keyring-jcl
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/pkcs12/zwe-certificate-pkcs12
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate-verify-service

Full name Alias Type Required Help message

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

Error code
Exit

code
Error message

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe components install extract

zwe > components > install > extract

Description

Extract module package and lay down to target directory.

NOTE: this sub-command will be automatically executed by zwe components install , so usually you

don't need to execute this manually.

Examples

Parameters

Full name Alias Type Required Help message

--component-file,--component -o string yes

--auto-encoding -e string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-extract/zwe-components-install
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-extract/zwe-components-install-extract

Full name Alias Type Required Help message

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0153E 153 Cannot install Zowe component to system root directory.

ZWEL0154E 154 Temporary directory is empty.

ZWEL0155E 155 Component %s already exists in %s.

ZWEL0167E 167 Cannot find component name from %s package manifest.

Inherited from parent command

Error code
Exit

code
Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180
Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe

YAML configuration file.

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

Error code
Exit

code
Error message

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe components install process-hook

zwe > components > install > process-hook

Description

Process module install hook if exists.

NOTE: this sub-command will be automatically executed by zwe components install , so usually you

don't need to execute this manually.

Examples

Parameters

Full name Alias Type Required Help message

--component-name -n string yes

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-process-hook/zwe-components-install
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-process-hook/zwe-components-install-process-hook

Full name Alias Type Required Help message

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180
Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe

YAML configuration file.

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe components install

zwe > components > install

Sub-commands

extract

process-hook

Description

Install a Zowe module.

IMPORTANT NOTES, by default, this command will enable the component globally by modifying your YAML

configuration. You can pass --skip-enable to disable this behavior.

Examples

Parameters only for this command

Full name Alias Type Required Help message

--component-file,--component -o string yes

--auto-encoding -e string no

--skip-enable boolean no

Parameters

Inherited from parent command

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install/zwe-components-install
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-extract
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install-process-hook

Full name Alias Type Required Help messageFull name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code
Exit

code
Error message

ZWEL0156E 156 Component name is not initialized after extract step.

ZWEL0180E 180
Zowe extension directory (zowe.extensionDirectory) is not defined in Zowe

YAML configuration file.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

Error code
Exit

code
Error message

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe components disable

zwe > components > disable

Description

Disable a Zowe component.

IMPORTANT NOTES, this command will modify your YAML configuration.

Examples

Parameters

Full name Alias Type Required Help message

--component-name,--component -o string yes

--ha-instance -i string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable/zwe-components
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable/zwe-components-disable

Full name Alias Type Required Help message

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0152E 152 Cannot find component %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe components enable

zwe > components > enable

Description

Enable a Zowe component.

IMPORTANT NOTES, this command will modify your YAML configuration.

Examples

Parameters

Full name Alias Type Required Help message

--component-name,--component -o string yes

--ha-instance -i string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable/zwe-components
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable/zwe-components-enable

Full name Alias Type Required Help message

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0152E 152 Cannot find component %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe components

zwe > components

Sub-commands

disable

enable

install

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components/zwe-components
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components-disable
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components-enable
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/install/zwe-components-install

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit

code
Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

Error code
Exit

code
Error message

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe init apfauth

zwe > init > apfauth

Description

This command will APF authorize load library for you.

NOTE: You require proper permission to run APF authorize command.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWEAUTH data set is installed.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If it's

not defined, SZWEAUTH from zowe.setup.dataset.prefix data set will be APF authorized.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe

ZIS plugins into this load library.

Examples

Parameters

Full name Alias Type Required Help message

--security-dry-run boolean no

--ignore-security-failures boolean no

Inherited from parent command

Full name Alias Type Required Help message

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth/zwe-init-apfauth

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--skip-security-setup boolean no

--security-dry-run boolean no

--ignore-security-failures boolean no

--update-config boolean no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

Inherited from parent command

Error code
Exit

code
Error messageError code

Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe init certificate

zwe > init > certificate

Description

This command will generate certificate used by Zowe services.

If you specify --update-config with this command, these configurations could be written back to your

Zowe YAML configuration file:

zowe.certificate based on your zowe.setup.certificate configuration.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.certificate.type is the type of certificate. Valid values are "PKCS12" (USS

keystore) or "JCERACFKS" (z/OS keyring).

zowe.setup.certificate.dname is the distinguished name of the certificate. You can define

caCommonName , commonName , orgUnit , org , locality , state , and / or country .

These configurations are optional.

zowe.setup.certificate.validity is the validity days of the certificate. This is optional.

zowe.setup.certificate.san is the Subject Alternative Name (s) of the certificate if they

are different from zowe.externalDomains . Please note, for `JCERACFKS`` type, with limitation of

RACDCERT command, this should contain exact one hostname (domain) and one IP address.

zowe.setup.certificate.importCertificateAuthorities is the list of certificate authorities

will be imported to Zowe PKCS12 keystore or JCERACFKS keyring. Please note, for JCERACFKS type,

only maximum 2 CAs is supported. If you are using PKCS12 certificate, this should be USS files in PEM

format. If you are using JCERACFKS certificate, this should be certificate labels on the z/OS system.

zOSMF.host and zOSMF.port is the z/OSMF service information. This is required if you are using

z/OSMF as authentication service.

zowe.verifyCertificates indicates how Zowe should validate the certificate of services

registered under Zowe APIML. Valid values are "STRICT", "NONSTRICT" or "DISABLED". If this is

"STRICT", this command will try to validate the z/OSMF service certificate if z/OSMF is defined.

For PKCS12 certificate users,

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate/zwe-init-certificate

zowe.setup.certificate.pkcs12.directory is the directory where you plan to store the

PKCS12 keystore and truststore. This is required if zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock is a boolean configuration to tell if we should lock the

PKCS12 keystore directory only for Zowe runtime user and group. Default value is true.

zowe.setup.security.groups.admin and zowe.setup.security.users.zowe will be the

default owner of keystore directory.

You can also define name , password , caAlias and caPassword under

zowe.setup.certificate.pkcs12 to customized keystore and truststore. These configurations

are optional, but it is recommended to update them from default values.

Define zowe.setup.certificate.pkcs12.import.keystore if you already acquired certificate

from other CA, stored them in PKCS12 format, and want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password is the password for keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore . After imported, the certificate will be

saved as alias specified in zowe.setup.certificate.pkcs12.name .

For JCERACFKS certificate (z/OS keyring) users,

zowe.setup.certificate.keyring.owner is the keyring owner. It's optional and default value is

zowe.setup.security.users.zowe . If it's also not defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name is the keyring name will be created on z/OS. This is

required if zowe.setup.certificate.type is JCERACFKS .

If you want to let Zowe to generate new certificate,

You can also customize label and caLabel under zowe.setup.certificate.keyring if

you want to generate new certificate. Default value of label is localhost and default value of

caLabel is localca .

If you want to import certificate stored in MVS data set into Zowe keyring,

zowe.setup.certificate.keyring.connect.dsName is required in this case. It tells Zowe

the data set where the certificate stored.

zowe.setup.certificate.keyring.connect.password is the password when importing

the certificate.

The certificate will be imported with label defined in

zowe.setup.certificate.keyring.label .

If you want to connect existing certificate into Zowe keyring,

zowe.setup.certificate.keyring.connect.user is required and tells Zowe the owner of

existing certificate. This field can have value of SITE .

zowe.setup.certificate.keyring.connect.label is also required and tells Zowe the

label of existing certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided,

Zowe will try to trust z/OSMF certificate.

If you are using RACF security manager, Zowe will try to automatically detect the z/OSMF CA

based on certificate owner specified by zowe.setup.certificate.keyring.zOSMF.user .

Default value of this field is IZUSVR . If the automatic detection failed, you will need to define

zowe.setup.certificate.keyring.zOSMF.ca indicates what is the label of z/OSMF root

certificate authority.

If you are using ACF2 or TSS (Top Secret) security manager,

zowe.setup.certificate.keyring.zOSMF.ca is required to indicates what is the label of

z/OSMF root certificate authority.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--update-config boolean no

--ignore-security-failures boolean no

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--skip-security-setup boolean no

Full name Alias Type Required Help message

--security-dry-run boolean no

--ignore-security-failures boolean no

--update-config boolean no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code
Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0164E 164
Value of %s (%s) defined in Zowe YAML configuration file is invalid. Valid

values are %s.

Inherited from parent command

Error code
Exit

code
Error messageError code

Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe init mvs

zwe > init > mvs

Description

This command will prepare Zowe custom data sets.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP and SZWEAUTH data sets are installed.

Below data sets will be initialized by this command:

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may

generate sample PARMLIB members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate

sample JCLs and put into this data set.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this

is defined, members of SZWEAUTH will be copied over to this data set. This loadlib requires APF

authorize.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe

ZIS plugins into this load library. This loadlib requires APF authorize.

NOTE: Existing members in custom data sets will not be overwritten by default. You can pass --allow-

overwrite parameters to force update.

Examples

Parameters

Full name Alias Type Required Help message

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs/zwe-init-mvs

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--skip-security-setup boolean no

--security-dry-run boolean no

--ignore-security-failures boolean no

--update-config boolean no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code
Exit

code
Error messageError code

Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W
%s already exists. This data set member will be overwritten during

configuration.

ZWEL0301W
%s already exists and will not be overwritten. For upgrades, you must use --

allow-overwrite.

ZWEL0158E 158 %s already exists.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe init security

zwe > init > security

Description

This command will run ZWESECUR jcl.

NOTE: You require proper permission to run security configuration.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed,

zowe.setup.dataset.jcllib is the custom JCL library. Zowe will create customized ZWESECUR

JCL here before applying it.

zowe.setup.security.product is security product. Can be RACF , ACF2 , or TSS . This

configuration is optional. Default value is RACF .

zowe.setup.security.groups.admin is the group for Zowe administrators. This configuration is

optional. Default value is ZWEADMIN .

zowe.setup.security.groups.stc is the group for Zowe started tasks. This configuration is

optional. Default value is ZWEADMIN .

zowe.setup.security.groups.sysProg is system programmer user ID/group. This configuration

is optional. Default value is ZWEADMIN .

zowe.setup.security.users.zowe is the userid for Zowe started task. This configuration is

optional. Default value is ZWESVUSR .

zowe.setup.security.users.zis is userid for ZIS started task. This configuration is optional.

Default value is ZWESIUSR .

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional.

Default value is ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default

value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional.

Default value is ZWESASTC .

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-security/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-security/zwe-init-security

Examples

Parameters

Full name Alias Type Required Help message

--security-dry-run boolean no

--ignore-security-failures boolean no

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--skip-security-setup boolean no

--security-dry-run boolean no

--ignore-security-failures boolean no

--update-config boolean no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

Full name Alias Type Required Help message

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

ZWEL0161E 161 Failed to run JCL %s.

ZWEL0161W Failed to run JCL %s.

ZWEL0162E 162 Failed to find job %s result.

ZWEL0162W Failed to find job %s result.

ZWEL0163E 163 Job %s ends with code %s.

ZWEL0163W Job %s ends with code %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

Error code
Exit

code
Error message

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit

code
Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe init stc

zwe > init > stc

Description

This command will copy Zowe started tasks ZWESLSTC , ZWESISTC , ZWESASTC to your target

procedure library.

NOTE: You require proper permission to write to target procedure library.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed,

zowe.setup.dataset.proclib shows what is the target procedure library.

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may

generate sample PARMLIB members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe will create temporary started tasks

here before putting into target procedure library.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this

is not defined, SZWEAUTH from zowe.setup.dataset.prefix data set will be used as STEPLIB in

STCs.

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional.

Default value is ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default

value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional.

Default value is ZWESASTC .

Examples

Parameters

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-stc/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-stc/zwe-init-stc

Full name Alias Type Required Help messageFull name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

Inherited from parent command

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--skip-security-setup boolean no

--security-dry-run boolean no

--ignore-security-failures boolean no

--update-config boolean no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code
Exit

code
Error messageError code

Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W
%s already exists. This data set member will be overwritten during

configuration.

ZWEL0301W
%s already exists and will not be overwritten. For upgrades, you must use --

allow-overwrite.

ZWEL0143E 143 Cannot find data set member %s. You may need to re-run zwe install .

ZWEL0158E 158 %s already exists.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe init vsam

zwe > init > vsam

Description

This command will run ZWECSVSM jcl to create VSAM data set for Zowe APIML Caching Service.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWESAMP data set is installed,

zowe.setup.dataset.jcllib is the custom JCL library. Zowe will create customized ZWESECUR

JCL here before applying it.

zowe.setup.vsam.mode indicates whether the VSAM will utilize Record Level Sharing (RLS)

services or not. Valid value is RLS or NONRLS .

zowe.setup.vsam.volume indicates the name of volume. This field is required if VSAM mode is

NONRLS .

zowe.setup.vsam.storageClass indicates the name of RLS storage class. This field is required if

VSAM mode is RLS .

components.caching-service.storage.mode indicates what storage Zowe Caching Service will

use. Only if this value is VSAM , this command will try to create VSAM data set.

components.caching-service.storage.vsam.name defines the VSAM data set name.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

Inherited from parent command

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam/zwe-init-vsam

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--skip-security-setup boolean no

--security-dry-run boolean no

--ignore-security-failures boolean no

--update-config boolean no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code
Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W
%s already exists. This data set member will be overwritten during

configuration.

Error code
Exit

code
Error message

ZWEL0301W
%s already exists and will not be overwritten. For upgrades, you must use --

allow-overwrite.

ZWEL0158E 158 %s already exists.

ZWEL0159E 159 Failed to modify %s.

ZWEL0160E 160 Failed to write to %s. Please check if target data set is opened by others.

ZWEL0161E 161 Failed to run JCL %s.

ZWEL0162E 162 Failed to find job %s result.

ZWEL0163E 163 Job %s ends with code %s.

ZWEL0301W 0 Zowe Caching Service is not configured to use VSAM. Command skipped.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe init

zwe > init

Sub-commands

apfauth

certificate

mvs

security

stc

vsam

Description

Init Zowe instance based on zowe.yaml configuration.

You can find an example zowe.yaml in Zowe runtime directory folder.

This command will run these sub-commands in sequence:

zwe init mvs

zwe init vsam

zwe init apfauth

zwe init security

zwe init certificate

zwe init stc

If you pass --skip-security-setup with this command, zwe init apfauth and zwe init

security steps will be skipped.

If you pass --update-config with this command, these configurations could be written back to your

Zowe YAML configuration file:

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-apfauth
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-mvs
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-security
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-stc
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init-vsam

zowe.runtimeDirectory based on where your zwe command is located, and if it is not defined,

zowe.certificate based on your zowe.setup.certificate configuration,

java.home based on your current JAVA_HOME or automatic detection,

node.home based on your current NODE_HOME or automatic detection.

IMPORTANT, if you modify any of the values below, it's suggested to re-run relevant zwe init command

to make them taking effect.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.dataset.prefix shows where the SZWEAUTH data set is installed.

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may

generate sample PARMLIB members and stores here.

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate

sample JCLs and put into this data set.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this

is defined, members of SZWEAUTH will be copied over to this data set and it will be APF authorized. If

it's not defined, SZWEAUTH from zowe.setup.dataset.prefix data set will be APF authorized.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe

ZIS plugins into this load library. This loadlib requires APF authorize.

zowe.setup.security.product is security product. Can be RACF , ACF2 , or TSS . This

configuration is optional. Default value is RACF .

zowe.setup.security.groups.admin is the group for Zowe administrators. This configuration is

optional. Default value is ZWEADMIN .

zowe.setup.security.groups.stc is the group for Zowe started tasks. This configuration is

optional. Default value is ZWEADMIN .

zowe.setup.security.groups.sysProg is system programmer user ID/group. This configuration

is optional. Default value is ZWEADMIN .

zowe.setup.security.users.zowe is the userid for Zowe started task. This configuration is

optional. Default value is ZWESVUSR .

zowe.setup.security.users.zis is userid for ZIS started task. This configuration is optional.

Default value is ZWESIUSR .

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional.

Default value is ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default

value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS auxiliary started task name. This configuration is optional.

Default value is ZWESASTC .

zowe.setup.certificate.type is the type of certificate. Valid values are "PKCS12" (USS

keystore) or "JCERACFKS" (z/OS keyring).

zowe.setup.certificate.dname is the distinguished name of the certificate. You can define

caCommonName , commonName , orgUnit , org , locality , state , and / or country .

These configurations are optional.

zowe.setup.certificate.validity is the validity days of the certificate. This is optional.

zowe.setup.certificate.san is the Subject Alternative Name (s) of the certificate if they

are different from zowe.externalDomains . Please note, for JCERACFKS type, with limitation of

RACDCERT command, this should contain exact one hostname (domain) and one IP address.

zowe.setup.certificate.importCertificateAuthorities is the list of certificate authorities

will be imported to Zowe PKCS12 keystore or JCERACFKS keyring. Please note, for JCERACFKS type,

only maximum 2 CAs is supported. If you are using PKCS12 certificate, this should be USS files in PEM

format. If you are using JCERACFKS certificate, this should be certificate labels on the z/OS system.

For PKCS12 certificate users,

zowe.setup.certificate.pkcs12.directory is the directory where you plan to store the

PKCS12 keystore and truststore. This is required if zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock is a boolean configuration to tell if we should lock the

PKCS12 keystore directory only for Zowe runtime user and group. Default value is true.

You can also define name , password , caAlias and caPassword under

zowe.setup.certificate.pkcs12 to customized keystore and truststore. These configurations

are optional, but it is recommended to update them from default values.

Define zowe.setup.certificate.pkcs12.import.keystore if you already acquired certificate

from other CA, stored them in PKCS12 format, and want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password is the password for keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore . After imported, the certificate will be

saved as alias specified in zowe.setup.certificate.pkcs12.name .

For JCERACFKS certificate (z/OS keyring) users,

zowe.setup.certificate.keyring.owner is the keyring owner. It's optional and default value is

zowe.setup.security.users.zowe . If it's also not defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name is the keyring name will be created on z/OS. This is

required if zowe.setup.certificate.type is JCERACFKS .

If you want to let Zowe to generate new certificate,

You can also customize label and caLabel under zowe.setup.certificate.keyring if

you want to generate new certificate. Default value of label is localhost and default value of

caLabel is localca .

If you want to import certificate stored in MVS data set into Zowe keyring,

zowe.setup.certificate.keyring.connect.dsName is required in this case. It tells Zowe

the data set where the certificate stored.

zowe.setup.certificate.keyring.connect.password is the password when importing

the certificate.

The certificate will be imported with label defined in

zowe.setup.certificate.keyring.label .

If you want to connect existing certificate into Zowe keyring,

zowe.setup.certificate.keyring.connect.user is required and tells Zowe the owner of

existing certificate. This field can have value of SITE .

zowe.setup.certificate.keyring.connect.label is also required and tells Zowe the

label of existing certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided,

Zowe will try to trust z/OSMF certificate.

If you are using RACF security manager, Zowe will try to automatically detect the z/OSMF CA

based on certificate owner specified by zowe.setup.certificate.keyring.zOSMF.user .

Default value of this field is IZUSVR . If the automatic detection failed, you will need to define

zowe.setup.certificate.keyring.zOSMF.ca indicates what is the label of z/OSMF root

certificate authority.

If you are using ACF2 or TSS (Top Secret) security manager,

zowe.setup.certificate.keyring.zOSMF.ca is required to indicates what is the label of

z/OSMF root certificate authority.

zowe.setup.vsam.mode indicates whether the VSAM will utilize Record Level Sharing (RLS)

services or not. Valid value is RLS or NONRLS .

zowe.setup.vsam.volume indicates the name of volume. This field is required if VSAM mode is

NONRLS .

zowe.setup.vsam.storageClass indicates the name of RLS storage class. This field is required if

VSAM mode is RLS .

zowe.verifyCertificates indicates how Zowe should validate the certificate of services

registered under Zowe APIML. Valid values are "STRICT", "NONSTRICT" or "DISABLED". If this is

"STRICT", this command will try to validate the z/OSMF service certificate if z/OSMF is defined.

zOSMF.host and zOSMF.port is the z/OSMF service information. This is required if you are using

z/OSMF as authentication service.

components.caching-service.storage.mode indicates what storage Zowe Caching Service will

use. Only if this value is VSAM , this command will try to create VSAM data set.

components.caching-service.storage.vsam.name defines the VSAM data set name.

Examples

Parameters

Full name Alias Type Required Help messageFull name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--skip-security-setup boolean no

--security-dry-run boolean no

--ignore-security-failures boolean no

--update-config boolean no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error messageError code

Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal config get

zwe > internal > config > get

Description

Return value of a configuration defined in YAML configuration.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no

--path -p string yes

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-get/zwe-internal-config
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-get/zwe-internal-config-get

Full name Alias Type Required Help message

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal config set

zwe > internal > config > set

Description

Set value of a configuration and write back to the YAML configuration.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no

--path -p string yes

--value -e string no

--string boolean no

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-set/zwe-internal-config
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-set/zwe-internal-config-set

Full name Alias Type Required Help message

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal config

zwe > internal > config

Sub-commands

get

set

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config/zwe-internal-config
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-get
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config-set

Full name Alias Type Required Help message

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

Error code
Exit

code
Error message

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

Error code
Exit

code
Error message

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal container cleanup

zwe > internal > container > cleanup

Description

Clean up Kubernetes runtime.

Currently this command will remove all outdated static definitions.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-cleanup/zwe-internal-container
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-cleanup/zwe-internal-container-cleanup

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

Error code
Exit

code
Error message

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

Error code
Exit

code
Error message

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal container init

zwe > internal > container > init

Description

Initialize special runtime environment required by Zowe containerization.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-init/zwe-internal-container
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-init/zwe-internal-container-init

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

Error code
Exit

code
Error message

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

Error code
Exit

code
Error message

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal container prestop

zwe > internal > container > prestop

Description

Actions will be executed before a service is stopped.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-prestop/zwe-internal-container
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-prestop/zwe-internal-container-prestop

Full name Alias Type Required Help message

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

Error code
Exit

code
Error message

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

Error code
Exit

code
Error message

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal container

zwe > internal > container

Sub-commands

cleanup

init

prestop

Description

Internal commands to help manager workloads in Zowe containers.

NOTE: these internal commands are only used by Zowe Containerization use scenario.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container/zwe-internal-container
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-cleanup
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container-prestop

Full name Alias Type Required Help message

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

Error code
Exit

code
Error message

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal start component

zwe > internal > start > component

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--component -o string yes

--run-in-background boolean no

Inherited from parent command

Full name Alias Type Required Help message

--ha-instance -i string no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-component/zwe-internal-start
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-component/zwe-internal-start-component

Full name Alias Type Required Help message

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

Error code
Exit

code
Error message

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

Error code
Exit

code
Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal start prepare

zwe > internal > start > prepare

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--ha-instance -i string no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-prepare/zwe-internal-start
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-prepare/zwe-internal-start-prepare

Error code
Exit

code
Error message

ZWEL0141E 141 User %s does not have write permission on %s.

ZWEL0302W
You are running the Zowe process under user id IZUSVR. This is not

recommended and may impact your z/OS MF server negatively.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

Error code
Exit

code
Error message

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

Error code
Exit

code
Error message

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal start

zwe > internal > start

Sub-commands

component

prepare

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start/zwe-internal-start
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-component
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start-prepare

Full name Alias Type Required Help message

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

Error code
Exit

code
Error message

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal get-launch-components

zwe > internal > get-launch-components

Description

Return component list should be started in specified HA instance.

NOTE: This command only returns a list of enabled components with start command.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe-internal-get-launch-components/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe-internal-get-launch-components/zwe-internal-get-launch-components

Full name Alias Type Required Help message

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

Error code
Exit

code
Error message

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe internal

zwe > internal

Sub-commands

config

container

get-launch-components

start

Description

Commands will be executed internally by other Zowe commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe-internal/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/config/zwe-internal-config
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/container/zwe-internal-container
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe-internal-get-launch-components
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/start/zwe-internal-start

Full name Alias Type Required Help message

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

Error code
Exit

code
Error message

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe migrate for kubernetes

zwe > migrate > for > kubernetes

Description

Migrate your YAML configuration on z/OS for Kubernetes.

This script will create zowe-config ConfigMap and zowe-certificates-secret Secret for

Kubernetes deployment.

To manually create zowe-config ConfigMap , the data section should contain a key zowe.yaml

with string value of your zowe.yaml used on z/OS.

To manually create zowe-certificates-secret Secret , you need 2 entries under data section:

keystore.p12 : which is base64 encoded PKCS#12 keystore,

truststore.p12 : which is base64 encoded PKCS#12 truststore.

And 3 entries under stringData section:

keystore.key : is the PEM format of certificate private key,

keystore.cer : is the PEM format of the certificate,

ca.cer : is the PEM format of the certificate authority.

In order to make certificates working in Kubernetes, the certificate you are using should have these domains

defined in certificate Subject Alt Name (SAN):

your external domains to access Zowe APIML Gateway Service running in Kubernetes cluster,

*.<k8s-namespace>.svc.<k8s-cluster-name>

*.discovery-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.gateway-service.<k8s-namespace>.svc.<k8s-cluster-name>

*.<k8s-namespace>.pod.<k8s-cluster-name>

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes/zwe-migrate-for
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes/zwe-migrate-for-kubernetes

<k8s-namespace> is the Kubernetes Namespace you installed Zowe into. And <k8s-cluster-name>

is the Kubernetes cluster name, which usually should be cluster.local .

Without the additional domains in SAN, you may see warnings/errors related to certificate validation.

IMPORTANT: It's not recommended to disable zowe.verifyCertificates .

NOTES: With below conditions, this migration script will re-generate a new set of certificate for you with

proper domain names listed above.

you use zwe init command to initialize Zowe,

use PKCS#12 format keystore by defining zowe.setup.certificate.type: PKCS12

did not define zowe.setup.certificate.pkcs12.import.keystore and let zwe command to

generate PKCS12 keystore for you

enabled STRICT mode zowe.verifyCertificates .

Parameters

Full name Alias Type Required Help message

--domains -d string no

--external-port string no

--k8s-namespace string no

--k8s-cluster-name string no

--alias -a string no

--password -p string no

Inherited from parent command

Full name Alias Type Required Help message

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe migrate for

zwe > migrate > for

Sub-commands

kubernetes

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for/zwe-migrate-for
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for-kubernetes

Error code
Exit

code
Error messageError code

Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe migrate

zwe > migrate

Sub-commands

for

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/zwe-migrate/zwe-migrate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/for/zwe-migrate-for

Error code
Exit

code
Error messageError code

Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe sample sub deep

zwe > sample > sub > deep

Description

Sample of deep embedded sub-command.

Also inherit parameters from upper level.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful

functionalities defined in this command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.###

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--another-parameter -p boolean no

Inherited from parent command

Full name Alias Type Required Help message

--target-dir,--target -d string yes

--auto-encoding -e string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-deep/zwe-sample-sub
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-deep/zwe-sample-sub-deep

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe sample sub second

zwe > sample > sub > second

Description

Sample of second sub-command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful

functionalities defined in this command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.###

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--target-dir,--target -d string yes

--auto-encoding -e string no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-second/zwe-sample-sub
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-second/zwe-sample-sub-second

Full name Alias Type Required Help message

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe sample sub

zwe > sample > sub

Sub-commands

deep

second

Description

A sample sub-command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful

functionalities defined in this command and sub-commands.

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Full name Alias Type Required Help message

--target-dir,--target -d string yes

--auto-encoding -e string no

Inherited from parent command

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub/zwe-sample-sub
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-deep
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub-second

Full name Alias Type Required Help messageFull name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe sample test

zwe > sample > test

Description

A sample command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful

functionalities defined in this command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.###

Inherited from parent command

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe-sample-test/zwe-sample
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe-sample-test/zwe-sample-test

Full name Alias Type Required Help message

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

Error code
Exit

code
Error message

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

Error code
Exit

code
Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe sample

zwe > sample

Sub-commands

sub

test

Description

This is a sample command.

NOTE: This command is to demonstrate how zwe command works. There are no real meaningful

functionalities defined in this command and sub-commands.

WARNING: This command is for experimental purposes and could be changed in the future releases.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe-sample/zwe-sample
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/sub/zwe-sample-sub
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe-sample-test

Full name Alias Type Required Help message

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

Error code
Exit

code
Error message

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

Error code
Exit

code
Error message

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe support verify-fingerprints

zwe > support > verify-fingerprints

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--target-dir string no

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code
Exit

code
Error message

ZWEL0113E 113 Failed to find Zowe version. Please validate your Zowe directory.

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/support/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints/zwe-support
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints/zwe-support-verify-fingerprints

Error code
Exit

code
Error message

ZWEL0150E 150 Failed to find file %s. Zowe runtimeDirectory is invalid.

ZWEL0151E 151
Failed to create temporary file %s. Please check permission or volume free

space.

ZWEL0181E 181 Failed to verify Zowe file fingerprints.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

Error code
Exit

code
Error message

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

Error code
Exit

code
Error message

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe support

zwe > support

Sub-commands

verify-fingerprints

Description

Collect and package Zowe runtime information for support purpose.

This command will collect these information:

Environment

z/OS version

Java version

Node.js version

Zowe configurations

Zowe manifest.json

Zowe configuration file

Zowe installation logs

Zowe PKCS#12 keystore if used

Zowe temporary configuration files under <workspace>/.env

Zowe APIML static registration files under <workspace>/api-mediation/api-defs

Zowe runtime

Active running Zowe processes

Zowe job log

Zowe fingerprints and validation result

Parameters

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/support/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/support/zwe-support/zwe-support
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/support/zwe-support-verify-fingerprints

Full name Alias Type Required Help messageFull name Alias Type Required Help message

--target-dir string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

Error code
Exit

code
Error message

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

Error code
Exit

code
Error message

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe install

zwe > install

Description

After you extract Zowe convenience build, you can run this command to install MVS data sets.

If you are using SMPE build, you can skip this command since MVS data sets are already prepared during

SMPE install.

These Zowe YAML configurations showing with sample values are used:

Expected outputs:

Will create these data sets under zowe.setup.dataset.prefix definition:

SZWEAUTH contains few Zowe load modules (++PROGRAM).

SZWESAMP contains several sample configurations.

SZWEEXEC contains few utilities used by Zowe.

Examples

Parameters

Full name Alias Type Required Help message

--allow-overwrite,--allow-overwritten boolean no

--dataset-prefix,--ds-prefix string no

Inherited from parent command

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-install/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-install/zwe-install

Full name Alias Type Required Help messageFull name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code
Exit

code
Error message

ZWEL0157E 157 %s (%s) is not defined in Zowe YAML configuration file.

ZWEL0300W %s already exists. Members in this data set will be overwritten.

ZWEL0301W
%s already exists and will not be overwritten. For upgrades, you must use --

allow-overwrite.

ZWEL0158E 158 %s already exists.

Inherited from parent command

Error code
Exit

code
Error message

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

Error code
Exit

code
Error message

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

Error code
Exit

code
Error message

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe start

zwe > start

Description

Start Zowe with main started task.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional.

Default value is ZWESLSTC .

zowe.jobname is the optional customized job name to start Zowe. If it's empty, the start command

will not pass JOBNAME= option to S command.

haInstances.<ha-instance>.sysname is the SYSNAME of the target HA instance. If you pass -

-ha-instance parameter, this is the SYSNAME the start command will be routed to.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-start/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-start/zwe-start

Full name Alias Type Required Help message

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0165E 165 Failed to start job %s: %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe stop

zwe > stop

Description

Stop Zowe main job.

These Zowe YAML configurations showing with sample values are used:

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional.

Default value is ZWESLSTC .

zowe.jobname is the optional customized job name to start Zowe. If it's empty, the stop command

will try to use value of zowe.setup.security.stcs.zowe as job name to stop.

haInstances.<ha-instance>.sysname is the SYSNAME of the target HA instance. If you pass -

-ha-instance parameter, this is the SYSNAME the start command will be routed to.

Examples

Parameters

Full name Alias Type Required Help message

--ha-instance -i string no

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-stop/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-stop/zwe-stop

Full name Alias Type Required Help message

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code Exit code Error message

ZWEL0166E 166 Failed to stop job %s: %s.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

Error code
Exit

code
Error message

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

Error code
Exit

code
Error message

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe version

zwe > version

Description

Display Zowe version.

Examples

Parameters

Inherited from parent command

Full name Alias Type Required Help message

--help -h boolean no

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-version/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-version/zwe-version

Error code Exit code Error messageError code Exit code Error message

ZWEL0150E 150 Failed to find file %s. Zowe runtimeDirectory is invalid.

Inherited from parent command

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

Error code
Exit

code
Error message

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

Error code
Exit

code
Error message

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

zwe

zwe

Sub-commands

certificate

components

init

install

internal

migrate

sample

start

stop

support

version

Description

A command line utility helps you managing Zowe instance.

You can issue --help or -h to find information for all commands it supports.

Examples

Parameters

Full name Alias Type Required Help message

--help -h boolean no

https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe/zwe
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/certificate/zwe-certificate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/components/zwe-components
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/init/zwe-init
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-install
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/internal/zwe-internal
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/migrate/zwe-migrate
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/sample/zwe-sample
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-start
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-stop
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/support/zwe-support
https://docs.zowe.org/v2.2.x/appendix/zwe_server_command_reference/zwe/zwe-version

Full name Alias Type Required Help message

--debug,--verbose -v boolean no

--trace -vv boolean no

--silent -s boolean no

--log-dir,--log -l string no

--config -c string no

--configmgr boolean no

Errors

Error code
Exit

code
Error message

100
If the user pass --help or -h parameter, the zwe command always exits

with 100 code.

ZWEL0101E 101 ZWE_zowe_runtimeDirectory is not defined.

ZWEL0102E 102 Invalid parameter %s.

ZWEL0103E 103 Invalid type of parameter %s.

ZWEL0104E 104 Invalid command %s.

ZWEL0105E 105
The Zowe YAML config file is associated to Zowe runtime "%s", which is not

same as where zwe command is located.

ZWEL0106E 106 %s parameter is required.

ZWEL0107E 107 No handler defined for command %s.

Error code
Exit

code
Error message

ZWEL0108E 108 Zowe YAML config file is required.

ZWEL0109E 109 The Zowe YAML config file specified does not exist.

ZWEL0110E 110 Doesn't have write permission on %s directory.

ZWEL0111E 111 Command aborts with error.

ZWEL0112E 112
Zowe runtime environment must be prepared first with "zwe internal start

prepare" command.

ZWEL0114E 114 Reached max retries on allocating random number.

ZWEL0120E 120 This command must run on a z/OS system.

ZWEL0121E 121 Cannot find node. Please define NODE_HOME environment variable.

ZWEL0122E 122 Cannot find java. Please define JAVA_HOME environment variable.

ZWEL0123E 123 This function is only available in Zowe Containerization deployment.

ZWEL0131E 131 Cannot find key %s defined in file %s.

ZWEL0132E 132 No manifest file found in component %s.

ZWEL0133E 133 Data set %s already exists.

ZWEL0134E 134 Failed to find SMS status of data set %s.

ZWEL0135E 135 Failed to find volume of data set %s.

ZWEL0136E 136 Failed to APF authorize data set %s.

Error code
Exit

code
Error message

ZWEL0137E 137
z/OSMF root certificate authority is not provided (or cannot be detected) with

trusting z/OSMF option enabled.

ZWEL0138E 138 Failed to update key %s of file %s.

ZWEL0139E 139 Failed to create directory %s.

ZWEL0140E 140 Failed to translate Zowe configuration (%s).

ZWEL0142E 142 Failed to refresh APIML static registrations.

ZWEL0172E Component %s has %s defined but the file is missing.

ZWEL0200E Failed to copy USS file %s to MVS data set %s.

ZWEL0201E File %s does not exist.

ZWEL0202E Unable to find samplib key for %s.

ZWEL0203E Env value in key-value pair %s has not been defined.

Version: v2.2.x LTS

Zowe YAML configuration file reference

Zowe v2 uses a YAML configuration file during installation, configuration and runtime. This file is usually

referred to as zowe.yaml . YAML is a human-friendly data serialization language for all programming

languages. To learn more about YAML specifications, see https://yaml.org/.

Note: In the following sections, we refer to configuration keys by using concatenation of key names and

dots. For example, if you want to update the configuration key zowe.certificate.keystore.type with

value PKCS12 , you should set value for this entry in the zowe.yaml :

Table of Contents

High-level overview of YAML configuration file

Extract sharable configuration out of zowe.yaml

Configuration override

YAML configurations - certificate

YAML configurations - zowe

YAML configurations - java

YAML configurations - node

YAML configurations - zOSMF

YAML configurations - components

Configure component gateway

Configure component discovery

Configure component api-catalog

Configure component caching-service

Configure component app-server

Configure component zss

Configure component jobs-api

Configure component files-api

Configure component explorer-jes

Configure component explorer-mvs

Configure component explorer-uss

Configure external extension

https://yaml.org/

YAML configurations - haInstances

Auto-generated environment variables

High-level overview of YAML configuration file

The YAML configuration file has few high-level sections:

zowe
Defines global configurations specific to Zowe, including default values.

java
Defines Java configurations used by Zowe components.

node
Defines node.js configurations used by Zowe components.

zOSMF
Tells Zowe your z/OSMF configurations.

components
Defines detailed configurations for each Zowe component or extension. Each component or extension

may have a key entry under this section. For example, components.gateway is configuration for API

Mediation Layer Gateway service.

haInstances
Defines customized configurations for each High Availability (HA) instance. You should predefine all

Zowe HA instances you want to start within your Sysplex.

Extract sharable configuration out of zowe.yaml

The Zowe YAML configuration file supports a special @include annotation that can be used in any level of

the configuration. This enables you to organize your YAML configuration files and extract sharable

configurations to a separate YAML file.

For example, you can define a sharable certificate configuration file <keystore-dir>/zowe-

certificates.yaml like this:

Then in your zowe.yaml , you can import this certification file like this:

Configuration override

Inside zowe.yaml , you can define default values and they may be overridden in more granular level

configurations. This can happen in several ways:

The component can override the default certificate configuration. For the specific entry of certification

configuration, if it's not overridden, it falls back to default configurations.

Example:

App Server will use the certificate alias app-server instead of localhost from the same keystore

defined in zowe.certificate.keystore.file . And it will use the exact same truststore defined in

zowe.certificate.truststore.file .

Zowe high availability (HA) instance component configuration haInstances.<ha-

instance>.components.<component> can override global level component configurations

components.<component> . Any configuration you can find in components.<component> level

can be overridden in haInstances.<ha-instance>.components.<component> level. For

example, in this configuration:

App Server on lpar2a HA instance will not be started. On lpar2b HA instance, it will be started but

on port 28544.

YAML configurations - certificate

In Zowe YAML configuration, certificate definition shares the same format and this format can be used in

several configuration entries. For example, zowe.certificate , components.

<component>.certificate , and haInstances.<ha-instance>.components.

<component>.certificate . The certificate definition may include the following entries:

keystore.type
Defines the type of the keystore. If you are using keystore, this value usually should be PKCS12 . If you

are using keyring, this value should be JCERACFKS .

keystore.file
Defines the path of the keystore file. If you are using keyring, this should look like

safkeyring:////<keyring-owner>/<keyring-name> . For example,

safkeyring:////ZWESVUSR/ZoweKeyring .

keystore.password
Defines the password of the keystore.

keystore.alias
Represents the alias name of the certificate stored in keystore. If you are using keyring, this is the

certificate label connected to the keyring.

truststore.type
Defines the type of the truststore file. If you are using keystore, this value usually should be PKCS12 . If

you are using keyring, this value should be JCERACFKS .

truststore.file
Defines the path to the truststore file. If you are using keyring, this should look like

safkeyring:////<keyring-owner>/<keyring-name> , usually will be the same value of

keystore.file .

truststore.password
Defines the password of the truststore.

pem.key
Defines the private key file in PEM format. This can be used by applications that do not support either

PKCS12 keystore format or z/OS keyring.

pem.certificate
Defines the public key file in PEM format. This can be used by applications that do not support either

PKCS12 keystore format or z/OS keyring.

pem.certificateAuthorities
Defines certificate authorities in PEM format. This can be used by applications that do not support

either PKCS12 keystore format or z/OS keyring.

YAML configurations - zowe

The high-level configuration zowe supports these definitions:

Directories

zowe.runtimeDirectory
Tells Zowe the runtime directory where it's installed.

zowe.logDirectory
Some Zowe components write logs to file system. This tells Zowe which directory should be used to

store log files.

zowe.workspaceDirectory Tells Zowe components where they can write temporary runtime files.

zowe.extensionDirectory
Tells Zowe where you put the runtime of all your extensions.

Zowe Job

zowe.job.name
Defines the Zowe job name for the ZWESLSTC started task.

zowe.job.prefix
Defines the Zowe address space prefix for Zowe components.

Domain and port to access Zowe

zowe.externalDomains
Defines a list of external domains that will be used by the Zowe instance. This configuration is an array

of domain name strings. In Sysplex deployment, this is the DVIPA domain name defined in Sysplex

Distributor. For example,

In Kubernetes deployment, this is the domain name you will use to access your Zowe running in

Kubernetes cluster.

zowe.externalPort
Defines the port that will be exposed to external Zowe users. By default, this value is set based on Zowe

APIML Gateway port. In Sysplex deployment, this is the DVIPA port defined in Sysplex Distributor. See

Configure Sysplex Distributor for more information. In Kubernetes deployment, this is the gateway

Service port will be exposed to external.

Extra environment variables

zowe.environments
Defines extra environment variables to customize the Zowe runtime. This configuration is a list of key /

value pairs. Example:

Please be aware that variables defined here are global to all Zowe components, on all HA instances.

Certificate

zowe.certificate
Defines the northbound certificate facing Zowe users.

zowe.verifyCertificates Defines how Zowe should validate the certificates used by

components or external service(s) like z/OSMF. It can be a value of:

https://docs.zowe.org/v2.2.x/user-guide/configure-sysplex#configuring-sysplex-distributor

STRICT : This is the default value. Zowe will validate if the certificate is trusted in our trust store

and if the certificate Command Name and Subject Alternative Name (SAN)is validated. This is

recommended for the best security.

NONSTRICT : Zowe will validate if the certificate is trusted in our trust store. In this mode, Zowe

does not validate certificate Common Name and Subject Alternative Name (SAN). This option does

not have the best security but allows you to try out Zowe when you don't have permission to fix

certificate used by external services like z/OSMF.

DISABLED : This will disable certificate validation completely. This is NOT recommended for

security purpose.

Launcher and launch scripts

Launcher is the program behind ZWESLSTC started task.

zowe.launcher
The launcher section defines defaults about how the Zowe launcher should act upon components.

zowe.launcher.restartIntervals
An array of positive integers that defines how many times a component should be tried to be restarted if

it fails, and how much time to wait in seconds for that restart to succeed before retrying.

zowe.launcher.minUptime
The minimum amount of time a zowe component should be running in order to be declared as started

successfully.

zowe.launcher.shareAs
Whether or not the launcher should start components in the same address space as it. See

documentation for _BPX_SHAREAS for details.

zowe.launchScript.logLevel You can set it to debug or trace to enable different level of

debug messages from Zowe launch scripts. This may help to troubleshoot issues during Zowe start.

Setup

Zowe YAML configuration uses zowe.setup section to instruct how Zowe should be installed and

configured. This section is optional for Zowe runtime but only be used for zwe install and zwe init

commands.

zowe.setup.dataset.prefix shows where the SZWEAUTH data set is installed.

zowe.setup.dataset.parmlib is the user custom parameter library. Zowe server command may

generate sample PARMLIB members and stores here.

https://www.ibm.com/docs/en/zos/2.4.0?topic=shell-setting-bpx-shareas-bpx-spawn-script

zowe.setup.dataset.jcllib is the custom JCL library. Zowe server command may generate

sample JCLs and put into this data set.

zowe.setup.dataset.authLoadlib is the user custom APF LOADLIB. This field is optional. If this

is defined, members of SZWEAUTH will be copied over to this data set and it will be APF authorized. If

it's not defined, SZWEAUTH from zowe.setup.dataset.prefix will be APF authorized.

zowe.setup.dataset.authPluginLib is the user custom APF PLUGINLIB. You can install Zowe

ZIS plug-ins into this load library. This loadlib requires APF authorize.

zowe.setup.security.product is security product. Can be RACF , ACF2 , or TSS . This

configuration is optional. Default value is RACF .

zowe.setup.security.groups.admin is the group for Zowe administrators. This configuration is

optional. Default value is ZWEADMIN .

zowe.setup.security.groups.stc is the group for Zowe started tasks. This configuration is

optional. Default value is ZWEADMIN .

zowe.setup.security.groups.sysProg is system programmer user ID/group. This configuration

is optional. Default value is ZWEADMIN .

zowe.setup.security.users.zowe is the userid for Zowe started task. This configuration is

optional. Default value is ZWESVUSR .

zowe.setup.security.users.zis is userid for ZIS started task. This configuration is optional.

Default value is ZWESIUSR .

zowe.setup.security.stcs.zowe is Zowe started task name. This configuration is optional.

Default value is ZWESLSTC .

zowe.setup.security.stcs.zis is ZIS started task name. This configuration is optional. Default

value is ZWESISTC .

zowe.setup.security.stcs.aux is ZIS AUX started task name. This configuration is optional.

Default value is ZWESASTC .

zowe.setup.certificate.type is the type of certificate. Valid values are PKCS1 (USS keystore)

or JCERACFKS (z/OS keyring).

zowe.setup.certificate.dname is the distinguished name of the certificate. You can define

caCommonName , commonName , orgUnit , org , locality , state , and / or country .

These configurations are optional.

zowe.setup.certificate.validity is the validity days of the certificate. This is optional.

zowe.setup.certificate.san is the Subject Alternative Name (s) of the certificate if they

are different from zowe.externalDomains . Note that for JCERACFKS type, with limitation of

RACDCERT command, this should contain exact one hostname (domain) and one IP address.

zowe.setup.certificate.importCertificateAuthorities is the list of certificate authorities

will be imported to Zowe PKCS12 keystore or JCERACFKS keyring. Please note, for JCERACFKS

type, only maximum 2 CAs is supported. If you are using PKCS12 certificate, this should be USS files

in PEM format. If you are using JCERACFKS certificate, this should be certificate labels on the z/OS

system.

For PKCS12 certificate users,

zowe.setup.certificate.pkcs12.directory is the directory where you plan to store the

PKCS12 keystore and truststore. This is required if zowe.setup.certificate.type is PKCS12 .

zowe.setup.certificate.pkcs12.lock is a boolean configuration to tell if we should lock the

PKCS12 keystore directory only for Zowe runtime user and group. Default value is true.

You can also define name , password , caAlias and caPassword under

zowe.setup.certificate.pkcs12 to customized keystore and truststore. These configurations

are optional, but it is recommended to update them from default values.

Define zowe.setup.certificate.pkcs12.import.keystore if you already acquired certificate

from other CA, stored them in PKCS12 format, and want to import into Zowe PKCS12 keystore.

zowe.setup.certificate.pkcs12.import.password is the password for keystore defined in

zowe.setup.certificate.pkcs12.import.keystore .

zowe.setup.certificate.pkcs12.import.alias is the original certificate alias defined in

zowe.setup.certificate.pkcs12.import.keystore . After imported, the certificate will be

saved as alias specified in zowe.setup.certificate.pkcs12.name .

For JCERACFKS certificate (z/OS keyring) users,

zowe.setup.certificate.keyring.owner is the keyring owner. It's optional and default value is

zowe.setup.security.users.zowe . If it's also not defined, the default value is ZWESVUSR .

zowe.setup.certificate.keyring.name is the keyring name will be created on z/OS. This is

required if zowe.setup.certificate.type is JCERACFKS .

If you want to let Zowe to generate new certificate,

You can also customize label and caLabel under zowe.setup.certificate.keyring if

you want to generate new certificate. Default value of label is localhost and default value of

caLabel is localca .

If you want to import certificate stored in MVS data set into Zowe keyring,

zowe.setup.certificate.keyring.connect.dsName is required in this case. It tells Zowe

the data set where the certificate stored.

zowe.setup.certificate.keyring.connect.password is the password when importing

the certificate.

The certificate will be imported with label defined in

zowe.setup.certificate.keyring.label .

If you want to connect existing certificate into Zowe keyring,

zowe.setup.certificate.keyring.connect.user is required and tells Zowe the owner of

existing certificate. This field can have value of SITE .

zowe.setup.certificate.keyring.connect.label is also required and tells Zowe the

label of existing certificate.

If zowe.verifyCertificates is not DISABLED , and z/OSMF host (zOSMF.host) is provided,

Zowe will try to trust z/OSMF certificate.

If you are using RACF security manager, Zowe will try to automatically detect the z/OSMF CA

based on certificate owner specified by zowe.setup.certificate.keyring.zOSMF.user .

Default value of this field is IZUSVR . If the automatic detection failed, you will need to define

zowe.setup.certificate.keyring.zOSMF.ca indicates what is the label of z/OSMF root

certificate authority.

If you are using ACF2 or TSS (Top Secret) security manager,

zowe.setup.certificate.keyring.zOSMF.ca is required to indicates what is the label of

z/OSMF root certificate authority.

zowe.setup.vsam.mode indicates whether the VSAM will utilize Record Level Sharing (RLS)

services or not. Valid value is RLS or NONRLS .

zowe.setup.vsam.volume indicates the name of volume. This field is required if VSAM mode is

NONRLS .

zowe.setup.vsam.storageClass indicates the name of RLS storage class. This field is required if

VSAM mode is RLS .

YAML configurations - java

The high-level configuration java supports these definitions:

home
Defines the path to the Java runtime directory.

YAML configurations - node

The high-level configuration node supports these definitions:

home
Defines the path to the Node.js runtime directory.

YAML configurations - zOSMF

The high-level configuration zOSMF supports these definitions:

zOSMF.host
Defines the hostname of your z/OSMF instance.

zOSMF.port
Defines the port of your z/OSMF instance.

zOSMF.applId
Defines the application ID of your z/OSMF instance.

YAML configurations - components

All Zowe components and extensions can have a dedicated section under the components high-level

configuration.

In this section, <component> represents any Zowe components or extensions. For all components and

extensions, these are the common definitions.

components.<component>.enabled
Defines if you want to start this component in this Zowe instance. This allows you to control each

component instead of a group.

components.<component>.certificate
You can customize a component to use different certificate from default values. This section follows

same format defined in YAML configurations - certificate. If this is not customized, the component will

use certificates defined in zowe.certificate .

components.<component>.launcher
Any component can have a launcher section which overrides the overall Zowe Launcher default defined

in zowe.launcher .

Configure component gateway

These configurations can be used under the components.gateway section:

port
Defines the port which the gateway should be started on. This must be a valid port number.

debug
Defines whether to enable debug mode for the Gateway.

apiml.service.allowEncodedSlashes
When this parameter is set to true , the Gateway allows encoded characters to be part of URL

requests redirected through the Gateway.

apiml.service.corsEnabled
When this parameter is set to true , CORS are enabled in the API Gateway for Gateway routes

gateway/api/v1/** .

apiml.service.preferIpAddress
Set this parameter to true to advertise a service IP address instead of its hostname. Note: This

configuration is deprecated. Zowe start script will ignore this value and always set it to false .

apiml.gateway.timeoutMillis
Specifies the timeout for connection to the services in milliseconds.

apiml.security.x509.enabled
Set this parameter to true to enable the client certificate authentication functionality through ZSS.

apiml.security.x509.externalMapperUrl
Defines the URL where Gateway can query the mapping of client certificates.

apiml.security.auth.provider
Defines the authentication provider used by the API Gateway.

apiml.security.authorization.endpoint.url
Defines the URL to the authorization endpoint. This endpoint tells Gateway if a user has a particular

permission on SAF profile. For example, permission to the APIML.SERVICES profile of ZOWE class.

apiml.security.ssl.verifySslCertificatesOfServices
Defines whether APIML should verify certificates of services in strict mode. Setting to true will

enable the strict mode where APIML will validate if the certificate is trusted in turststore, and also if

the certificate Common Name or Subject Alternate Name (SAN) matches the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices
Defines whether APIML should verify certificates of services in non-strict mode. Setting the value to

true will enable the non-strict mode where APIML will validate if the certificate is trusted in

turststore, but ignore the certificate Common Name or Subject Alternate Name (SAN) check. Zowe will

ignore this configuration when strict mode is enabled with

apiml.security.ssl.verifySslCertificatesOfServices .

apiml.server.maxConnectionsPerRoute
Specifies the maximum connections for each service.

apiml.server.maxTotalConnections
Specifies the total connections for all services registered under API Mediation Layer.

Configure component discovery

These configurations can be used under the components.discovery section:

port
Defines the port which discovery should be started on. This may be defined as a valid port number or as

an offset from the Gateway component's port. To define an offset enter "+{offset}" or "-

{offset}" as a string. The offset must start with + or - .

debug
Defines whether to enable debug mode for the Discovery Service.

apiml.service.preferIpAddress
Set this parameter to true to advertise a service IP address instead of its hostname. Note: This

configuration is deprecated. The Zowe start script will ignore this value and always set it to false .

apiml.security.ssl.verifySslCertificatesOfServices
Defines whether APIML should verify certificates of services in strict mode. Setting to true will

enable the strict mode where APIML will validate both if the certificate is trusted in turststore, and

also if the certificate Common Name or Subject Alternate Name (SAN) matches the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices
Defines whether APIML should verify certificates of services in non-strict mode. Setting to true will

enable the non-strict mode where APIML will validate if the certificate is trusted in turststore, but

ignore the certificate Common Name or Subject Alternate Name (SAN) check. Zowe will ignore this

configuration if strict mode is enabled with

apiml.security.ssl.verifySslCertificatesOfServices .

alternativeStaticApiDefinitionsDirectories
Specifies the alternative directories of static definitions.

apiml.server.maxTotalConnections
Specifies the total connections for all services registered under API Mediation Layer.

apiml.discovery.serviceIdPrefixReplacer
Modifies the service ID of a service instance before it registers to API Mediation Layer. Using this

parameter ensures compatibility of services that use a non-conformant organization prefix with v2,

based on Zowe v2 conformance.

Configure component api-catalog

These configurations can be used under the components.api-catalog section:

port
Defines the port which API Catalog should be started on.

debug
Defines if we want to enable debug mode for the API Catalog. This is equivalent to the

APIML_DEBUG_MODE_ENABLED variable but with better granular level.

environment.preferIpAddress
Set this parameter to true to advertise a service IP address instead of its hostname.

Note: This configuration is deprecated. Zowe start script will ignore this value and always set it to

false .

Configure component caching-service

These configurations can be used under the components.caching-service section:

port
Defines the port which Caching Service should be started on. This may be defined as a valid port

number or as an offset from the Gateway component's port. To define an offset enter "+{offset}"

or "-{offset}" as a string. The offset must start with + or - .

debug
Defines if we want to enable debug mode for the Caching Service.

storage.mode
Sets the storage type used to persist data in the Caching Service.

storage.size
Specifies amount of records before eviction strategies start evicting.

storage.evictionStrategy
Specifies eviction strategy to be used when the storage size is achieved.

storage.vsam.name
Specifies the data set name of the caching service VSAM data set.

storage.redis.masterNodeUri
Specifies the URI used to connect to the Redis master instance in the form

username:password@host:port .

storage.redis.timeout
Specifies the timeout second to Redis. Defaults to 60 seconds.

storage.redis.sentinel.masterInstance : Specifies the Redis master instance ID used by the

Redis Sentinel instances.

storage.redis.sentinel.nodes
Specifies the array of URIs used to connect to a Redis Sentinel instances in the form

username:password@host:port .

storage.redis.ssl.enabled
Specifies the boolean flag indicating if Redis is being used with SSL/TLS support. Defaults to true .

storage.redis.ssl.keystore
Specifies the keystore file used to store the private key.

storage.redis.ssl.keystorePassword
Specifies the password used to unlock the keystore.

storage.redis.ssl.truststore
Specifies the truststore file used to keep other parties public keys and certificates.

storage.redis.ssl.truststorePassword
Specifies the password used to unlock the truststore.

environment.preferIpAddress
Set this parameter to true to advertise a service IP address instead of its hostname. Note: this

configuration is deprecated. Zowe start script will ignore this value and always set it to false .

apiml.security.ssl.verifySslCertificatesOfServices
Specifies whether APIML should verify certificates of services in strict mode. Set to true will enable

strict mode that APIML will validate both if the certificate is trusted in turststore, and also if the

certificate Common Name or Subject Alternate Name (SAN) match the service hostname.

apiml.security.ssl.nonStrictVerifySslCertificatesOfServices
Defines whether APIML should verify certificates of services in non-strict mode. Setting to true will

enable non-strict mode where APIML will validate if the certificate is trusted in turststore, but

ignore the certificate Common Name or Subject Alternate Name (SAN) check. Zowe will ignore this

configuration if strict mode is enabled with

apiml.security.ssl.verifySslCertificatesOfServices .

Configure component app-server

These configurations can be used under the components.app-server section:

port
Defines the port which App Server should be started on. This may be defined as a valid port number or

as an offset from the Gateway component's port. To define an offset enter "+{offset}" or "-

{offset}" as a string. The offset must start with + or - .

Configure component zss

These configurations can be used under the components.zss section:

port
Defines the port which ZSS should be started on. This may be defined as a valid port number or as an

offset from the Gateway component's port. To define an offset enter "+{offset}" or "-

{offset}" as a string. The offset must start with + or - .

Configure component jobs-api

These configurations can be used under the components.jobs-api section:

port
Defines the port which Jobs API should be started on. This may be defined as a valid port number or as

an offset from the Gateway component's port. To define an offset enter "+{offset}" or "-

{offset}" as a string. The offset must start with + or - .

debug
Defines whether to enable debug logging for the Jobs API.

Configure component files-api

These configurations can be used under the components.files-api section:

port
Defines the port which Files API should be started on. This may be defined as a valid port number or as

an offset from the Gateway component's port. To define an offset enter "+{offset}" or "-

{offset}" as a string. The offset must start with + or - .

debug
Defines whether to enable debug logging for the Files API.

Configure external extension

You can define a components.<extension-id> section and use common component configuration

entries.

For example, enable my-extension :

YAML configurations - haInstances

All Zowe high availability instances should have a dedicated section under the haInstances high-level

configuration.

In this section, <ha-instance> represents any Zowe high availability instance ID.

For all high availability instances, these are the common definitions.

haInstances.<ha-instance>.hostname
Defines the host name where you want to start this instance. This could be the host name of one LPAR

in your Sysplex.

haInstances.<ha-instance>.sysname
Defines the system name of the LPAR where the instance is running. Zowe will use ROUTE command

to send JES2 start or stop command to this HA instance.

haInstances.<ha-instance>.components.<component>
Optional settings you can override component configurations for this high availability instance. See

Configuration override for more details.

Auto-generated environment variables

Each line of Zowe YAML configuration will have a matching environment variable during runtime. This is

converted based on pre-defined pattern:

All configurations under zowe , components , haInstances will be converted to a variable with

name:

prefixed with ZWE_ ,

any non-alphabetic-numeric characters will be converted to underscore _ ,

and no double underscores like __ .

Calculated configurations of haInstance , which is portion of haInstances.<current-ha-

instance> will be converted same way.

Calculated configurations of configs , which is portion of haInstances.<current-ha-

instance>.components.<current-component> will be converted same way.

All other configuration entries will be converted to a variable with name:

all upper cases,

any non-alphabetic-numeric characters will be converted to underscore _ ,

and no double underscores like __ .

For examples:

ZWE_zowe_runtimeDirectory , parent directory of where zwe server command is located.

ZWE_zowe_workspaceDirectory is the path of user customized workspace directory.

ZWE_zowe_setup_dataset_prefix is the high-level qualifier where Zowe MVS data sets are

installed.

ZWE_zowe_setup_dataset_parmlib is the data set configured to store customized version of

parameter library members.

ZWE_zowe_setup_dataset_authPluginLib is the data set configured to store APF authorized ZIS

plug-ins load library.

ZWE_zowe_setup_security_users_zowe is the name of Zowe runtime user.

ZWE_configs_port is your component port number you can use in your start script. It points to the

value of haInstances.<current-ha-instance>.components.<your-component>.port , or

fall back to components.<my-component>.port , or fall back to configs.port defined in your

component manifest.

Version: v2.2.x LTS

Server component manifest file reference

Zowe server component manifest file defines the name and purpose of the component. It also provides

information about how this component should be installed, configured, and started. It can be named as

manifest.yaml , manifest.yml , or manifest.json and should be located in the root directory of

the component. Currently, only YAML or JSON format are supported.

The manifest file contains the following properties:

name

(Required) Defines a short, computer-readable name of the component. This component name is used

as directory name after it is installed. The allowed characters in the name are alphabets, numbers,

hyphen (-) and underscore (_). For example, explorer-jes is a valid extension name.

id

(Optional) Defines a long, computer-readable identifier of the component. If the component is hosted

as one of the projects in Open Mainframe Project, the identifier also matches the component path in the

Zowe Artifactory. For example, org.zowe.explorer-jes is a valid identifier. You can locate the

component's official releases by looking into the libs-release-local/org/zowe/explorer-

jes/ directory in the Zowe Artifactory.

version :

(Optional but recommended) This is the current version of the component without the prefix of v . For

example, 2.0.0 is a valid version value.

title

(Optional) Defines a short human-readable name for this component. This value will also be used as the

default title for API Catalog tile, or App Framework plug-in title. For example, JES Explorer is a valid

title for the explorer-jes component.

description

(Optional) Defines a long human-readable description of this component. There is no restriction on

what you can put in the field.

https://www.openmainframeproject.org/
https://zowe.jfrog.io/ui/repos/tree/General/libs-release-local%2Forg%2Fzowe%2Fexplorer-jes

license

(Optional but recommended) Defines the license code of the component. For example, Zowe core

components have EPL-2.0 value in this field.

schemas

(Required) Defines the location of json schema files that are compatible with certain portions of Zowe

as denoted by each child property.

configs

(Required) Defines the location of the json schema file which extends the Zowe Component base

schema.

build

(Optional but strongly recommended) Defines the build information of the current package, including git

commit hash, and so on. When Zowe core components define manifest file, these fields are left as

template variables. The template will be updated when a publishable package is created. It supports the

following subfields:

branch

It indicates which branch this package is built from.

number

You may create multiple packages in the same branch. This is the sequential number of the current

package.

commitHash

This is the commit hash of the package that can be used to match the exact source code in the

repository. Zowe core components usually use git rev-parse --verify HEAD to retrieve the

commit hash.

timestamp

This is the UNIX timestamp when the package is created.

commands

This defines actions that should be taken when the component is installed, configured, started, or

tested. You must issue this command with one or more subfields as listed below. For example,

commands.install . All subfields are optional and usually should point to a USS command or script.

install

This defines extra steps when installing this component. It will be automatically executed if you

install your component with the zwe components install server command.

validate

This defines extra validations that the component requires other than global validations. It is for

runtime purpose, and will be automatically executed each time Zowe is started.

configure

This defines extra configuration steps before starting the component. It is for runtime purpose, and

will be automatically executed each time Zowe is started.

start

This tells the Zowe launch script how to start the component. It is for runtime purpose, and will be

automatically executed each time Zowe is started.

apimlServices

This section defines how the component will be registered to the API Mediation Layer Discovery

Service. All subfields are optional.

dynamic

Array of objects. This information will tell Zowe and users what services you will register under the

Discovery service.

serviceId

This defines the service ID registered to the Discovery service.

static

Array of objects. When the component is statically registered under the Discovery service, this tells

Zowe where to find these static definitions. This information is for the Zowe runtime. When Zowe is

starting, the launch script will check this field and put the parse static definition file into the

directory defined as ZWE_STATIC_DEFINITIONS_DIR in the Zowe instance.

file

Defines the path to the static definition file. This file is supposed to be a template.

basePackage

Defines the base package name of the extension. It is used to notify the extended service of

the location for component scan.

appfwPlugins

Array of objects. This section defines how the component will be registered to the App Framework

plug-in. All subfields are optional.

path

This points to the directory where App Framework pluginDefinition.json file is located.

When Zowe is starting, the launch script will check this field and register the plug-in to Zowe App

Framework Server.

gatewaySharedLibs : Array of objects. This section defines the API ML extension(s) attributes which

will get installed and used by API ML.

path

This points to the directory where the JAR files are housed for an extension and later on copied into

the API ML extensions workspace directory. If there is more than 1 extension to a single manifest

(say for a product family of multiple extensions), then multiple path variables can be contained

within the manifest denoted by individual folders, for example path/to/yourextension1/ .

Alternatively, path can be the JAR file path rather than a directory path.

zisPlugins

List of ZIS plugin objects. This section defines the ZIS plugin(s) attributes necessary for ZIS plugin

installation and automation.

id

This is the unique plugin ID of the ZIS plugin.

path

This points to the directory where the load modules are housed for a plugin, for example

zisServer . If there is more than 1 plugin to a single manifest (say for a product family of multiple

plugins), then multiple path variables can be contained within the manifest denoted by individual

folders, for example yourplugin1/zisServer . The parameters for the Zowe parmlib are

assumed to be in <PATH>/samplib . The names of the plugin executables are assumed to be in

<PATH>/loadlib .

For example,

configs

Component can define it's own configuration in this section in desired hierarchy. This is the brief

guidance for component user to learn what are the configurations and what are the default values. Any

configurations defined here can be placed into zowe.yaml components.<component-name>

section for customization.

For example, if the component has this defined in component manifest,

You can choose to put those configurations into components.myextension or haInstance.<ha-

instance>.components.myextension of zowe.yaml like this:

Component can use auto-generate environment variables in lifecycle scripts to learn how the

component is configured for current HA instance. In the preceding use case,

For HA instance lpar1 , ZWE_configs_port value is 14567 ,

ZWE_configs_another_config value is my-value , which are default values.

For HA instance lpar2 , ZWE_configs_port value is 24567 ,

ZWE_configs_another_config value is my-value2 .

From another component, you can find myextension configurations like this,

For HA instance lpar1 , ZWE_components_myextension_port value is 14567 ,

ZWE_components_myextension_another_config value is my-value , which are default

values.

For HA instance lpar2 , ZWE_components_myextension_port value is 24567 ,

ZWE_components_myextension_another_config value is my-value2 .

Note: All paths of directories or files mentioned previously should be relative paths to the root directory

where manifest is located.

Version: v2.2.x LTS

Bill of Materials

Zowe™ uses the SPDX SBOM format to represent its bill of materials. To read more about why SBOMs and

SPDX are used, see this blog. The hash codes can be used to validate your download is authentic using a

command like openssl dgst -sha1 <downloaded_sbom.zip> . Zowe SBOMs are as follows:

Type Component
SBOM

Link
SHA-1 Hash

Artifact

SBOM

Zowe z/OS Components

(PAX, SMP/E, PSWI)

SBOM

Link
3ed80afaadfdabe1112c7063fe297d5f

Artifact

SBOM

Zowe CLI Standalone

Package

SBOM

Link
98b75ca32cc08664574da1886d28c625463cceba

Artifact

SBOM

Zowe CLI Standalone

Plugins Package

SBOM

Link
7d1e06e579b4dcc69c44405a47dfebc386426b0f

Artifact

SBOM

Zowe Client NodeJS

SDK

SBOM

Link
c61bd6b9f78ba2aa67a0f4e53874a097992d8155

Artifact

SBOM
Zowe Client Python SDK

SBOM

Link
637c5f90f94a88cb534bead7755fac112b509217

Source

Code

SBOM

All Zowe's Source

Repositories used in

final artifacts

SBOM

Link
19d2b81b0fa2955d165123871c72c2c77ddf73b7

https://www.linuxfoundation.org/blog/spdx-its-already-in-use-for-global-software-bill-of-materials-sbom-and-supply-chain-security/
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_pax_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_cli_standalone_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_cli_standalone_plugins_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_client_node_sdk_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_client_python_sdk_sbom.zip
https://zowe.jfrog.io/zowe/list/libs-release-local/org/zowe/sbom/2.0.0/zowe_sources_sbom.zip

